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Abstract—Non-invasive Brain Computer Interface like 

Electroencephalography (EEG) which directly taps neurological 
signals, is being widely explored these days to connect paralytic 
patients/elderly with the external environment. However, in India the 
research is confined to laboratory settings and is not reaching the 
mass for rehabilitation purposes. An attempt has been made in this 
paper to analyze real time acquired EEG signal using cost effective 
and portable headset unit EMOTIV. Signal processing of real time 
acquired EEG is done using EEGLAB in MATLAB and EDF 
Browser application software platforms. Independent Component 
Analysis algorithm of EEGLAB is explored to identify deliberate eye 
blink in the attained neural signal. Time Frequency transforms and 
Data statistics obtained using EEGLAB along with component 
activation results of EDF browser clearly indicate voluntary eye blink 
in AF3 channel. The spectral analysis indicates dominant frequency 
component at 1.536000Hz representing the delta wave component of 
EEG during voluntary eye blink action. An algorithm is further 
designed to generate an active high signal based on thoughtful eye 
blink that can be used for plethora of control applications for 
rehabilitation. 
 

Keywords—Brain Computer Interface, EDF Browser, EEG, 
EEGLab, EMOTIV, Real time Acquisition 

I. INTRODUCTION 

ONVENTIONALLY, Brain Computer Interface (BCI) 
technology mainly focuses on invasive and non-invasive 

methodology where the latter is ahead due to simple design 
and ease to use. A brain computer interface needs some brain 
signal as an input for its functionality. So far, various EEG 
signals such as Virtual Evoked Potentials (VEPs), Slow 
Cortical Potentials (SCPs), P300, and sensorimotor rhythms, 
have been explored for controlling BCI functionality. Both 
transient VEPs (TVEPs) and steady-state VEPs (SSVEPs)) 
have been used immensely for BCI control [1]-[7]. Although 
efficiencies of these systems are acceptable but have failed to 
comply with problems like maintaining continuous permanent 
attention to external stimuli and regular control. Another 
feature of EEG i.e. slow cortical potentials can be used for 
BCI technology. Even with some considerable research 
involving SCPs in past [8]-[12], they are not so favorite 
among current BCI researchers. The reason behind this 
 

 Dr. Dipali is the HOD of ECE Department at ManavRachna International 
University, Faridabad, Haryana, India (e-mail: dipali.fet@mriu.edu.in).  

Ms Rashima & Ms Shweta are Research Scholars at ManavRachna 
International University, Faridabad, Haryana, India (e-mail: 
rashimamahajan@gmail.com; shweta_mmec@yahoo.com). 

Mr. Dheeraj is a Faculty with the ECE Department at ManavRachna 
International University, Faridabad, Haryana, India (e-mail: 
dheeraj.fet@mriu.edu.in).  

Mr.SujitRoy is a student in CSE Department at ManavRachna International 
University, Faridabad, Haryana, India (e-mail: sujitroy1994@hotmail.com). 

approach is low transmission rate and involvement of long 
tedious training and testing sessions. Other option for BCI 
control is P300. BCIs based on visual P300 evoked potentials 
comprising matrices of numbers, letters and other commands 
have also been broadly surveyed [13]-[15]. Sensorimotor 
rhythms have also been researched extensively for BCI 
control. Wadsworth [16], Berlin [17] and Graz [18] employ 
sensorimotor rhythms in their BCIs, as control signals. 
Disadvantages of these technologies are lower bit rate and 
requirement of multichannel EEG recording for good 
performance. Most of the methods involving BCI control 
using these brain signals involve certain significant 
drawbacks. Hence we use a simple and easy to implement 
method for generating brain signals for BCI control, i.e neural 
potentials generated from deliberate eye blink.  

Only countable research work has been done on eye blink 
detection and its use as a trigger for control applications. 
Pander et al. uses EOG signals and detection function 
generator for eye blink detection with moderate results on 
various eye blink parameters [19]. Udayashankar et al. 
designed an eye blink based control unit using face tracking 
with the help of HAAR cascade classifier (trained) and 
template matching technique [20]. Sammaiah et al. provided a 
system using cornea-retinal potentials [21]. Panning et al. 
presented an algorithm for eye blink detection using color 
based approach in facial images [22]. Jiang-Wei et al. 
provided a multi-oriented Gabor response analysis of eye 
images [23]. These responses were analyzed to detect eye 
blink. Most of the work referred above involved modalities 
other than EEG for eye blink detection. However, Chambayal 
et al. developed an algorithm to detect eye blink from EEG 
signals using LABVIEW platform [24] and Rihana et al. used 
BioRadio portable device to acquire EEG signals and 
Probabilistic Neural Network for signal classification [25]. 
Both these techniques used conventional methods for 
detection of eye blink neural responses and efficiencies of 
their systems are quite moderate.  

Lot of researchers explored controlling of various 
mechanical and electrical devices using BCI, but very few of 
them are non-invasive. The most suitable non-invasive option 
for interfacing a brain and computer is EEG. However, to 
acquire EEG signal in research institutes is quite a difficult 
process and require trained staff. For these reasons, our work 
involves the use of commercially manufactured EEG 
acquisition device, the Emotiv EPOC. There are several other 
headsets present commercially for EEG acquisition but 
because of higher bit rate and better resolution, Emotiv Epoch 
is best suitable for our studies. A comparative study of various 
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models of EEG acquisition systems is given in Table I [26]. 
The motive of this research is to explore the methodology and 
control application of non-invasive and inexpensive eye blink 
based brain computer interface for rehabilitation.  

II. MATERIAL & METHOD 
TABLE I 

COMPARISON OF HEADSETS 
Headset Sensors & Interpretation Cost 
Mindwave 1 Electrode 

Captures 2 Mental states 
$ 99.95 

Emotiv EPOC 14 Electrodes 
Captures 4 Mental states 
Cognitive analysis 
Bluetooth Interface 

$ 299 

Mindset 1 Electrode 
Captures 2 Mental states 

$ 199 

Xwave (with Neurosky) 1 Electrode 
8 EEG Bands 
Bluetooth Interface 

$ 90 

Muse 4 Electrodes 
Can be worn whole day 
Bluetooth Interface 

$ 269 

 
In this work, an EEG-based BCI for the rehabilitative 

control is developed by analyzing neural responses of the 
human subject corresponding to distinct actions. The 
functional work flow of the developed BCI is shown in Fig. 1. 
It consists of signal acquisition, signal processing and 
algorithm development. 

 

 
Fig. 1 Block Diagram for real time acquisition and processing of 

EEG signal 

A. Signal Acquisition 
Real time EEG dataset is acquired from subject’s scalp 

using cost effective and portable EEG Neuro-headset unit 
EMOTIV. It is capable of acquiring neural signals generated 
in response to distinct actions of subject using its 14-assembly 
electrode sensors (AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, 
FC6, F4, F8, AF4 with 2 reference electrodes P3 and P4). The 
acquired EEG signal is transmitted to laptop through the 
wireless Bluetooth dongle. The EEG dataset is recorded at a 
sampling frequency of 128Hz and is saved as .edf (European 
data format) file. EEG dataset is recorded for single subject’s 
deliberate eye-blink action. 

B. Signal Processing 
Signal processing of real time acquired EEG is done using 

EEGLAB v 13.0.1 in MATLAB workspace and EDF Browser 
application software platforms. Independent Component 
Analysis (ICA) algorithm of EEGLAB is explored to identify 
deliberate eye blink in the attained neural signals through 
scalp channels. The ICA decomposition of signals leads to the 
extraction of maximally temporally independent EEG signals 

corresponding to any activity present in the channel data [27]. 
This provides a basis for locating voluntary eye blinks and 
other subject actions. Different ICA decomposition algorithms 
available in EEGLAB toolbox are runica.m (selects neural 
components having super-gaussian activity distribution) and 
jader.m (utilizes fourth order moment to identify the neural 
activity in response to certain deliberate action). In this work, 
runica.m is implemented for 10s length input EEG data in 
order to extract their time-frequency transforms and data 
statistics. Furthermore, spectral analysis is done to extract the 
frequency component of the EEG signal at voluntary eye 
blink. 

C. Algorithm Development 
An algorithm is further designed to decode an active high 

signal based on thoughtful eye blinking that can be used for 
EEG based BCI for controlling applications for rehabilitation. 
Fig. 2 illustrates the designed algorithm to use EEG as a 
trigger that can also be used to develop a prosthetic device 
controlled by human neural signals. The recorded EEG signal 
(.edf) is imported to MATLAB workspace in order to obtain 
its absolute/maximum value. Then the corresponding mean is 
calculated from the band pass filtered signal to extract its 
threshold value. Now, signal filtered at each point is compared 
with the threshold obtained via K-NN algorithm, and divide 
and conquer method. If it is found larger than the threshold 
value, the selected action’s neural response can be used as a 
trigger for control applications. 

 

 
Fig. 2 Flow chart for algorithm to use EEG as a trigger 

III. RESULT & DISCUSSION 
The various results obtained for EEG-based BCI for control 

applications is discussed in this section. The proposed 
approach is developed and implemented using MATLAB 
R2011a on Core i5(4th Gen) processor with speed 2.40 GHz. 
The real time EEG signal (.edf) acquired through EMOTIV 
EEG Neuro-headset corresponding to double and single eye-
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blink action is plotted in Fig. 3 using EDF Browser. The signal 
is filtered using butter-worth high pass filter and the 
corresponding power spectrum using Fast Fourier transform is 
plotted in Fig. 4. The spectral analysis indicates the dominant 
frequency component at 1.536000Hz representing the delta 
wave component during deliberate eye blink action. This also 
interprets that the intensity of action corresponds to standard 
frequency range of the EEG signal. 

Thus, component activation results of EDF Browser clearly 
indicate forced eye blink in AF3 channel. 
 

 
Fig. 3 EEG signal acquired at channel AF3 during eye blink 

 

 
Fig. 4 Power spectrum during eye blink 

 
Further, EEG signal is processed using EEGLAB v 13.0.1 

in MATLAB workspace. Independent Component Analysis 
(ICA) decomposition is performed to identify deliberate eye 
blink in the attained neural signals through scalp channels. 
Fig. 5 shows signal statistics plot for ICA decomposition using 
‘runica.m’ algorithm during voluntary eye blink. It represents 
the component activation using super Gaussian activity 
distribution. Component time-frequency plot during eye blink 
is depicted in Fig. 6. It represents the time-frequency 
decomposition of component activation and is an index of 
changes in the spectral content of the dataset in response to 
some voluntary action. The upper left part corresponds to the 

baseline mean power spectrum. As clear from component 
time-frequency plot, the power increases in the upper panel 
during the frequency range 0-4Hz thus, represents the delta 
wave component during eye blink action. The lower image 
represents the Inter-Trial coherence (ITC) at all frequencies 
and the lower most part corresponds to the ERP’s (event 
related potentials) that clearly indicates component activation 
prior to 4ms due to the appearance of oscillatory activity in the 
ERP. This is reflected in the spectrogram with brighter color 
bars. 

 

 
Fig. 5 Signal statistics plot for ICA decomposition during eye blink 

 

 

Fig. 6 Component time-frequency plot during eye blink 
 
In order to determine the degree of synchronization between 

component activations, component phase coherence plot 
during eye blink is plotted in Fig. 7. Clusters (highlighted area 
with red circle) of high correlation are noted again around 4ms 
representing the component activation (eye blink) region. 
Component activation scroll plot during eye blink is shown in 
Fig. 8. It is important to scroll EEG activation data to 
completely interpret the neural responses for certain subject 
actions. While scrolling, component ‘1’ (red circle) appears to 
account primarily for eye blink action. The activity spectrum 
of different data channels is plotted in Fig. 9. Different colored 
traces in channel spectra correspond to the activity spectrum 
of individual data channels. The results verify component 
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activation in different spectra plots during deliberate eye blink. 
This identified component activation is further utilized to 
design an algorithm (Fig. 2) to generate an active high during 
eye blinking. This reflects the use of EEG as a trigger that can 
also be used to develop EEG-based BCI for the rehabilitative 
control applications. 
 

 

Fig. 7 Component phase coherence plot during eye blink 
 

 
Fig. 8 Component activation scroll plot during eye blink 

 
Fig. 9 Channel spectra and maps during eye blink 

IV. CONCLUSION 
An efficient, cost-effective and portable EEG based BCI 

using EMOTIV EEG neuro-headset is implemented in this 
research. An independent component decomposition using 
EEGLAB toolbox is employed to identify the component 
activation in the acquired neural signals during deliberate eye 
blink. Different spectral analysis techniques viz. power 
spectrum, time-frequency plot and phase coherence plot have 
been efficiently explored in order to accurately recognize the 
dominant frequency component corresponding to single and 
double eye blink action of human subject. This leads to the 
development of an algorithm to use EEG as a trigger for 
various control applications for rehabilitation. The future work 
may include development of a prosthetic device which can be 
externally used as a medical tool to assist complete or partial 
paralyzed patients and also patients suffering from voluntary 
motor disorder such as speech loss or amputation. 
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