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Abstract—The numerical simulation of electromagnetic 

interactions is still a challenging problem, especially in problems that 
result in fully three dimensional mathematical models. 

The goal of this work is to use mathematical modeling to 
characterize the reliability and capacity of eddy current technique to 
detect and characterize defects embedded in aeronautical in-service 
pieces. 

The finite element method is used for describing the eddy current 
technique in a mathematical model by the prediction of the eddy 
current interaction with defects. However, this model is an 
approximation of the full Maxwell equations. 

In this study, the analysis of the problem is based on a three 
dimensional finite element model that computes directly the 
electromagnetic field distortions due to defects. 
 

Keywords—Eddy current, Finite element method, Non 
destructive testing, Numerical simulations. 

I. INTRODUCTION 

DDY current testing is one of the non destructive 
techniques (NDT) often used to detect defects and ensure 

total integrity of conducting materials. It is one of the most 
applied methods in aeronautical field. It is presently used in 
aeronautics and aerospace for over 50% of all applications for 
the detection of hidden defects in fuselage skins and multi-
layers and to clarify the real condition of aircraft structure for 
appropriate repair and corrective action [1], [2]. 

Eddy current testing can be used for a variety of 
applications such as detection of cracks (discontinuities), 
measurement of metal thickness, detection of metal thinning 
due to corrosion and erosion, determination of coating 
thickness and the measurement of electrical conductivity and 
magnetic permeability. Eddy current technique is an excellent 
method for detecting surface and near surface defects when 
the probable defect location and orientation is well known [2]-
[4]. 

Electromagnetics problems modeling is a good tool for 
understanding and analyzing impedance responses due to 
various defects in the non destructive techniques by eddy 
current. Small impedance variations due to defect and 
inspection process must be captured in the suggested model. It 
is therefore important to use accurate numerical methods 
adequate to these problems [5]. 

The modeling approach can be divided into analytical and 
numerical models with the ability to solve Maxwell‘s 
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equations. 
In this context, various techniques for modeling NDT 

problems are already available. In this study, an approach 
based on finite elements method is chosen. 

Numerical modeling of the eddy current technique has been 
developed since the 60’s with the important contribution of 
Dodd’s works [6]. The axisymmetrical geometries were 
studied next and the various potential formulations were used 
since the 80’s [7]. 

The 3D finite element models used nodal elements were 
early developed and used by various authors, see [8] for 
example, but later also edge elements were exploited [9], [10]. 

Various advantages have been shown to favor the finite 
element approach for such studies, including ease of handling 
boundary conditions, ability to follow awkward boundary 
shapes, and relative economy of computer facilities usage. 
These factors are particularly relevant for the simulation of 
electromagnetic NDT techniques, and hence parallel 
developments have taken place in the use of finite element 
analysis for modeling eddy current and active and residual 
leakage field NDT phenomena [11]-[13]. 

The developed method is tested and compared to 
experimental data obtained from the sixth JSAEM benchmark 
problem. 

The numerical model studied in this paper enables to predict 
and evaluate important parameters act directly on the 
impedance responses of eddy current testing. 

In this paper, only, the defect length or depth effects are 
evaluated. Other parameters which act on the impedance 
responses values, such as probe type, permeability, 
conductivity, and frequencies rang can be studied in future 
works. 

II.  MATHEMATICAL MODEL 
Modeling and simulation of eddy currents testing provide a 

good basis for allowing an early evaluation of part inspection. 
The equations governing the general time varying fields in 

section include magnetic and conducting isotropic materials 
can be derived from the Maxwell equations: 

 
ൈ ׏ ܪ ൌ ܧ ߪ ൅ ߲ሺ߳ ܧሻ/߲(1)         ݐ 

 
׏  ൈ ܧ ൌ െ ߲(2)           ݐ߲/ܤ 

 
. ׏ ሺ ܪ ߤ ሻ ൌ 0           (3) 

 
. ׏ ܧ ൌ  (4)            ߳/ ߩ

 

S. Bennoud, M. Zergoug 

Modeling and Simulation for 3D Eddy Current 
Testing in Conducting Materials  

E



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:8, No:4, 2014

755

 

 

where E and H are the electric and magnetic fields, and ρ, σ, ε, 
and µ are respectively the volume density of electric charges, 
conductivity, permittivity, and permeability of the medium. 
Conductivity ranges vary from zero in insulators to > 10 6 
(S/m) in metals. Permittivity ranges vary from the value ε0 
(ε0=10-9/36 π SI) in vacuum to up to 100 ε0 in some dielectric 
materials. The range for permeability is from µ0 (µ0=4 π 10-7 
SI) in vacuum to about 5000 µ0 in soft iron. 

Potentials must be introduced as usual in 3D eddy current 
finite element formulations. Thus, the flaw field can be 
constructed by introducing two potentials, the magnetic vector 
potential A and the electric scalar potential Ф: 
− The magnetic vector potential A is linked with the 

magnetic flux density B by: 
 

B ൌ ׏  ൈ  (5)            ܣ
 

− The relation between the electric field and the magnetic 
vector potential can be derived as: 

 
ܧ ൌ  െ ׏Ф െ  (6)          ݐ߲/ܣ߲ 

 
Substituting (5) and (6) in (1) and (4), and using the 

constitutive relation (B= µ H), (1) becomes: 
 

׏ ൈ ׏ ൈ A ൌ µ σ ቀെ׏Ф െ பA
ப୲

ቁ ൅ µ Ԗ ቆ
பቀି׏Фെ∂A

∂t ቁ

∂t ቇ       (7) 

 
After simplification by the curl-curl relationship (i.e: ׏) × ׏ 

× A) =-׏ . (׏ A) + ׏ (׏ . A)). Equation (8) is given by: 
 

െ׏ . ሺ׏Aሻ ൅ Aሻ  . ׏ሺ׏ െ µ σ ቀെ׏Ф െ பA
ப୲

ቁ ൌ µ Ԗ ቆ
பቀି׏Фെ∂A

∂t ቁ

∂t ቇ     (8) 

 
Using the Coulomb gauge ሺ׏. A = 0) and the relation ׏ Ф = 

0 (there is no gradient of a scalar potential in (8) if there is no 
initial static charge on the medium). Equation (8) is written as: 

 

െ׏ଶ A ൅ µ σ ቀபA
ப୲

ቁ ൌ µ Ԗ ቆ
பቀି׏Фെ∂A

∂t ቁ

∂t ቇ               (9) 

 
or  

ଶ A׏ ൌ µ σ ቀபA
ப୲

ቁ െ µ Jୱ୭୳୰ୡୣ        (10) 
 

The gradient of Ф is implicit in Jsource.  
The eddy current problem can be described mathematically 

by the following equation in terms of the magnetic vector 
potential: 
 

ଶ A׏ ൅ KଶA ൌ െµ Jୱ୭୳୰ୡୣ       (11) 
 

where A represents the magnetic vector potential, µ is the 
magnetic permeability, Jsource is the excitation current 
density, K2=-ωµ(jσ+ωε), ω is the angular frequency of the 
excitation current (rad). 

The magnetic vector potential can be found by solving (10) 
with appropriate boundary conditions attached to the studied 

configuration, and once this potential is given, other physical 
parameters can be deduced from it. 

Indeed, the complexity of the geometries of the studied 
problems induced that the analytical solution exists only for 
limited simple cases, and obviously, our interest is directed 
towards the search for the approximate numerical solutions. 

Based on the Galerkin’s method, the finite element 
formulation of (10) can be developed. The studied 
configuration is discretized into a number of tetrahedrons and 
the nodal shape functions defined on this mesh are the basis 
functions. The vector and scalar functions are approximated 
by the sets of these basis functions, as: 

 

∑=
=

K

i iAiNA
1         (12)

 

 
where k is the number of nodal points in the element (in this 
case K= 4), Ni and Ai: are the nodal interpolation functions 
and the value of potential function corresponding to the ith 
node respectively of the element. 

The approximation for the magnetic vector potential in (12) 
is substituted into the Galerkin weighted residual technique to 
set up the finite element equations. After some usual 
mathematical manipulations, the approximation of nodal 
values results in equations which in matrix form can be 
written as: 

 
ሺሾܵ௘ሿ ൅ ݆ ሾܴ௘ሿሻ ሼܣ௘ሽ ൌ ሼܳ௘ሽ}      (13) 

 
[Se] is the k x k real part of the elemental matrix, [Re] is the k 
x k imaginary part, {Qe} is the k×1 vector of contributions at 
the nodes of the dement from the current densities, and {Ae} is 
the k × 1 vector of unknown values of the magnetic vector 
potential at the nodes of the element. 

The elemental contributions of the solution can be 
calculated and summed into a global system of equations: 

 
ሾܭሿ ሼܣሽ ൌ ሼܳሽ         (14) 

 
where [K] is the N×N banded symmetric complex global 
matrix (N is the total number of nodes), and {Q} and {A} are 
respectively the Nx1 complex source matrix and the N×1 
complex vector of unknowns. 

The system is solved using a developed code. Special 
techniques are used to the storage of the global matrix 
elements by the elimination of zero elements and storage of 
nonzero elements as a 1D array. And the Gauss elimination 
method is chosen like method of resolution. 

After calculating the potentials, the flaw impedances can be 
evaluated. 

III. APPLICATIONS AND RESULTS 
The studied problem is presented in Fig. 1. It deals with a 

pancake coil, placed above a plate of conducting material with 
a crack. The probe coil moves parallel to the chosen axis, 
placed along the crack length direction. 
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The magnetic vector potential can be found by solving (10) 
with appropriate boundary conditions attached to the studied 
configuration, and once this potential is given, other physical 
parameters can be deduced from it. 

 

 
(a) Studied configuration 

 

 
(b) Parameters 

Fig. 1 Description of the configuration geometry (plate, probe, 
defect) 

 
Fig. 2 shows the mesh in three dimensional with 2000 

tetrahedron elements and 2662 nodes. 
 

 
Fig. 2 Three dimensional meshes for the studied problem and for the 

probe coil 
 

The suggested case will first be discussed and compared to 
an experimental model obtained from the sixth JSAEM 
benchmark problem (the parameters for this test are listed in 

Table I). The knowledge from this model is then used in the 
set up and analysis of the more complex case. 

 
TABLE I 

 PARAMETERS OF STUDIED CASE 
The coil 

Inner radius (Ri) 
Outer radius (Ro) 

Length (h) 
Number of turns (N) 

Lift-off (l) 

0.6 mm 
1.6 mm 
0.8 mm 

140 
1. mm 

The test plate 
Length (Pl) 
Depth (Pd) 
Width (Pw) 

Conductivity (σ) 
Permeability (µr) 

140 mm 
1.25 mm 
140 mm 
1 106S/m 

1 
Crack is in the first lower plate 
Length (Dl) 
Depth (Dd) 
Width (Dw) 

10. mm 
0.75 mm 
0.2. mm 

Other parameters 
Frequency 150KHz 

 
Fig. 3 shows that the values of the resistive part (real part) 

of the impedance are always of the same form of those 
obtained by the experimental measurements. The same remark 
can be seen for the reactive part (imaginary part). 

 

 
(a) Real part 

 

 
(b) Imaginary part 

Fig. 3 Impedance changes 
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It has seen in Fig. 3 that the experimental values of the 
impedance are always higher than the calculated ones and the 
accuracy of the calculation is in general satisfactory. 

The developed code can be used to study the influence of 
certain parameters. In the example presented in Fig. 4, the 
parameters of test are fixed (the same parameters quoted in 
Table I), and the defect length is modified. 

 

 
Fig. 4 Impedance variation due to the influence of defect length 

 
To interpret the obtained results, it is significant to recall 

that the value of the skin effect for the studied configuration is 
3.6mm. 

The maximum impedance value is at the corner of the 
defect. 

The defect sizes and positions are related to the penetration 
depth. Fig. 4 shows that the developed model gives good 
approximations if the defect length is less than 2.5 skin effect 
value (Dl < 2.5 δ). It can be seen, in the case Dl=12, that the 
impedance has higher values and its maximum value is not at 
the corner of the defect.  

The increase in length is causing a decrease in impedance 
values. 

IV. CONCLUSION 
One of the important benefits of finite element method is 

that complex geometries can be studied. In the field of 
modeling and simulation of eddy current technique this feature 
enables the study of impedance responses on complex parts as 
well as using defects and probes with complex shapes. There 
are also possibilities to implement complex material properties 
in 3D finite element models. 

The finite element method was applied successfully since it 
adapts for any chosen section. 

The numerical model studied in this paper enables to predict 
and evaluate important parameters act directly on the 
impedance responses of eddy current testing. 

Factors such as the type of material, surface finish and 
condition of the material, the design of the probe, and many 
other factors can affect the sensitivity of the inspection. 

Further investigations have to be done in order to verify: the 
detection of defects, the influence of the various parameters on 
the control of the impedance responses and the increasing of 

analysis, which enables to minimize errors and benefit more of 
the performance of the finite element analysis. 
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