
International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:7, No:10, 2013

720

 

 

  
Abstract—In order to investigate the properties of coral reef 

origin secondary aerosol and especially the contribution of secondary 
organic aerosol, ethanol affinity to atmospheric nucleation mode 
particles (diameter<15nm) was measured at the Heron reef marine 
environment in the South Pacific Ocean during the first coral reef 
aerosol characterization experiment in May-June 2011 using an 
ultrafine organic tandem differential mobility analyzer. 

Our campaign study at Heron reef showed that the nucleation 
mode size particles (diameter =10nm) composition contain internally 
mixed sulfate and oxidized organic components in approximately 
equal proportion in sunny and still conditions around low tide time, 
indicating local biogenic sources. The produced secondary 
compounds and aerosols have potential to contribute to cloud 
condensation nuclei formation and properties that may affect local 
low-level cloud formation over the GBR. Additionally, primary 
marine sea-salt and organic material during windy conditions and 
anthropogenic/biogenic sources during continental air masses can 
affect the properties of these particles.  

 
Keywords—Coral reef, DMS, particle composition, secondary 

organics. 

I. INTRODUCTION 
N regards to climate change, one of the largest uncertainties 
is related to aerosols and their direct and indirect (via 

clouds) connections to the Earth’s radiative balance and 
climate [1]. An important phenomenon associated with the 
climatically important direct and indirect aerosol effects is the 
formation of new nanometer-size particles. This phenomena 
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consists of a set of processes that include the production of 
nanometer-size clusters from gaseous vapors, the growth of 
these clusters to detectable sizes (see e.g., [2]), and their 
growth to potential cloud condensation nuclei (CCN) and 
larger radiatively active sizes. 

The aerosols typically consist of both organic and inorganic 
compounds whose relative ratios strongly depend on the 
environmental conditions where the interaction occursand the 
ratio of anthropogenic and biogenic gases and particles define 
the overall composition and properties. In order to more fully 
understand the climatic effects of atmospheric aerosols, the 
composition of freshly nucleated nucleation mode particles 
and Aitken mode size particles (i.e. ultrafine particles<  
100nm) needs to be properly understood in each environment.  

One of the most important environments is marine areas 
which cover around 70% of the Earth’s surface area. [3] 
suggested, using surface chlorophyll a concentrations 
(SeaWiFS satellite) as an indicator for the size of the plankton 
biomass and thus for overall marine productivity, that 
biologically productive marine regions are able to produce 
climatically important secondary particles worldwide (i.e. 
dimethylsulfide (DMS) and other organic vapors and their 
oxidation products), while so called marine deserts (typically 
10-20 degree from equator) are not as productive. Depending 
on the availability of nutrients due to the strength of seasonal 
thermoclines and sunlight, the productivity in different parts of 
the ocean varies and thus the importance of these particles to 
regional climate also varies greatly. 

Coral reefs form some of the most diverse ecosystems on 
the Earth, being one of those marine biologically active 
regions. They occupy less than1% of the world's ocean surface 
but they provide a home for 25% of all marine species[4], 
including fish, mollusks, worms, crustaceans, echinoderms, 
sponges, tunicates and other cnidarians. They are most 
commonly found at shallow depths in tropical waters, but deep 
water and cold water corals also exist on smaller scales in 
other areas. 

Stretching over 2600km, a long way along the coast of 
Queensland in Australia, the Great Barrier Reef (GBR) is one 
of the largest and most important ecosystems in Oceania. The 
regional climatic importance of the GBR emissions was 
identified when Bigg and Turvey [5] reported ca. 35 years ago 
that mean concentrations of aerosol particles in maritime air 
masses between the Australian mainland and the GBR to be 
1590 particles/cm3. Measurements made on the seaward side 
of the GBR were much lower (mean = 640 particles/cm3) and 
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typical of remote marine aerosols. Since the CLAW 
hypothesis [6] suggested a feedback link in oceanic DMS 
emissions to the number of CCN and cloud albedo, the 
hypothesis of [6] has given a good reason to study DMS 
concentrations at biologically productive marine regions such 
as the GBR as a precursor for those particles. Reference [7] 
noted on the northern GBR that atmospheric DMS (DMSa) 
concentrations often increased after low tide when the reef 
was exposed to the atmosphere. On the southern GBR, at the 
Capricorn Bunker Group of reefs, [8] found a DMSa mean 
value of 6.5ppt (ranging from 0.12pptto 23ppt). Additionally, 
[3] suggested the presence of significant secondary organic 
material in newly-formed secondary particles formed in 
biologically active marine areas. Importantly nearby the 
southern GBR at Agnes Water, [9] observed a strong new 
particle formation event when the air mass arrived from the 
GBR direction.  

Understanding the role of clouds in regulating the 
temperature of the oceans and how that role changes is one of 
the biggest uncertainties for climate change researchers. A key 
feature in this regard is the formation and properties of CCN.  

This in situ coral reef 2011 study, the first coral reef aerosol 
characterization experiment (CORACE-1), aimed to determine 
the contribution of sulfate and organic components to ultrafine 
(d < 15nm) particles formation and growth in the southern 
GBR environment at Heron reef.  

II. METHODS 

A. The Measurement Site 
This CORACE-1 study was conducted at the Heron Island 

Research Station (HIRS, 23°26’34”S, 151°54’48”E) on the 
southern end of the GBR on South Pacific Ocean during 26 
May-14 June2011.    

HIRS is located on the Heron Island coral cay near the 
Tropic of Capricorn at the northern end of the Capricorn and 
Bunker group of reefs, 72km north-east of Gladstone city 
(Queensland, Australia) and 539km north of the state capital 
Brisbane. The island is situated on the western side of Heron 
Reef, a fringing platform reef of significant biodiversity, 
supporting around 900 of the 1,500 fish species and 72% of 
the coral species found on the Great Barrier Reef [10]. 

Heron Island is about 800 meters long and 300 meters at its 
widest, giving an area of approximately 16 hectares. The 
highest point, near the western tip, is 3.6 meters above sea 
level (ASL). A dune ridge along the southern shore rises some 
3 meters ASL; lower dunes on the northeastern side are only 
about one meter above the sea [11]. The sampling inlet used 
was built 15 m ASL at the HIRS. 

Unfortunately, another previously planned measurement 
site building at Mission Beach on the northern Queensland 
coast close to the GBR was totally destroyed by the strong 
austral summer cyclone Yasi(3.Feb.2011). 

B. The Measurement Instrument 
An ultrafine organic tandem differential mobility analyzer 

(UFO-TDMA, Fig. 1; [12], [13]) was used to determine the 

contribution of sulfate and organic components to nucleation 
mode size (d<15nm) particles composition. The main 
principle of operation of the DMA ([14], [15]) is to select a 
narrow band of an aerosol size distribution by applying high 
voltage to its central rod thus selecting particles with a 
particular electrical mobility. Thisway, a monodisperse 
aerosol distribution is allowed to pass through the instrument. 
The UFO-TDMA uses ethanol vapor as the working fluid. The 
first DMA selects a monodisperse aerosol distribution which 
is brought to a selected sub-saturated ethanol vapor 
environment where particles can grow to a new size in 
accordance to their composition and size; the second DMA 
then measures the final size. The ratio between the measured 
size in the second DMA and the size selected in the first DMA 
is called the organic growth factor (OGF). Depending on the 
chemical composition of the particles, different amounts of 
ethanol are consumed at a given saturation ratio by the 
particles. We applied the UFO-TDMA to ultrafine 10-15nm 
particles. The saturation ratio was 82 ± 2%. 
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Fig. 1 A schematic of the UFO-TDMA system 
 

The basic analysis principle is based on the fact that 
inorganic particles such as sodium chloride and ammonium 
sulfate do not grow (i.e. OGF is 1) in the sub-saturated (S = 
84%) ethanol vapor when the particle diameter is 20nm or 
smaller. Ammonium bisulfate would grow in 20nm size 
particles to an OGF of 1.02–1.03 but growth does not occur at 
10nm size at 82–84%subsaturation [11]. Importantly, sulfuric 
acid is expected to be neutralized to ammonium sulfate in 
particle phase atmospheric conditions [16]. Indeed, [17] 
recently studied in CLOUD (Cosmics Leaving Outdoor 
Droplets) chamber nanoparticle formation and growth 
experiments that sulfuric acid was transformed to pure 
ammonium sulfate from 2nm diameter. Furthermore, iodine 
compounds do not grow [12]. On the other hand, particles 
composed of biogenic organics (e.g. citric acid or tartaric acid; 
[12]) or 10nm diameter secondary organics [18] do grow (i.e. 
OGF is clearly over 1) and generally, moderately oxidized 
organic do grow very well [18]. It is also notable that if 
particles are composed of organic non-polar compounds or if 
they are highly aged, they grow less. 

The organic volume fraction (OVF) was calculated based 
on the principle introduced in [3]. The OVF is obtained from 
the following comparison: the volume corresponding to the 
measured size OGF is compared with the volume 
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corresponding to the OGF value of a very high ethanol affinity 
compound. Typically, freshly formed secondary organics are 
moderately oxidized and they have a very high ethanol 
affinity. However, the presence of sulfate and oxidized 
organics also lead to low OGF organosulfates [18]; therefore, 
the calculated OVF values are minimum estimates.   

III. RESULTS AND DISCUSSION 
In order to investigate the properties of coral reef origin 

secondary aerosol and especially the contribution of secondary 
organic aerosol (SOA), ethanol affinity to atmospheric 
nucleation mode particles (diameter<15nm) was measured in-
situ at the Heron Island marine environment during CORACE-
1 using the UFO-TDMA described. OGFs determined on 30 
May and 3 June 2011 (ozone ca 22ppb, RH~58%) under calm 
and sunny daytime conditions at low tide were 1.08 and 1.09, 
giving a minimum estimate of 46-52% (6% uncertainty) for 
the OVF of 10 nm particles. This finding was supported by an 
on-site coral seawater chamber experiment, where bubble-
burst particles were filtered and then treated with UV and O3. 
The chamber experiment showed that freshly formed 
secondary particles consisted of at least 50% moderately 
oxidized organic compounds [19]. Similar OVF values were 
measured for 10nm particles under variable wind conditions at 
low tide on 26, 27 and 28 May and 13 June 2011 at Heron 
reef. However, air-masses during the days with higher wind 
speeds may also contain continentally derived compounds. A 
continentally polluted air-mass was measured on 31 May 2011 
when air from 100m height was received from the direction of 
Gladstone on the Queensland coast, which gave an OVF of 
11% for 10nm particles. Overall (Table I), the UFO-TDMA 
measurements typically showed that both sulfate and oxidized 
organics related volume fractions were close to 50% in new 
10nm particles during CORACE-1. 
 

TABLE I 
THE CONTRIBUTIONS OF SOA AND SULFATES 

Experiment Conditions SOA 
(%) 

Sulfates 
(%) 

DMSa(pptv)[20] 

26-28.5 and 
13.6 

variable winds 50 50 - 

30.5 calm and sunny 46 54 - 
31.5 continentally 

influenced 
11 - - 

3.6 calm and sunny 52 48 12.8 
6.6. calm and sunny - - 13.1 
Chamber [19] oxidation and UV  50 50 - 
 

Additionally, during CORACE-1, the biological activity 
and the ability of coral reef waters to form atmospheric 
particles was additionally supported by gold-wool chemi-
adsorption of DMSa. Under calm conditions just after low tide 
on 3 June 2011 a peak DMSa of 12.8 ppt was detected, and 

again under similar conditions on 6 June 2011 a peak DMSa 
concentration of 13.1ppt was detected [20]. 

Previously, [9] found that the majority of the volume of 
Aitken mode size particles detected at Agnes Water, on the 
Queensland coast50km south of the GBR, could also be 
attributed to internally mixed sulfate and organic components. 
The majority of nucleation events observed at Agnes Waters 
occurred between 10:00-13:00 LT under high solar intensity 
(~1000W m-2) and low relative humidity (~50-60%) [9]. 
Generally, they assumed in the marine air mass new particle 
formation events at Agnes Water (a part of Pacific Ocean) that 
the particles consisted of around 60% sulfates and 40% 
organics by volume in 17nm size during weak and 76% 
sulfates and 24% organics by volume in 22.5nm size during 
strong nucleation events.  

Along the Atlantic coast, a significant iodine oxide 
contribution to new particle formation may be derived from 
emission of iodine from brown seaweed ([20]-[22]). However, 
local Australian studies suggest that the role of iodine in 
particle formation is likely to be minor over the GBR ([23], 
[24]). Those observations are supported by the fact that the 
brown seaweed contribution is relatively small compared to 
the amount of total GBR or Heron reef biota.  

Instead, [25] highlighted high DMS and DMSO levels in 
coral mucus. Therefore, microalgae and the corals, and 
especially the mucus of corals could be the main sources for 
DMS and non-DMS volatile organic emissions which are 
necessary for SOA formation at coral reefs.Secondary 
compounds can also contribute to the composition and thus the 
properties of primary particles produced by bubble bursting 
which can potentially form CCN. A schematic of the potential 
for biogenic nucleation, Aitken and accumulation mode 
particle formation, growth, and composition during daylight 
hours at the Heron Island marine environment is shown in Fig. 
2. 
Sunlight is required for nanoparticle formation from volatile 
organic compounds (VOC) such as DMS or alkenes (e.g. 
isoprene). Photochemically mediated oxidation of DMS 
results mainly in the formation of SO2, although lesser 
amounts of methanesulfonic acid (MSA) are also produced 
[26]. Oxidation of SO2 leads to sulfuric acid which may 
undergo nucleation with other gases such as neutralizing 
ammonia and oxidized organics to produce 
thermodynamically stable clusters of nanoparticles. These may 
grow further to radiatively and climatically important sizes 
with VOC oxidation products and iodine oxides to form 
atmospherically important SOA. Additionally, those 
secondary compounds can change the properties of primary 
organic material and sea salt, producing climatically relevant 
CCN ([27], [28], [3]), Fig. 2. 
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