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Abstract—In this paper an optimal convex controller is designed 

to control the angle of attack of a FOXTROT aircraft. Then the order 
of the system model is reduced to a low-dimensional state space by 
using Balanced Truncation Model Reduction Technique and finally 
the robust stability of the reduced model of the system is tested 
graphically by using Kharitonov rectangle and Zero Exclusion 
Principle for a particular range of perturbation value. The same 
robust stability is tested theoretically by using Frequency Sweeping 
Function for robust stability. 

 
Keyword—Convex Optimization, Kharitonov Stability Criterion, 

Model Reduction, Robust Stability. 

I. INTRODUCTION 
HE main problems of flight control system are due to the 
nonlinear dynamics, modeling uncertainties and 

parametric variations. Generally an aircraft moves in a three 
dimensional plane by controlling the three control surfaces 
aileron, rudder and elevator. These three control surfaces 
control the motion of the aircraft about the roll, pitch and yaw 
axes. The elevators of an aircraft control the orientation of the 
aircraft by changing the pitch and the angle of attack of the 
aircraft. Though a lot of works have been done to control the 
angle of attack, still it is an open issue which is discussed in 
the present work. Not only the designed controller is required 
to offer satisfactory performance in terms of controlling the 
angle of attack, but also the system model has to be robust 
stable for a wide range of change in parametric values of 
closed loop transfer function. Alireza Karimi, Hamid Khatibi 
and Roland Longchamp synthesize the robust control of linear 
time-invariant SISO polytopic systems using the polynomial 
approach [1]. Kin Cheong Sou, Megretski, A. and Daniel, L 
proposed a Quasi-Convex optimization approach to 
Parameterized Model Order Reduction (MOR) framework [2]. 
V. L. Kharitonov in 1978 found out asymptotic stability of a 
family of systems for an equilibrium position with help linear 
differential equations [3]. Kharitonov theorem also provides 
the necessary and sufficient conditions for checking the robust 
stability of dynamic system with fractional order interval 
systems [4]-[6]. Fu. M. developed a simple approach which 
unifies and generalizes a class of weak Kharitonov regions for 
robust stability of linear uncertain systems [7]. Jie Chen 
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considered robust stability problem for interval plants in the 
case of single input (multi-output) or single output (multi-
input) systems using a generalization of V.L. Kharitonov’s 
theorem [8]. Bevrani, H. designed a robust proportional-
integral-derivative (PID) feedback compensator for better 
stability and robust performance of a radio-frequency 
amplifier with wide range parameter variation [9]. R.J. 
Bhiwani and B.M. Patre analyse the robust stability feedback 
controller synthesis can be tested using Kharitonov’s theorem 
for fuzzy parametric uncertain systems [10]. Toscano and 
Lyonnet synthesized a feedback controller to obtain robust 
static feedback using evolutionary algorithm [11]. 

In this paper an optimal convex controller is designed using 
convex optimization technique to control the angle of attack 
[12], [13] of FOXTROT aircraft. Then the order of the system 
model is reduced by using Balanced Truncation technique to a 
low dimensional state space [14], [15]. Finally the robust 
stability [16]-[18] of the reduced model is tested graphically 
by using Kharitonov rectangle & Zero Exclusion Principle for 
a parametric perturbation ' 'μ  and theoretically by using 
Frequency Sweeping function for robust stability. In this work 
' 'μ  is allowed to increase up to a particular value below 
which the system model is found to be robust stable by 
establishing the Kharitonov polynomials to be Hurwitz. 
Increasing beyond this value of ' 'μ  further the system model 
is not robust stable resulting non Hurwitz Kharitonov 
polynomials. It is also shown that the Kharitonov rectangle 
does not include zero within it thereby verifying the interval 
polynomial family to be robust stable for all frequencies 

0ω ≥ resulting ( )H ω  to be positive real [19] 

II. KHARITONOV INTERVAL POLYNOMIALS 
Consider an n-th order polynomial [3] of the form given by 
( ) n n 1

n 1 0p s s a s a−
−= + + +  for all 0 n 1a a, −  such 

that k k k ka a a a,= − μ = + μ , where μ =  the perturbation in 
parametric values.  

Let the polynomials be defined as 
 

( ) 2 4
1 20 4g s a a s a s= + + + { }

n
k k k k

kk
k 0 even

j j a j a s
,

.min , .
=

= ∑  

( ) 2 4
2 0 2 4g s a a s a s= + + + { }

n
k k k k

kk
k 0 even

j j a j a s
,

.max , .
=

= ∑  

( ) 3 5
1 31 5h s a a s a s= + + + { }

n
k 1 k 1 k 1 k

kk
k 1

j j a j a s
,odd

.min , .− − −

=

= ∑  
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( ) 3 5
2 1 3 5h s a s a s a s= + + + { }

n
k 1 k 1 k 1 k

kk
k 1

j j a j a s
,odd

.max , .− − −

=

= ∑
 

Now, the Kharitonov polynomials are given by  
 

( ) ( ) ( )kl k lk s g s h s= +  
  
where k l 1 2, ,=   
 For k 1=  and l 1=   

( ) ( ) ( )11 1 1k s g s h s= +                (1) 
 
For k 1=  and l 2=  

( ) ( ) ( )12 1 2k s g s h s= +                             (2) 
 
For k 2=  and l 1=   

( ) ( ) ( )21 2 1k s g s h s= +                             (3) 
 
For k 2=  and l 2=  

 ( ) ( ) ( )22 2 2k s g s h s= +                          (4) 
 
The above set of polynomials ( ) ( ) ( )11 12 21k s k s k s, ,  and 

( )22k s  are said to be Hurwitz if and only if its every member 
is Hurwitz. These polynomials are called Kharitonov Interval 
polynomials.  

III. ANGLE OF ATTACK 
Angle of attack [12], 13] specifies the angle between the 

chord line of the wing of a fixed-wing aircraft and the vector 
representing the relative motion between the aircraft and the 
atmosphere. The angle of attack ( )α of an aircraft is controlled 
by the deflection in control surface (Elevator). Fig. 1 below 
shows the description of angle of attack of an aircraft.   

                                             

 
Fig. 1 Description of angle of attack of an aircraft 

A. Block Diagram of Angle of Attack Control System 
The block diagram for angle of attack is shown in Fig. 2 

below in which the input is the deflection of elevator ( )Eδ  as 
commanded by the pilot and the output is the desired angle of 
attack ( )α . 

 
Fig. 2 Block Diagram of Angle of Attack Control System 

 
In Fig. 2,  
( )E sδ =  Deflection of elevator as commanded by the pilot  

( )sα =  The desired angle of attack of the aircraft  

( )G s =  Transfer function between Eδ and α   

( )C s = Convex controller to be designed 

( )U s = Output of controller 

B. Transfer Functions between Eδ and α  

The short period approximation [12] consists of assuming 
any variations in speed (u) of the aircraft which arise in air 
speed as a result of control surface deflection and atmospheric 
turbulence is so small that any terms in the equation of motion 
involving u are negligible. In other words, the approximation 
assumes that short period transients are of sufficiently short 
duration resulting constant speed 0U  of the aircraft i.e. u=0. 
Thus, the equations of longitudinal motion in terms of stability 
may now be written as: 

 

Ew 0 Ew Z w U q Zδ= + + δ         (5) 
 

Ew q E
w

q wM wM qM M. δ= + + + δ
 

( ) ( )w w q 0W WM M Z w M U M q= + + + ( )E E EWM Z Mδ δ+ + δ  (6) 

 

If the state vector for short period motion is 
w

x
q

⎡ ⎤
Δ ⎢ ⎥

⎣ ⎦  
and 

the control vector ‘u’ is taken as the deflection of the elevator 
Eδ , then (5) and (6) may be written as a state equation: 

 
x Ax Bu= +                                            (7) 

 
In (7), the values of A and B are 

 

( ) ( )
w 0

w w w q 0 w

Z U
A

M M Z M U M

⎡ ⎤
= ⎢ ⎥

+ +⎢ ⎥⎣ ⎦
 

( )
E

E E w

Z
B

M Z M

δ

δ δ

⎡ ⎤
⎢ ⎥=
⎢ ⎥+⎣ ⎦

 

[ ] ( ) ( )
w 0

w w w q 0 w

s Z U
sI A

M M Z s M U M

− −⎡ ⎤
⎢ ⎥∴ − = ⎡ ⎤− + − +⎢ ⎥⎣ ⎦⎣ ⎦

  

( ) [ ]SP s sI AdetΔ = −   
2

w q 0 w w q 0 ws Z M U M s Z M U M⎡ ⎤ ⎡ ⎤= − + + + −⎣ ⎦ ⎣ ⎦   
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 2 2
SP SP SPs 2 s= + ξ ω + ω                         (8) 

 
In (8), SP SP w q 0 w2 Z M U Mξ ω = + +   
 

1
2SP w q 0 wZ M U M⎡ ⎤ω = −⎣ ⎦  

 
On simplifying the above equations, the transfer functions 

between w  and Eδ  is given by 
 

( )
( )

( )
( )

E
E E

E E

0 q
0 q

E SP

sZ
U M M Z 1

U M M Zw s
s s

δ
δ δ

δ δ

⎧ ⎫⎪ ⎪− +⎨ ⎬−⎪ ⎪⎩ ⎭=
δ Δ

  

 
( )
( )

( )
( )

w 1

E SP

w s K 1 sT
s s

+
⇒ =

δ Δ
                         (9) 

 

In (9), e

E E1 w 0 q
w

Z
T K U M M Z

K
,δ

δ δ= = −
 

Again, ( ) ( )
0 0

w sw s
U U

,α = α =  and ( ) ( )0w s U s= α   

Substituting the value of ( )w s in (9), we get 
 

 
( )
( )

( )
( )

w 1

E 0 SP

s K 1 sT
s U s

α +
=

δ Δ
                                      (10) 

 
Using the values of the stability derivatives [12] as shown 

in Appendix-I and substituting these values in (10), the 
transfer function ( )G s between Eδ  and α  for the flight 
condition-1 is given by 

 

( ) 2
2 0302s 102 8G s

s 0 901s 0 5633
. .

. .
+

=
+ + 2

3 604s 182 5
1 775s 1 598s 1

. .
. .

+
=

+ +
    (11) 

IV. DESIGN OF OPTIMAL CONVEX CONTROLLER 
It is a controller that uses convex optimization for 

controlling a linear system. The analysis and design of linear 
control systems is based on numerical convex optimization 
[20] over closed-loop maps. Convexity makes numerical 
solution effective i.e.it determines whether a given set of 
specifications is achieved by the controller or not. 

The internal stability of a system is a closed loop affine 
constraint i.e. if the controllers K and K each stabilize the 
plant P  and yield closed-loop transfer matrices H and H  
respectively, then for each Rλ ∈ there is a controller given by  

 

 ( ) ( ) ( ) ( )H s H s 1 H sλ =λ + −λ            (12) 
Here two PI (Proportional-Integral) controllers 
( )K s 60 90 s= +  and ( )K s 18 81 s= +  are considered which 

individually stabilize the plant G . With ‘ K ’ in the loop, the 

transfer matrix from Eδ  to [ ]T,uα  is given by  
 

( )

2

3 2

3 2

3 2

216 2s 11270s 1 6420
1 775s 217 8s 1 1280s 1 6420

106 5s 255 6s 203 8s 90
1 775s 217 8s 1 1280s 1 642

H

0

s

. .
. . . .

. . .
. . . .

+⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣

+
+ + +

+
+ ⎦

+ +
+ +  

     (13) 

 

Similarly, with H  in the loop the closed loop transfer matrix 
is given by  
 

 ( )

2

3 2

3 2

3 2

64 87s 3577s 1 4780
1 775s 66 47s 3578s 1 4780H s

31 95s 172 6s 147 4s 81
1 775s 66 47s 3578s 1 4780

. .
. . .

. . .
. . .

⎡ ⎤+ +
⎢ ⎥

+ + +⎢ ⎥=
⎢ ⎥+ + +
⎢ ⎥

+ + +⎣ ⎦

      (14) 

 
Substituting the value of ( )H s from (13) and the value of 

( )H s from (14) in (12), we get   
 

 ( ) ( ) ( ) [ ]H s H s 1 H sλ =λ + −λ

2

3 2

3 2

3 2

216 2s 11270s 1 6420
1 775s 217 8s 1 1280s 1 6420λ

106 5s 255 6s 203 8s 90
1 775s 217 8s 1 1280s 1 6420

. .
. . . .

. . .
. . . .

⎡ ⎤+ +
⎢ ⎥

+ + +⎢ ⎥
⎢ ⎥+ + +
⎢ ⎥

+ + +⎣ ⎦

=   

 ( )

2

3 2

3 2

3 2

64 87s 3577s 1 4780
1 775s 66 47s 3578s 1 47801

31 95s 172 6s 147 4s 81
1 775s 66 47s 3578s 1 4780

. .
. . .λ

. . .
. . .

⎡ ⎤+ +
⎢ ⎥

+ + +⎢ ⎥+ −
⎢ ⎥+ + +
⎢ ⎥

+ + +⎣ ⎦   

    (15) 

A. Closed Loop Step Response for Flight Condition-1 

The step responses from Eδ to α  for K and K are shown in 
Fig. 3 (a) and the corresponding step response from Eδ to u  
are shown in Fig. 4 (a). Fig. 3 (b) shows the closed- loop step 
responses from Eδ to α  with six different values of λ  

generated by K and K . Similarly, Fig. 4 (b) shows the closed- 
loop step responses from Eδ to u  with six different values of 
λ . 

 

 
(a) 
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(b) 

Fig. 3 Closed-loop step response achieved by one family of 
stabilizing controllers from Eδ to α  

 

 

 (a) 
 

 

(b) 
Fig. 4 Closed-loop step response achieved by one family of 

stabilizing controllers from Eδ to u  
 

From Fig. 4, the optimum value of ' 'λ  for the angle of 
attack ' 'α  is found to be opt 1 2.αλ =  and that for controller 

output u' '  is found to be optu 0 25.λ = . The closed-loop 

transfer matrix for the angle of attack  ' 'α is given by 
 

 ( ) ( ) ( ) ( )
opt opt optH s H s 1 H s

αλ α α= λ + − λ          (16) 

 
Similarly, the closed-loop transfer matrix for the controller 

output u' ' is given by 
 

( ) ( ) ( ) ( )
optu optu optuH s H s 1 H sλ = λ + − λ         (17) 

 

Substituting the value of opt 1 2.αλ =  in (16), we get 
 

 ( ) ( ) ( ) ( ) ( )
opt 1 2H s H s 1 2 H s 1 1 2 H s. . .

αλ = = × + −   

( )

2

3 2

2

3 2

216 2s 11270s 1 6420
1 775s 217 8s 1 1280s 1 6

1 2

1 1

420

64 87s 3577s 1 4780
1 775s 66 47s 3578s 1 47 0

2
8

. .
. . . .

. .
.

.
. .

.
⎡ ⎤

= ⎢ ⎥
⎢ ⎥

+ +
+ + +

+ +

⎣ ⎦
⎡ ⎤

+ − ⎢
+⎣ +⎢ +

⎥
⎥⎦

  

5 4 3 2

6 5 4 3 2
4376s 37170s 1555000s 44630000s 225400000s 242800000

3152s 5047s 40850s 1584000s 44650000s 225400000s 242800000
.

. .
+ + + + +

+ + + + + +
=   

( ) ( )opt 1 2H s H s.αλ⇒ =   
5 4 3 2

6 5 4 3 2
4376s 37170s 1555000s 44630000s 225400000s 242800000

3152s 5047s 40850s 1584000s 44650000s 225400000s 242800000

.

. .

+ + + + +

+ + + + + +
=     (18) 

 
Again, substituting the value of optu 0 25.λ =

 
in (17), we get 

 

( ) ( ) ( ) ( )
optu 0 25H s H 0 25 H s 1 0 25 H s. . .λ = = × + −  

( )

3 2

3 2

3 2

3 2

106 5s 255 6s 203 8s 90
1 775s 217 8s 1 1280s 1 6420

31 95s 172 6s 147 4s 81
1 775s 66 47s 3578s 1 4

0 25

1 0 2
7

5
80

. . .
. . . .

. . .
. . .

.

.

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

+

+ + +
+ + +

+ + +
− ⎢ ⎥

⎢⎣ + + ⎦+ ⎥

 

6 5 4 3 2

6 5 4 3 2
2156s 7587s 398500s 2503000s 4514000s 3335000s 1330000

3152s 5047s 40850s 1584000s 44650000s 225400000s 242800000
.

. .
+ + + + + +

+ + + + +
=

+

( ) ( )optu 0 25H s H s.λ∴ =  
6 5 4 3 2

6 5 4 3 2
2156s 7587s 398500s 2503000s 4514000s 3335000s 1330000

3152s 5047s 40850s 1584000s 44650000s 225400000s 242800000
.

. .
+ + + + + +

+ + + + +
=

+
     (19) 

 
For every Rλ∈ ,there is a controller Kλ that yields closed 

loop transfer matrix Hλ is given by  
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

1 1

K s K s K s 1 G s K s
K

1 G s K s G s K s K s
λ

⎡ ⎤ ⎡ ⎤λ − + +⎣ ⎦⎣ ⎦=
⎡ ⎤⎡ ⎤+ + λ −⎣ ⎦ ⎣ ⎦

          (20) 

 
For optαλ = λ , the convex controller for the angle of attack is 

given by  
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )opt

opt 1

1 opt 1

K s K s K s 1 G s K s
K

1 G s K s G s K s K sα

α
λ

α

⎡ ⎤ ⎡ ⎤λ − + +⎣ ⎦⎣ ⎦=
⎡ ⎤⎡ ⎤+ + λ −⎣ ⎦ ⎣ ⎦

  

 
For opt 1 2.αλ = , 

opt

4 3 2

12 4 3 2
1214s 4164s 220700s 1209000s 1330000K K

1775s 3616s 2034s 14454s.
.

. .αλ
+ + + +

= =
+ + +

    (21) 

Therefore, the optimum value of λ which yields closed loop 
transfer matrix Hλ is opt 1 2.αλ = . 
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V. MODEL ORDER REDUCTIONS 
There are many advantages to work with models with low-

dimensional state space. Low-dimensional models are easier 
to analyze, much faster to simulate and requires lesser hard 
works for synthesis of controller [14]. Model reduction 
methods have been used successfully to solve large-scale 
problems in areas such as control engineering, signal 
processing, image compression, fluid mechanics, and power 
systems. From (18),  
 

( ) ( )
opt 12

5 4 3 2

6 5 4 3 2
4376s 37170s 1555000s 44630000s 225400000s 242800000

3152s 5047s 40850s 1584000s 44650000

H s H

s 225400000s 242800000

s.

.
. .

αλ

+ + + + +
+ + + +

=

+ +
=        (22)

 

 
By using Balanced Truncation Model Reduction Technique, 

the above model 1 2H .  in (22) may be reduced to a new model 
given by 

 

( )
4 3 2

r 4 3 2
00008368s 1393s 10600s 408800s 10600000H s

s 1521s 11650s 409700s 10600000
. .

.
− + + + +

=
+ + + +

     (23) 

VI. ROBUST STABILITY OF REDUCED SYSTEM MODEL 
The characteristic equation for FC-1 is obtained from (23) 

as ( ) ( ) ( ) 4 3 2
1p s 1 G s C s s 1521s 11650s 409700s 10600000.= + = + + + + . The 

perturbation in parametric value of ( )p s i.e. 
' 'μ  is allowed to 

increase from up to 20% and the Kharitonov polynomials for 
FC-1are found out using (1) to (4) are as follows: 

 

( )
( )
( )
( )

4 3 2

4 3 2

4 3 2

4 3 2

K11 s 8480000s 327760s 13980s 182 52s 0 8

K12 s 8480000s 491640s 13980s 121 68s 0 8

K21 s 12720000s 327760s 9320s 182 52s 1 2

K22 s 12720000s 491640s 9320s 121 68s 1 2

. .

. .

. .

. .

⎫= + + + +
⎪
⎪= + + + + ⎪
⎬

= + + + + ⎪
⎪

= + + + + ⎪⎭

     (24)  

 
These above polynomials are tested for Hurwitz using 

Routh Hurwitz Criteria and found out to be Hurwitz 
Polynomials by establishing the coefficients in first column 
are positive. If the perturbation is further allowed beyond the 
above value of ' 'μ the polynomials are found not to be 
Hurwitz resulting the coefficients to be negative. Thus it is 
concluded that the designed controller along with the plant 
transfer function (angle of attack) discussed here is robust 
stable up to the perturbation range of 20%. 

A. Kharitonov Rectangle and Zero Exclusion Principle for 
Interval Families (Graphical Testing of Robust Stability) 

An interval polynomial family having invariant degree and 
at least one stable variable is robustly stable if and only if the 
origin of the complex plane is excluded from the Kharitonov 
rectangle at all non-negative frequencies i.e. for all 
frequencies 0ω ≥ . The four vertices of Kharitonov rectangle 

( ) ( ) ( )11 0 12 0 21 0K j K j K j, ,ω ω ω  and ( )22 0K jω  are obtained 

by substituting 0s j= ω  in (24) for FC-1, at a fixed frequency 

0 2ω = .The Kharitonov rectangles for FC-1 at 0 2ω =  is 
shown in Fig. 5 below.   
 

 
Fig. 5 Kharitonov rectangle for FC-1 at 0 2ω =   

 
However, the size and the position of the Kharitonov 

rectangle may change with ω but the sides of the rectangle 
remain parallel to the respective real and imaginary axis. 

B. Frequency Sweeping Function for Robust Stability 
An interval polynomial family is robustly stable if and only 

if ( )H 0ω ≥  for all frequencies 0ω ≥  where  
 

( )

( )
( )

( )
( )

11

12

21

22

K j

K j
H

K j

K j

Re

Re
max

Im

Im

⎧ ⎫ω
⎪ ⎪

− ω⎪ ⎪
ω = ⎨ ⎬

ω⎪ ⎪
⎪ ⎪− ω⎩ ⎭

 

For FC-1 
Substituting s j= ω  in (24), we get 
 

( ) 4 3 2
11K j 8480000 327760j 13980 182 52j 0 8. .ω = ω − ω − ω + ω+  

( ) 4 3 2
12K j 8480000 491640j 13980 121 68j 0 8. .ω = ω − ω − ω + ω+  

( ) 4 3 2
21K j 12720000 327760j 9320 182 52j 1 2. .ω = ω − ω − ω + ω+  

( ) 4 3 2
22K j 12720000 491640j 9320 121 68j 1 2. .ω = ω − ω − ω + ω+  

 
Again,  

( ) 4 2
11K j 8480000 13980 0 8Re .ω = ω − ω +  

( ) 4 2
12K j 8480000 13980 0 8Re .ω = ω − ω +  

( ) 3
21K j 327760 182 52Im .ω = − ω + ω  

( ) 3
22K j 491640 121 68Im .ω = − ω + ω  

 
It is clear from the above equations that, for any 

frequencies 0ω ≥ , the value of ( )H 0ω ≥  and the family of 
interval polynomial is robustly stable. Thus it is concluded 
that the designed controller not only offers the desired angle of 
attack but also produce robust stability. 
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APPENDIX 
TABLE I 

STABILITY DERIVATIVES OF LONGITUDINAL DYNAMICS OF FOXTROT 
AIRCRAFT 

Stability Derivatives 
Flight Condition(FC) 

FC-1 FC-2 FC-3 

( )1
0U ms−  70 265 350 

uX  -0.012 -0.009 -0.0135 

wX  0.14 0.016 0.006 

uZ  -0.117 -0.088 0.0125 

wZ  -0.452 -0.547 -0.727 

qZ  -0.76 -0.88 -1.25 

uM  0.0024 -0.008 0.009 

wM  -0.006 -0.03 -0.08 

w
M .  -0.002 -0.001 -0.001 

qM  -0.317 -0.487 -0.745 

E
Xδ  1.83 0.69 0.77 

E
Zδ  -2.03 -15.12 -27.55 

E
Mδ  -1.46 -11.14 -20.07 
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