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Abstract—Mixotrophic cultivation of the isolated freshwater 

microalgae Chlorella sp. KKU-S2 in batch shake flask for biomass 
and lipid productions, different concentration of glucose as carbon 
substrate, different nitrogen source and concentrations were 
investigated. Using 1.0g/L of NaNO3 as nitrogen source, the 
maximum biomass yield of 10.04g/L with biomass productivity of 
1.673g/L d was obtained using 40g/L glucose, while a biomass of 
7.09, 8.55 and 9.45g/L with biomass productivity of 1.182, 1.425 and 
1.575g/L d were found at 20, 30 and 50g/L glucose, respectively. The 
maximum lipid yield of 3.99g/L with lipid productivity of 0.665g/L d 
was obtained when 40g/L glucose was used. Lipid yield of 1.50, 3.34 
and 3.66g/L with lipid productivity of 0.250, 0.557 and 0.610g/L d 
were found when using the initial concentration of glucose at 20, 30 
and 50g/L, respectively. Process product yield (YP/S) of 0.078, 0.119, 
0.158 and 0.094 were observed when glucose concentration was 20, 
30, 40 and 50 g/L, respectively. The results obtained from the study 
shows that mixotrophic culture of Chlorella sp. KKU-S2 is a 
desirable cultivation process for microbial lipid and biomass 
production.  
 

Keywords—Mixotrophic cultivation, microalgal lipid, Chlorella 
sp. KKU-S2. 

I. INTRODUCTION 
ICROALGAE have the potential to generate significant 
quantities of biomass and oil suitable for conversion to 

biodiesel. Microalgae-derived biodiesel have emerged as one 
of the most promising alternative sources of lipid for use in 
biodiesel production because of their high photosynthetic 
efficiency to produce biomass and their higher growth rates 
and productivity compared to conventional crops and short 
generation time, use of wastewater as a source of nutrient and 
high oil accumulation under certain growth conditions [1], [2]. 
The most productive terrestrial energy crops, including palm 
and soybean oil, do not match the potential high productivity 
of microalgae [2], [3]. In addition, microalgae do not compete 
for land with crops used for food production, fodder and other 
products. 

Microalgae may assume many types of metabolisms, such 
as photoautotrophic, heterotrophic, mixotrophic growths [3], 
[4]. Majority of the microalgae strains are photoautotrophic in 
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nature and can be cultivated either in open ponds or closed 
system in photobioreactors using CO2 and light as carbon and 
energy sources, respectively [5], this culture mode presents 
several disadvantages including low biomass productivity, low 
lipid content and long periods of cultivation. Hence, 
heterotrophic and mixotrophic cultures have been proposed as 
feasible alternatives for the production of biomass and cellular 
lipid accumulation [6]. Heterotrophic growth of microalgae 
involves the utilization of organic compounds as sole carbon 
and energy sources. Mixotrophic cultures of microalgae have 
an edge over photoautotrophic cultures as they have two 
energy sources as organic carbon source and light, they can 
simultaneously drive photoautotrophic and heterotrophic to 
utilize both inorganic (CO2) and organic carbon substrates [7], 
[8], therefore, microalgae cultivated under mixotrophic culture 
synthesize compounds characteristic at high production rates 
of both photosynthetic and heterotrophic metabolisms of 
organic substrates are independent of each other [9]. 
Heterotrophic and mixotrophic cultures of microalgae have 
been reported using different carbon sources, such as glucose, 
sucrose, glycerol and sugarcane molasses [10], [11]. However, 
glucose is most commonly used for sustaining microalgae 
growing in the dark and was used as carbon source in 
mixotrophic culture of several microalgal species reaching 
high biomass and lipids productivity [12]-[14].  

The microalgae Chlorella sp., showed great potentials as 
future industrial biodiesel producers due to their high growth 
rate, and their high oil contents. Carbon and nitrogen sources 
are the most important nutrients for mixotrophic growth and 
lipid production of microalgae. Therefore, in the present study, 
the effects of most important nutrition components, nitrogen 
and carbon sources, on growth and lipid productions of 
freshwater microalgae Chlorella sp. KKU-S2 was performed 
in batch flask cultures under mixotrophic cultivation.  

II. MATERIALS AND METHODS  

A. Microorganisms and Culture Conditions 
The microalgae Chlorella sp. KKU-S2 used in this study 

was isolated from freshwater taken from pond in the area of 
Khon Kaen province, northeastern Thailand [15]. The seed 
culture was pre-cultivated onto Bristol’s medium 
supplemented with 20g/L glucose at 30°C in an incubator 
shaker at a shaking speed of 150rpm and continuous 
illuminated from overhead by 80W cool-white fluorescent 
lamps for 3 days or seed cultures were cultivated until the 
optical density at 680nm (OD680) was 0.8. The Bristol’s 
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biomass or high cell density at the early stage of cell growth, 
then high concentration of carbon source will feed onto culture 
medium for stimulate the cellular lipid accumulation. Fed-
batch fermentation modes have been widely applied for 
microbial lipid production.  

The results in this study are in agreement with a previous 
study, which reported that mixotrophic Chlorella sp. KKU-S2 
growth in glucose yielded higher biomass, lipid content and 
productivity than cells grown under photoautotrophic and 
heterotrophic conditions [15], [20]. However, the biomass and 
lipid productivities of mixotrophic growth are significantly 
higher compared to photoautotrophic growths, but the high 
cost of organic carbon substrate as pure glucose could make 
mixotrophic microalgae cultivation economically unfeasible. 
To reduce production costs of microalgae cultivation, it is 
imperative to find cheap organic substrates that meet the 
nutritional requirements of mixotrophic microalgae. Cheap or 
low cost of carbon substrates such as sugars or organic carbon 
sources from agro-industrial by-products and wastewater, 
agricultural residues or cellulosic materials as well as 
sugarcane molasses offer great promise for mixotrophic 
cultivation of microalgae.  

This study shows that native microalgae Chlorella sp. 
KKU-S2 isolated from freshwater was able to grow 
mixotrophically and high cell densities and lipid accumulation 
were found. In further works, optimizing of biomass will be 
studied by using statistically such as respond surface 
methodology and increasing of biomass and lipid yield of 
Chlorella sp. KKU-S2 will be investigated in a 10L reactor via 
mixotrophic cultivation using inexpensive raw materials such 
as sugarcane molasses, fermented-rice noodle wastewater or 
agricultural residue under batch and fed-batch cultivation 
modes and fatty acids profile of microalgae lipid will be 
studied, and then completed with the production of biodiesel 
by direct transesterification reactions.  

ACKNOWLEDGMENT 
This work was supported by the Higher Education Research 

Promotion and National Research University (NRU) Project of 
Thailand, Office of the Higher Education Commission, 
through the Biofuel Cluster of Khon Kaen University and 
Human Resource Development in Science Project, Office of 
the Higher Education Commission through Science 
Achievement Scholarship of Thailand (SAST), Khon Kaen 
University (KKU) Research Fund, fiscal years 2011-2012 and 
Research Group for Development of Microbial Hydrogen 
Production Process from Biomass of Khon Kaen University. 

REFERENCES 
[1] Ahmad, A.L., Mat Yasin, N.H., Derek, C.J.C., Lim, J.K. (2011) 

Microalgae as a sustainable energy source for biodiesel production: A 
review. Renewable and Sustainable Energy Reviews 15:584–593. 

[2] Huang, G.H., Chen, F., Wei, D., Zhang, X.W., Chen, G. (2010) 
Biodiesel production by microalgal biotechnology. Appl Energy 87:38–
46. 

[3] Brennan, L., Owende, P. (2010) Biofuels from microalgae-a-review of 
technologies for production, processing, and extractions of biofuels and 
co-products. Renew Energ Rev 14:557-577. 

[4] Mata, T.M., Martins, A.A., Caetano, N.S., (2010) Microalgae for 
biodiesel production and other applications: a review. Renew Sust Energ 
Rev 14: 217–232.  

[5] Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., Chang, J.-S. (2011) 
Cultivation, photobioreactor design and harvesting of microalgae for 
biodiesel production: a critical review. Bioresour. Technol. 102 (1):71–
81. 

[6] Yu, H., Jia, S., Dai, Y., (2009) Growth characteristics of the 
cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic 
and heterotrophic cultivation. J. Appl. Phycol. 21 (1):127–133. 

[7] Sun, N., Wang, Y., Li, Y.T, Huang, J-C., Chen, F. (2008) Sugar-based 
growth, astaxanthin accumulation and carotenogenic transcription of 
heterotrophic Chlorella zofingiensis (Chlorophyta). Process Biochem 
43:1288–1292. 

[8] Ip, P.F., Chen, F. (2005) Production of astaxanthin by the green 
microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–
738. 

[9] Ogawa, T., Aiba, S. (1981) Bioenergetic analysis of mixotrophic growth 
in Chlorella vulgaris and Scenedesmus acutus. Biotechnol Bioeng 
23:1121-1132. 

[10] Heredia-Arroyo, T., Wei, W., Ruan, R., Hu, B. (2011) Mixotrophic 
cultivation of Chlorella vulgaris and its potential application for the oil 
accumulation from non-sugar materials. Biomass Bioenergy, 35:2245–
2253 

[11] Feng, F.Y., Yang, W., Jiang, G.Z., Xu, Y.N., Kuang, T.Y.(2005) 
Enhancement of fatty acid production of Chlorella sp. (Chlorophyceae) 
by addition of glucose and sodium thiosulphate to culture medium. 
Process Biochem., 40:1315–1318. 

[12] Perez-Garcia, O., Escalante, F.M., de-Bashan, L.E., Bashan, Y., (2011) 
Heterotrophic cultures of microalgae: metabolism and potential 
products. Water Res. 45 (1): 11–36. 

[13] Wan, M., Liu, P., Xia, J., Rosenberg, J.N., Oyler, G.A., Betenbaugh, 
M.J., Nie, Z., Qiu, G., (2011) The effect of mixotrophy on microalgal 
growth, lipid content, and expression levels of three pathway genes in 
Chlorella sorokiniana. Appl.Microbiol. Biotechnol. 3: 835–844. 

[14] Xiong, W., Gao, C., Yan, D., Wu, C., Wu, Q., (2010) Double CO2 
fixation in photosynthesis-fermentation model enhances algal lipid 
synthesis for biodiesel production. Bioresour. Technol. 101 (7):2287–
2293. 

[15] Leesing, R., Nontaso, N. (2010) Microalgal oil production by green 
microalgae under heterotrophic cultivation. KKU Res J 15 (9): 787-793. 

[16] Miller, G.L. (1959) Use of dinitrosalicylic acid reagent for determination 
of reducing sugar. Anal Chem 31: 426–432. 

[17] Kwon, D.Y. and Rhee, J.S. (1986) A Simple and rapid colorimetric 
method for determination of free fatty acids for lipase assay. J Am Oil 
Chem Soc 63:89-92.  

[18] Liang, Y., Sarkany, N., Cui, Y. (2009) Biomass and lipid productivities 
of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic 
growth conditions. Biotechnol Lett 31(7):1043-1049. 

[19] Ratledge C., Wynn, J.P. (2002) The biochemistry and molecular biology 
of lipid accumulation in oleaginous microorganisms. Adv. Appl. 
Microbiol. 51: 1-51. 

[20] Leesing, R., Kookkhunthod, S. (2011) Heterotrophic growth of 
Chlorella sp. KKU-S2 for lipid production using molasses as a carbon 
substrate. Proceedings of the International Conference on Food 
Engineering and Biotechnology, May 28-29, 2011, Bangkok, Thailand, 
pp. 87-91.  


