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Abstract—Sandwich construction is widely accepted as a method 

of construction especially in the aircraft industry. It is a type of 
stressed skin construction formed by bonding two thin faces to a 
thick core, the faces resist all of the applied edge loads and provide 
all or nearly all of the required rigidities, the core spaces the faces to 
increase cross section moment of inertia about common neutral axis 
and transmit shear between them provides a perfect bond between 
core and faces is made. 

Material for face sheets can be of metal or reinforced plastics 
laminates, core material can be metallic cores of thin sheets forming 
corrugation or honeycomb, or non metallic core of Balsa wood, 
plastic foams, or honeycomb made of reinforced plastics. 

For in plane axial loading web core and web-foam core Sandwich 
panels can fail by local buckling of plates forming the cross section 
with buckling wave length of the order of length of spacing between 
webs. 

In this study local buckling of web core and web-foam core 
Sandwich panels is carried out for given materials of facing and core, 
and given panel overall dimension for different combinations of cross 
section geometries. 

The Finite Strip Method is used for the analysis, and Fortran based 
computer program is developed and used. 
 

Keywords—Local Buckling, Finite Strip, Sandwich panels, Web 
and foam core. 

I. INTRODUCTION 
DVANTAGE of low weight combined with high 
stiffness and continuous development in material, design 

and methods of fabrication made sandwich construction 
widely accepted type of construction especially in aircraft 
industry and in aerospace. 
 

 
Fig. 1 Sandwich panels with different types of metallic cores 
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A structural sandwich panel is a three-layer plate, consisting 
of two face sheets and a core. Two thin, stiff and strong faces 
are separated by a thick, light and weaker core [1]. Such 
construction provides high strength-to-weight ratio and high 
stiffness. Reference [2] investigated the potential of sandwich 
construction as candidate for an Integral Thermal Protection 
System (ITPS) for space vehicle, Traditionally, sandwich 
structures are made up of two face sheets and a core made 
from web and/ or expanded materials such as, foam or metallic 
foil, plastic and composite (honeycomb). Study of overall 
buckling using orthotropic equivalent properties is carried out 
[3], local buckling of thin walled structures is investigated 
using Finite Strip Method [4], theoretical and experimental 
study of steel webs supported by elastic medium along both 
sides is carried out in [5]. Using (FSM) authors studded the 
problem of buckling of plates on foundation [6]. 

By properly choosing material of construction, proper 
sizing of cross section and by proper methods of fabrication, 
we can achieve sandwich panels with high stiffness to weight 
ratio. 

For proper sizing, modes of failure of sandwich 
construction must be studied. 

Web core and web-foam core sandwich panels subject to in 
plane axial loading can fail by local buckling of plates forming 
the cross section with buckling wave length of the order of 
length of spacing between webs. 

In this paper Finite Strip Method (FSM) will be used to 
study local buckling of sandwich panels which are built from 
two face sheets held apart by web of the same material normal 
to the two face sheets, then the study is extended to web-foam 
core Sandwich panels. 

A Fortran computer program is developed based on Finite 
Strip Method (FSM) to carry out the analysis of the following 
cases: 
• Web core sandwich panel  
• Web-Foam core sandwich panel  
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3) To Find Eigen-value and Eigenvectors subroutine require 
positive definite matrix. positions of matrices (Ke +Kf), 
and Kg are interchanged in the characteristic determinant 
as follow: 
 

หࢍࡷ
ᇱ ൅ ሺ૚/ࣅሻ൫ࢋࡷ ൅ ൯หࢌࡷ ൌ ૙                  (9) 

 
หࢍࡷ
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where  is the required Eigen-value 
4) An iteration procedure will be used to find the critical 

buckling load and critical buckling wave length. For start 
of iteration three value of buckling wave length (L1=Bs, 
L2=0.8Bs, L3=0.6Bs) are used to find corresponding 
stresses. By using second order polynomial relating 
stresses to wave lengths we can find the minimum value 
of the stress as next step of iteration, in general, six steps 
found to be enough to converge to the critical buckling 
stress. 

5) The subroutines used for solving the characteristic 
equation for each step of the iteration process is as follow 
[8]: 

• To find Eigen-values and eigenvectors for the problem in 
the form Ax=Bx. 

• The second matrix B is decomposed into Land Lt B=LLt 
by: 

(CALL CHOLDC{Ke, N, n})  
Note Ke +Kf≡B, and Kg≡A 
• The equation Ax=Bx. Becomes 

(L-1A L-1)(L-1x)=(L-1x). 
• which can be written as PY=Y where P=L-1 A L-1is 

symmetric matrix. 
To find matrix P: 
(CALL PMAT{KEI,KG,KEIT,P,N}). 
• Householder’s method is used to transform the matrix P 

into tridiagonal matrix.  
(CALL TRIDIAG{P,N,DP,EP}) 
• QL Algorithm is used to find eigenvalues and eigenvectors  
(CALL tgli{dP,eP,n,N,z} 

IV. ANALYSIS AND PRESENTATION OF RESULTS 
The analysis is based on study of web core and (web foam 

core) the web core panel is made of aluminum alloy 2024 with 
young’s modules E equal 72,000 N/mm2,σU=300N/mm2 with 
panel length A=800mm, and width B=400mm, Bw=40mm, 
and the following cross section geometric configuration are 
considered Bw/Bs vary from 0.5 to 1.2 step 0.1mm and 
thickness tw/ts vary from 0.5 to 1.5 step 0.25mm. 

For web foam core Bw/Bs vary from 0.5 to 1.0 step 0.1mm 
and thickness tw/ts vary from 0.5 to 1.5 step 0.25mm. Material 
stiffness Ec made to vary from 0.0 to 10 step 2.5 N/mm2 

The Fortran list is given in Appendix. 
The results of analysis are presented as given in Figs. 7-10. 
Non dimensional parameters are used for structural 

similarity and for generalization of the results. 
 

 
Fig. 7 Local buckling stress coefficient k for web core sandwich 

panel (Ec/E=0) 
 

 
Fig. 8 Local buckling stress coefficient k for web foam core sandwich 

panel Vs. Bw/Bs for different values of tw/ts (Ec/E=6.94×10-5, 
Bw/ts=50) 

 

 
Fig. 9 Critical buckling stress coefficient Vs. Bw/Bsfor different 

values of Ec/E and, Bw/ts=50 
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Fig. 10 Critical buckling stress coefficient Vs. Bw/tsfor different 

values of tw/ts and, Ec/E=6.94×10-5 

V. CONCLUSION 
1) Finite strip can be used efficiently for the analysis of 

sandwich type of construction with multi parameters 
geometry and combination of material. 

2) Figs. 7-9 show values of local buckling stress coefficients 
k, very close to the values found by ESDU [9]. 

3) Local buckling stress for web core sandwich panels can 
be increased to greater values by including relatively soft 
core material Figs. 8, 9. 

4) Fig. 9 shows that for values of tw/ts=0.5, and 0.6 local 
buckling stress coefficient k remain constant with 
increase of bw/ts, but for tw/ts=0.7 the value of k increases 
rapidly between Bw/ts=40 and 50 then becomes almost 
constant at values higher than 55. 

5) Future work will be testing program on web foam core 
sandwich panel to confirm the analytical results found in 
this paper. 

 

APPENDIX 
$DEBUG 
C FINITE STRIP  
C LOCAL BUCLING OF WEB CORE SANDWICH PLATE    
 DIMENSION 
ND(6,2),B(4,4),KS(14,14),KO(14,14),KG(10,10),KE(10,1
0) 
 #,NB(4),KEI(10,10),KEIT(10,10),P(10,10),DP(10),EP(
10),Z(10,10) 
     #,STR(10),F9(10),FB(6),FK(6),T(6) 
  
      DOUBLEPRECISION 
PI,PHA,PHB,PHC,PHD,FLA,B,KO,KG,KE,KS,E,EC 
 DOUBLEPRECISION TT,KEI,KEIT,P,DP,EP,Z,BS,BW,GK1,GK2   
 INTEGER RUN,I7,NOD,IND,I9,LL,NEL,QM 
 OPEN(1,FILE='LB1.OUT') 
 OPEN(2,FILE='LB2.OUT') 
 OPEN(3,FILE='LB3.OUT') 
C MATERIAL AL ALLOY  N/MM SQ 
 E=72000. 
 ASTR=300.  
 POISON=.3 
EC=5.0 
C DATA 
 N=10 
 LL=2 
 IND=7 
 NOD=2 
 NEL=6 
 BL=400. 
 AL=2.*BL   
C=========== 
C NODAL NUMBERONG 
 ND(1,1)=1 
 ND(1,2)=2 
 ND(2,1)=2 
 ND(2,2)=3 
 ND(3,1)=3 
 ND(3,2)=4 
 ND(4,1)=4 
 ND(4,2)=5 
 ND(5,1)=3 
 ND(5,2)=6 
 ND(6,1)=6 
ND(6,2)=7 
C BOUNDRY CONDITION 
 NB(1)=2 
 NB(2)=5 
 NB(3)=10 
 NB(4)=14 
C PANEL GEOMETRY  
   BW=40. 
DO V6=40,80,5 
 TT=BW/V6 
 DO TW=0.5*TT,0.8*TT,0.1*TT 
222 H=BL/10. 
1  BW=40. 
    BS=80 
  TWR=TW/TT 
309  I7=4 
 307 UN=0.3 
 WRITE(1,'(/,2(2X,I2),/)') ((ND(I,J),J=1,2),I=1,6) 
305   IP=1 
306   FLA=BS 
      QM=1 
 303 RUN=1  
FLAR= FLA/BS 
 GK1=EC/(0.5*BW) 
 GK2=0.0 
 FK(1)=GK1 
 FK(2)=GK1 
 FK(3)=GK2 
 FK(4)=GK2 
 FK(5)=GK1 
FK(6)=GK1 

5
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C  WIDTH OF STRIPS 
 FB(1)=BS/4. 
 FB(2)=BS/4. 
 FB(3)=BW/4. 
 FB(4)=BW/4. 
 FB(5)=BS/4. 
 FB(6)=BS/4. 
C THICNESSW OF STRIPS  
T(1)=TT 
 T(2)=TT  
 T(3)=TW 
 T(4)=TW 
 T(5)=TT 
 T(6)=TT 
 F9(QM)=FLA 
208  PI=3.141593 
      I1=1 
      NN=IND*LL 
      I9=NN-I7  
1000 DO 2 L=1,NN 
      DO 2 M=1,NN 
2     KS(L,M)=0.0 
C COMPUTATION OF ELASTIC STIFFNESS OF SINGLE STRIP +FOUNDATION 
STIFFNESS  + GEOMETRIC STIFF  CONSTANTS 
300   PHA=(PI**4.)*E*FB(I1)*(T(I1)**3.)/(10080.*(1-
UN*UN)*(FLA**3.)) 
 #+FK(I1)*FLA*FB(I1)/840.                                           
      PHB=PI*PI*E*(T(I1)**3.)/(360.*(1.-
UN*UN)*FB(I1)*FLA) 
      PHC=E*FLA*(T(I1)**3)/(24.*(1.-
UN*UN)*(FB(I1)**3.)) 
      PHD=PI*PI*FB(I1)*T(I1)/(840.* FLA) 
 33   IF(RUN-2) 3,4,602 
C COMPUTATION OF GEOMETRIC STIFFNESS FOR SINGLE STRIP 
 3    B(1,1)=PHD*156. 
B(2,1)=PHD*22.*FB(I1) 
B(3,1)=PHD*54. 
B(4,1)=PHD*(-13.)* FB(I1) 
B(2,2)=PHD*4.*FB(I1)*FB(I1) 
B(3,2)=PHD*13.* FB(I1) 
B(4,2)=PHD*(-3.)*FB(I1)*FB(I1) 
B(3,3)=PHD*156. 
B(4,3)=PHD*(-22.)* FB(I1) 
B(4,4)=PHD*FB(I1)*FB(I1)*4. 
 GOTO 11 
C ELASTIC STIFFNESS MATRIX FOR SINGLE STRIP 
 4    B(1,1)=PHA*156.+PHB*36.+PHC*12. 
B(2,1)=PHA*22.*FB(I1)+PHB*(3.+15.*UN)*FB(I1)+PHC*6.* 
FB(I1)    
B(3,1)=PHA*54.+PHB*(-36.)+PHC*(-12.) 
B(4,1)=PHA*(-13.)*FB(I1)+PHB*(3.)*FB(I1) 
+PHC*6.*FB(I1) 
B(2,2)=4.*FB(I1) *FB(I1) *(PHA+PHB+PHC)  
B(3,2)=PHA*13.*FB(I1) +PHB*(-3.)*FB(I1) +PHC*(-
6.)*FB(I1) 
B(4,2)=PHA* FB(I1)*FB(I1)*(-3.)+PHB*FB(I1) 
*FB(I1)*(- 1.)+ 
     #PHC*FB(I1)*FB(I1)*2. 
B(3,3)=PHA*156.+PHB*36.+PHC*12. 
B(4,3)=PHA*(-22.)*FB(I1)+PHB*(-3.-
15.*UN)*FB(I1)+PHC*(-6.)* FB(I1) 
B(4,4)=4.*FB(I1) *FB(I1) *(PHA+PHB+PHC)  
11  DO 7  I=1,4 
      DO 7  J=1,4 
 7    B(I,J)=B(J,I) 
 
C PRODUCTION OF ASSEMBLY MATRIX FROM SINGLE COMPONENTS  
 
      N1=1 
52    L1=1 
50    DO 90 I=1,LL 
 DO 90 J=1,LL 
      L2=I+(N1-1)*LL 
      M3=J+(L1-1)*LL 
      L=LL*ND(I1,N1)-LL+I 
      M=LL*ND(I1,L1)-LL+J 

90    KS(L,M)=KS(L,M)+B(L2,M3)         
      L1=L1+1 
IF(L1-NOD) 50,50,51 
51    N1=N1+1 
IF(N1-NOD)52,52,53 
53 I1=I1+1 
 IF(I1-NEL)300,300,320 
320  DO 500  L=1,NN 
      DO 500  M=1,NN 
KO(L,M)=KS(L,M) 
500   CONTINUE 
 DO 600  II=1,I7 
      K=NB(II) 
      K=K-II+1 
      ITERM=NN-1 
      DO 510 L=K,ITERM 
      IP1=L+1 
      DO 510 M=1,NN 
KO(L,M) =KS(IP1,M) 
510   CONTINUE 
 NM1=NN-1 
      DO 540 L=1,NM1 
      DO 540 M=1,NN 
KS(L,M) =KO(L,M) 
540   CONTINUE 
      DO 520 M=K,ITERM 
      JP1=M+1 
      DO 520 L=1,NN 
520   KO(L,M)=KS(L,JP1) 
      NN=NN-1 
      DO 545 L=1,NN 
      DO 545 M=1,NN 
KS(L,M)=KO(L,M)  
545   CONTINUE 
600   CONTINUE 
IF(RUN-2) 16,17,602 
C REDUCED GEOMETRIC STIFFNESS: 
 16   DO 161 I=1,I9 
      DO 161 J=1,I9 
161   KG(I,J)=KO(I,J) 
C   WRITE(2,991)((KG(I,J),J=1,10),I=1,10) 
C991 FORMAT(//,1X,'KG =',/,6('---'),/,10(2X,F10.2)) 
       GO TO  207 
C REDUCED  ELASTICSTRIFFNESS 
17    DO 171 I=1,I9 
      DO 171 J=1,I9 
171   KE(I,J)=KO(I,J) 
C      WRITE(2,92)((KE(I,J),J=1,10),I=1,10) 
C92 FORMAT(//,1X,'KE =',/,6('---'),/,10(2X,F10.2)) 
207   RUN=RUN+1 
IF(RUN-2)208,208,602 
 
602 CALL CHOLDC(KE,N,I9) 
 
C====== PRINTING LOWER MATRIX OF A ============= 
C     WRITE(2,992)((KE(I,J),J=1,N),I=1,N) 
C  992 FORMAT(//,1X,'LOWER MATRIX IS:',/,6('---
'),/,10(2X,F10.4)) 
  
 CALL LMI(KE,KEI,KEIT,N) 
 CALL PMAT(KEI,KG,KEIT,P,N) 
CALL TRIDIAG(P,N,DP,EP) 
 Z=P 
      CALL TQLI(DP,EP,N,I9,Z) 
C WRITE(2,97)(DP(I),I=1,N) 
 STR(QM)=1./DP(N) 
 IF(IP.EQ.8) GOTO 1067 
 GOTO 1068 
1067 X7=STR(QM)/(E*((TT/BS)**2)) 
 Y7=F9(QM)/BS  
1068  IP=IP+1 
IF(IP-08)2933,2933,9903 
2933  QM=QM+1 
IF(QM-3)3033,3035,9900 
 
3033  FLA=0.8*BS 
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   GOTO 303 
 3035 FLA=0.4*BS 
 GOTO 303 
9900 IF(QM-5)9902,9901,9903 
9902 DUA=STR(1)*(F9(2)-F9(3)) 
 DUB=STR(2)*(F9(1)-F9(3)) 
 DUC=STR(3)*(F9(1)-F9(2)) 
 FLU=-2.*(DUA-DUB+DUC) 
 FLS=F9(1)**2.*(STR(2)-STR(3))-F9(2)**2.*(STR(1)-
STR(3)) 
 #+F9(3)**2.*(STR(1)-STR(2)) 
 FLA=FLS/FLU 
 IF(FLA.LE.0.00000000) GOTO 9903 
 GOTO 9909  
9909   IF(QM.GT.10) GOTO 9903 
      GOTO 303  
9901  QM=QM-1 
      EMAX=STR(1) 
 K=1 
 DO 501 I=2,4 
 IF(STR(I).GT.EMAX)GOTO 502 
 GOTO 501 
502   EMAX=STR(I) 
      K=I    
501  CONTINUE 
IF(K.EQ.4) GOTO 503 
  DO 504 I=K,3 
  STR(I)=STR(I+1) 
  F9(I) =F9(I+1) 
504  CONTINUE 
503 CONTINUE     
      GOTO 9902      
 FORMAT(3X,F7.2,3X,F7.2,3X,F7.2,3X,F6.2,3X,1X,F6.2,3X
,F6.2) 
9903 WRITE(3,99)TT,BW/TT,TWR,STR(QM),X7,EC 
 99   
FORMAT(2X,'TT=',F5.2,2X,'BWR',F5.2,2X,'TWR',F5.2,2X,'
STR ',F8.2,2X 
     #,'X7= ',F7.2,2X,F5.1) 
 END DO      
 END DO 
      STOP 
      END 
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