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Abstract—Sandwich construction is widely accepted as a method
of construction especially in the aircraft industry. It is a type of
stressed skin construction formed by bonding two thin faces to a
thick core, the faces resist all of the applied edge loads and provide
all or nearly all of the required rigidities, the core spaces the faces to
increase cross section moment of inertia about common neutral axis
and transmit shear between them provides a perfect bond between
core and faces is made.

Material for face sheets can be of metal or reinforced plastics
laminates, core material can be metallic cores of thin sheets forming
corrugation or honeycomb, or non metallic core of Balsa wood,
plastic foams, or honeycomb made of reinforced plastics.

For in plane axial loading web core and web-foam core Sandwich
panels can fail by local buckling of plates forming the cross section
with buckling wave length of the order of length of spacing between
webs.

In this study local buckling of web core and web-foam core
Sandwich panels is carried out for given materials of facing and core,
and given panel overall dimension for different combinations of cross
section geometries.

The Finite Strip Method is used for the analysis, and Fortran based
computer program is developed and used.

Keywords—Local Buckling, Finite Strip, Sandwich panels, Web
and foam core.

1. INTRODUCTION

DVANTAGE of low weight combined with high

stiffness and continuous development in material, design
and methods of fabrication made sandwich construction
widely accepted type of construction especially in aircraft
industry and in aerospace.

Fig. 1 Sandwich panels with different types of metallic cores
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A structural sandwich panel is a three-layer plate, consisting
of two face sheets and a core. Two thin, stiff and strong faces
are separated by a thick, light and weaker core [1]. Such
construction provides high strength-to-weight ratio and high
stiffness. Reference [2] investigated the potential of sandwich
construction as candidate for an Integral Thermal Protection
System (ITPS) for space vehicle, Traditionally, sandwich
structures are made up of two face sheets and a core made
from web and/ or expanded materials such as, foam or metallic
foil, plastic and composite (honeycomb). Study of overall
buckling using orthotropic equivalent properties is carried out
[3], local buckling of thin walled structures is investigated
using Finite Strip Method [4], theoretical and experimental
study of steel webs supported by elastic medium along both
sides is carried out in [5]. Using (FSM) authors studded the
problem of buckling of plates on foundation [6].

By properly choosing material of construction, proper
sizing of cross section and by proper methods of fabrication,
we can achieve sandwich panels with high stiffness to weight
ratio.

For proper sizing, modes of failure of sandwich
construction must be studied.

Web core and web-foam core sandwich panels subject to in
plane axial loading can fail by local buckling of plates forming
the cross section with buckling wave length of the order of
length of spacing between webs.

In this paper Finite Strip Method (FSM) will be used to
study local buckling of sandwich panels which are built from
two face sheets held apart by web of the same material normal
to the two face sheets, then the study is extended to web-foam
core Sandwich panels.

A Fortran computer program is developed based on Finite
Strip Method (FSM) to carry out the analysis of the following
cases:

« Web core sandwich panel
« Web-Foam core sandwich panel
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Web Foam Core

Fig. 2 Cells of web core and web foam sandwich panel cross section
geometry

For the analysis of The Web-Foam core sandwich panel
core material is assumed to be linearly elastic and completely
glued to the skin, has young’s modulus Ec in the direction
normal to the skin to provide continues support to panel faces,
to oppose deflection in that direction, the resulting modulus
coefficient K¢ is computed from

K¢ = E, /0.5B,, (1)

where By, is the panel skin spacing depth.

For this study a panel with length a=800mm, width
b=400mm, height B,=40mm, is considered, skin thickness t
vary with B/t=30 to 60 and B,/Bs vary from 0.5 to 1.0 where
B,, is web height and Bq is skin width, see (Fig. 2), the results
of the analysis are given in non dimensional form.

II. FINITE STRIP METHOD FOR LOCAL BUCKLING OF
SANDWICH PANELS

The structural stability problem of sandwich panels is based
on expression the elastic stiffness of the panel as sum of
elastic stiffness K., core stiffness Ky and geometric matrix K,.

Each of the overall matrices mentioned above is formed
from the matrices of the single strips as in a standard Finite
Strip Method procedure; the finite strip matrices to be used in
this analysis are as follow:

Fig. 3 Typical finite strip “k” with nodal displacements at i (w;, 0;)
and nodal displacements at j (wj, 0;)

A. Finite Strip Elastic Stiffness Matrix k,

A single strip is as shown in Fig. 2, with two nodal
displacements at each edge, W for out of plane displacement
and O for rotations, in the program displacement and rotation
will be expressed by U.

The finite strip elastic stiffness matrix k., given as follow

[4]:

ke = ke + kep + ke 2
where
156
k. = n*Ebt3 22b  4b%  Sym.
€l ~ 70080(1-v2)L3| 54 13 156
-13b -3b% 1-22b 4b?
36
k82=i[(3+15v) 4p?  sym. ]
360(1-v2)bL l -36  —3b 36 J
-13b  -b%? —(3+15)b 4b?
12
k _ _ ELt®  |eb ab? sym.
€3 ™ 70080(1-v2)L3|-12 -6b 12
6b 2b> —6b 4b?

where b is strip width and L buckling wave length.
B. Core Stiffness Matrix k;

The core is assumed to be formed by elastic isotropic
material with elastic modulus =E., to be perfectly glued to the
skin of the sandwich panel, depth of the core is assumed to be
=(B,/2.0).

Under critical load the panel buckles into a number of half
waves and the core material glued to the skin of the panel
wrinkle the same way.

At distant (B,,/2.0) from the skin of the panel at the neutral
line of the cross section the core remains undisturbed. In
practice the core is thick enough for this to be true.

We can assume the spring constant of the core material
modulus be computed from

Ke = Ec(22) 3
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Fig. 4 Core action on sandwich faces

The finite strip matrix representing the action of the core on
skin is given as follow [5]:

156
22b  4b%*  Sym.
54 13b 156
—13b —-3b% 1-22b 4b?

C.Geometric Stiffness Matrix for Finite Strip Element
The geometric matrix for a finite strip is given as follow

[4]:

k
_ krLb
ke = 840

)

2
k — oxmbt
8 840L [ 54 13b 156

-13b -3b% 1-22b 4b?

156
22b  4b%  Sym. ] )

where o is the compression stress in x direction.

Fig. 5 Sandwich panel idealization with finite strip and nodal
numbering

D. The Buckling Equation for the Assembled Structure

The displacement—load equation for the assembled structure
constructed from the matrices of single elements Fig. 4 is
given from [7]:

U=(K.+K;+Ky)'F (6)

where U is column of generalized nodal displacement, and F is
column of nodal generalized forces.

Instead of the column matrix F we substitute (AF’) where
F'is the relative magnitude of the applied load column matrix
and A is a constant of proportionality or (load factor) of F, and
since the geometric stiffness is proportional to the applied
load, it can be written as AK :q, with K;is the geometric
stiffness matrix for unit value of A.

For small displacement K, can be considered constant then
the general equation can be written as follow:

U= (K.+Kr+2aKy)'AF' (7)

It follows that for buckling with displacement tending to
infinity the determinant=0, or

|K. + Kq+ AKy| =0 ®)

This determinant is stability equation used to find the
buckling loads and buckling modes.

The lowest root (Eigen-value) and the associated
eigenvector will be the critical buckling load and buckling
mode.

E. Analysis Procedure

In this study since the elastic, core, and geometric matrices
are functions of buckling wave length which is unknown, the
buckling load and the associated buckling mode are found by
an iteration procedure.

Fig. 6 Local buckling mode shape of web core sandwich panel

For the local buckling analysis of web core sandwich panel
with the assumption of edge lines remain straight and plates
rotates around edge lines, the expected buckling shape will be
as shown in Fig. 6.

For the analysis which will follow the idealization is as
shown in Fig. 5 where the skin is divided into four finite
strips, with width By/4 and thickness t;.

For the web two strips are used each of width B,/4 and
thickness equal t.

The assembly matrix for the idealized part of the sandwich
panel is of order 14x14,the reduced matrix which obtained by
introducing the boundary conditions which considers rotation
equal zero at nodal lines 1, 5 and 7. And displacement equal
zero at nodal line 3.

By eliminating the corresponding rows and columns from
the assembly matrix the resulting reduced matrices will be of
the order 10%10.

III. COMPUTER PROGRAM FOR LOCAL BUCKLING

The FORTRAN list is given in Appendix.
The program steps are as follow:

1) RUN=I1, geometric stiffness is computed for each strip
and assembled to produce assembly geometric matrix and
reduced by introduction of boundary condition at node
1,3,5and 7.

2) Run=2, step 1 is repeated for elastic stiffness matrix.
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3) To Find Eigen-value and Eigenvectors subroutine require
positive definite matrix. positions of matrices (K. +Kj),
and K, are interchanged in the characteristic determinant
as follow:

|Ky + (/D) (K. +Kf)| =0 )
|K, +2' (K. +K;)| =0 (10)

where A'is the required Eigen-value

4) An iteration procedure will be used to find the critical
buckling load and critical buckling wave length. For start
of iteration three value of buckling wave length (L,;=B;,
L,=0.8B,, L;=0.6B;) are used to find corresponding
stresses. By using second order polynomial relating
stresses to wave lengths we can find the minimum value
of the stress as next step of iteration, in general, six steps
found to be enough to converge to the critical buckling
stress.

5) The subroutines used for solving the characteristic
equation for each step of the iteration process is as follow
[8]:

« To find Eigen-values and eigenvectors for the problem in
the form Ax=Bx.

«  The second matrix B is decomposed into Land L* B=LL!
by:

(CALL CHOLDC{K,, N, n})

Note K. +K=B, and K=A

« The equation Ax=Bx. Becomes

(LA L)L 'x)=(L"x).

o which can be written as PY=Y where P=L"' A L'is
symmetric matrix.

To find matrix P:

(CALL PMAT{KELKG,KEIT,P,N}).

« Householder’s method is used to transform the matrix P
into tridiagonal matrix.

(CALL TRIDIAG{P,N,DP,EP})

« QL Algorithm is used to find eigenvalues and eigenvectors

(CALL tgli{dP,eP,n,N,z}

IV. ANALYSIS AND PRESENTATION OF RESULTS

The analysis is based on study of web core and (web foam
core) the web core panel is made of aluminum alloy 2024 with
young’s modules E equal 72,000 N/mm?,6y=300N/mm’ with
panel length A=800mm, and width B=400mm, B,=40mm,
and the following cross section geometric configuration are
considered B,/B; vary from 0.5 to 1.2 step 0.lmm and
thickness t,/t; vary from 0.5 to 1.5 step 0.25mm.

For web foam core B,/B; vary from 0.5 to 1.0 step 0.lmm
and thickness t,/t; vary from 0.5 to 1.5 step 0.25mm. Material
stiffness E, made to vary from 0.0 to 10 step 2.5 N/mm®

The Fortran list is given in Appendix.

The results of analysis are presented as given in Figs. 7-10.

Non dimensional parameters are used for structural
similarity and for generalization of the results.

= Tw/T5=0.5
=il Tw/Ts=0.75

Tw/Ts=1.0

e TW/T5=1.25

b TW/T5=1.5

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 13
Bw/Bs

Fig. 7 Local buckling stress coefficient k for web core sandwich
panel (E/E=0)
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Fig. 8 Local buckling stress coefficient k for web foam core sandwich
panel Vs. B,/B; for different values of t,,/t; (E./E=6.94x 107,
By/ts=50)

== Ec/E=0.0

8
= Ec/E=3.47E5
6 EC/E=6.94E5
= Ec/E=1.04E-4

b EC/E=1.38E-4

0.4 0.5 0.6 07 0.8 0.9 1
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Fig. 9 Critical buckling stress coefficient Vs. B,/Bfor different
values of E./E and, Bw/t=50
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Fig. 10 Critical buckling stress coefficient Vs. By/tsfor different
values of t,/t; and, E/E=6.94x107

V.CONCLUSION

Finite strip can be used efficiently for the analysis of
sandwich type of construction with multi parameters
geometry and combination of material.

Figs. 7-9 show values of local buckling stress coefficients
k, very close to the values found by ESDU [9].

Local buckling stress for web core sandwich panels can
be increased to greater values by including relatively soft
core material Figs. 8, 9.

Fig. 9 shows that for values of t,/t=0.5, and 0.6 local
buckling stress coefficient k remain constant with
increase of by/t,, but for t,/t;=0.7 the value of k increases
rapidly between B,/t;=40 and 50 then becomes almost
constant at values higher than 55.

Future work will be testing program on web foam core
sandwich panel to confirm the analytical results found in
this paper.

APPENDIX

$DEBUG
Cc FINITE STRIP
C LOCAL BUCLING OF WEB CORE SANDWICH PLATE

DIMENSION
ND(6,2),B(4,4) ,KS(14,14),K0(14,14) ,KG(10,10) ,KE(10,1
0)

#,NB(4),KEI1(10,10) ,KEIT(10,10),P(10,10),0P(10) ,EP(
10),2(10,10)

#,STR(10) ,F9(10) ,FB(6),FK(6),T(6)

DOUBLEPRECISION
P1,PHA,PHB,PHC,PHD,FLA,B,KO,KG,KE,KS,E,EC
DOUBLEPRECISION TT,KEI,KEIT,P,DP,EP,Z,BS,BW,GK1,GK2
INTEGER RUN, 17,NOD, IND, 19,LL,NEL,QM
OPEN(1,FILE="LB1.0UT")
OPEN(2,FILE="LB2.0UT")
OPEN(3,FILE="LB3.0UT")
C MATERIAL AL ALLOY N/mMM SQ
E=72000.
ASTR=300.
PoIsoN=_.3
Ec=5.0
C DATA
N=10
LL=2
IND=7
NOD=2

C NODAL NUMBERONG
ND(1,1)=1
ND(1,2)=2
ND(2,1)=2
ND(2,2)=3
ND(3,1)=3
ND(3,2)=4
ND(4,1)=4
ND(4,2)=5
ND(5,1)=3
ND(5,2)=6
ND(6,1)=6

ND(6,2)=7

C BOUNDRY CONDITION
NB(1)=2
NB(2)=5
NB(3)=10
NB(4)=14

¢ PANEL GEOMETRY
BW=40.

po v6=40,80,5
TT=Bw/Vv6
Do TW=0.5*TT,0.8*TT,0.1*TT

222 H=BL/10.

1 Bw=40.

BS=80
TWR=TW/TT

309 17=4

307 UN=0.3
WRITE(L, " (/,2(2%x,12),/)") ((ND(1,3),J=1,2),1=1,6)

305 IP=1

306 FLA=BS

QM=1

303 RUN=1

FLAR= FLA/BS
GK1=Ec/(0.5*BW)
GK2=0.0
FK(1)=GK1
FK(2)=GK1
FK(3)=6K2
FK(4)=GK2
FK(5)=GK1

FK(6)=GK1
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C WIDTH OF STRIPS
FB(1)=BS/4.
FB(2)=BS/4.
FB(3)=BW/4.
FB(4)=BW/4.
FB(5)=BS/4.
FB(6)=BS/4.
C THICNESSW OF STRIPS
T)=TT
T(2)=TT
T)=TW
T(A)=TW
T(GB)=TT
T(6)=TT
FO(QW)=FLA
208 P1=3.141593
11=1
NN=IND*LL
19=NN-17
1000 DO 2 L=1,NN
DO 2 M=1,NN
2 KS(L,M)=0.0
C COMPUTATION OF ELASTIC STIFFNESS OF SINGLE STRIP +FOUNDATION
STIFFNESS + GEOMETRIC STIFF CONSTANTS
300 PHA=(PI**4.)*E*FB(11)*(T(11)**3.)/(10080.*(1-
UN*UN)*(FLA**3.))
#+FK(11)*FLA*FB(11)/840.
PHB=PI*PI*E*(T(11)**3.)/(360.*(1.-
UN*UN)*FB(I1)*FLA)
PHC=E*FLA*(T(11)**3)/(24.*(1.-
UN*UN)*(FB(11)**3.))
PHD=PI*P1*FB(11)*T(11)/(840.* FLA)
33 IF(RUN-2) 3,4,602
C COMPUTATION OF GEOMETRIC STIFFNESS FOR SINGLE STRIP
3 B(1,1)=PHD*156.
B(2,1)=PHD*22.*FB(11)
B(3,1)=PHD*54.
B(4,1)=PHD*(~13.)* FB(I1)
B(2,2)=PHD*4_.*FB(11)*FB(11)
B(3,2)=PHD*13.* FB(I1)
B(4,2)=PHD*(-3.)*FB(11)*FB(I1)
B(3,3)=PHD*156.
B(4,3)=PHD*(-22.)* FB(I1)
B(4,4)=PHD*FB(11)*FB(11)*4.
GOTO 11
C ELASTIC STIFFNESS MATRIX FOR SINGLE STRIP
4 B(1,1)=PHA*156.+PHB*36.+PHC*12.
B(2,1)=PHA*22 _*FB(11)+PHB*(3.+15.*UN)*FB(11)+PHC*6.*
FB(I11)
B(3,1)=PHA*54 . +PHB*(-36.)+PHC*(-12.)
B(4,1)=PHA*(~13.)*FB(11)+PHB*(3.)*FB(11)
+PHC*6.*FB(11)
B(2,2)=4.*FB(11) *FB(11) *(PHA+PHB+PHC)
B(3,2)=PHA*13.*FB(I1) +PHB*(~3.)*FB(I11) +PHC*(-
6.)*FB(I11)
B(4,2)=PHA* FB(11)*FB(11)*(-3.)+PHB*FB(11)
*FB(I11)*(- 1.)+
#PHC*FB(I11)*FB(11)*2.
B(3,3)=PHA*156.+PHB*36 . +PHC*12.
B(4,3)=PHA*(-22.)*FB(11)+PHB*(-3. -
15.*UN)*FB(11)+PHC*(-6.)* FB(I1)
B(4,4)=4.*FB(11) *FB(11) *(PHA+PHB+PHC)
11 DO 7 1=1,4
DO 7 J=1,4
7 BW,)=B@A.D

C PRODUCTION OF ASSEMBLY MATRIX FROM SINGLE COMPONENTS

N1=1
52 L1=1
50 DO 90 I=1,LL
DO 90 J=1,LL

L2=1+(N1-1)*LL
M3=J+(L1-1)*LL
L=LL*ND(11,N1)-LL+1
M=LL*ND(11,L1)-LL+J

90  KS(L,M)=KS(L,M)+B(L2,M3)
L1=L1+1
IF(L1-NOD) 50,50,51
51 N1=N1+1
IF(N1-NOD)52,52,53
5311=11+1
IF(11-NEL)300,300,320
320 DO 500 L=1,NN
DO 500 M=1,NN
KO(L ,M)=KS(L ,M)
500 CONTINUE
DO 600 11=1,17
K=NB(I1)
K=K-11+1
ITERM=NN-1
DO 510 L=K, ITERM
1P1=L+1
DO 510 M=1,NN
KO(L,M) =KS(IP1,M)
510 CONTINUE
NM1=NN-1
DO 540 L=1,NM1
DO 540 M=1,NN
KS(L,M) =Ko(L,M)
540  CONTINUE
DO 520 M=K, ITERM
JP1=M+1
DO 520 L=1,NN
520 KO(L,M)=KS(L,JP1)
NN=NN-1
DO 545 L=1,NN
DO 545 M=1,NN
KS(L,M)=KO(L ,M)
545  CONTINUE
600 CONTINUE
IF(RUN-2) 16,17,602
C REDUCED GEOMETRIC STIFFNESS:
16 DO 161 I=1,19
DO 161 J=1,19
161 KG(I,J)=K0o(l,J)
¢ WRITE(2,991)((KG(I1,J),J=1,10),1=1,10)
€991 FORMAT(//,1X,"KG =",7,6("---")./,10(2x,F10.2))
GO TO 207
C REDUCED ELASTICSTRIFFNESS
17 DO 171 1=1,19
DO 171 J=1,19
171 KE(Q1,J)=K0o(l,J)
c WRITE(2,92) ((KE(1,J),J=1,10),1=1,10)
€92 FORMAT(//,1X,"KE =",/,6("---"),/,10(2x,F10.2))
207  RUN=RUN+1
IF(RUN-2)208, 208,602

602 CALL CHOLDC(KE,N,19)

C====== PRINTING LOWER MATRIX OF A =============
¢ WRITE(2,992) ((KE(1,J),J=1,N), 1=1,N)

C 992 FORMAT(//,1X,"LOWER MATRIX 1S:",/,6("-—-
*).7/,10(2X,F10.4))

CALL LMI(KE,KEI ,KEIT,N)
CALL PMAT(KEI ,KG,KEIT,P,N)
CALL TRIDIAG(P,N,DP,EP)
Z=P
CALL TQLI(DP,EP,N,19,2)
c WRITE(2,97)(DP(1),1=1,N)
STR(QM)=1./DP(N)
IF(IP.EQ.8) GOTO 1067
GOTO 1068
1067 X7=STR(QM)/ (E*((TT/BS)**2))
Y7=F9(QM)/BS
1068 IP=1P+1
1F(1P-08)2933,2933,9903
2933 QM=QM+1
1F(QM-3)3033,3035, 9900

3033 FLA=0.8*BS
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GOTO 303

3035 FLA=0.4*BS

GOTO 303

9900 IF(QM-5)9902, 9901, 9903
9902 DUA=STR(1)*(F9(2)-F9(3))

DUB=STR(2)*(FO(1)-F9(3))
DUC=STR(3)*(FO(1)-F9(2))

FLU=-2_.*(DUA-DUB+DUC)
FLS=F9(1)**2_*(STR(2)-STR(3))-F9(2)**2.*(STR(L)-

STR(3))

9909

#+F9(3)**2 . *(STR(L)-STR(2))
FLA=FLS/FLU
IF(FLA.LE.0.00000000) GOTO 9903
GOTO 9909

IF(QM_GT.10) GOTO 9903
GOTO 303

9901 QM=QM-1

502

EMAX=STR(1)
K=1
DO 501 1=2,4
IF(STR(1) .GT.EMAX)GOTO 502
GOTO 501
EMAX=STR(I)
K=1

501 CONTINUE
IF(K.EQ.4) GOTO 503

DO 504 1=K,3
STR(1)=STR(1+1)
FO(1) =FO(1+1)

504 CONTINUE
503 CONTINUE

GOTO 9902
FormAT(3X,F7.2,3%,F7.2,3%,F7.2,3%,F6.2,3X,1x,F6.2,3X

,F6.2)

9903WRITE(3,99)TT,BuW/TT, TWR, STR(QM) , X7, EC

99

FORMAT(2x, "TT=",F5.2,2x, "BWR" ,F5.2,2X, "TWR" ,F5.2,2x, *
STR *,F8.2,2x

(1
[2]

#,"X7= " ,F7.2,2X,F5.1)
END DO
END DO
STOP
END
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