
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

360

Abstract—The intense use of the web has made it a very

changing environment, its content is in permanent evolution to adapt
to the demands. The standards have accompanied this evolution by
passing from standards that regroup data with their presentations
without any structuring such as HTML, to standards that separate
both and give more importance to the structural aspect of the content
such as XML standard and its derivatives. Currently, with the
appearance of the Semantic Web, ontologies become increasingly
present on the web and standards that allow their representations as
OWL and RDF/RDFS begin to gain momentum. This paper provided
an automatic method that converts XML schema document to
ontologies represented in OWL.

Keywords— XML Schema, OWL, RDB, Mapping, Ontology.

I. INTRODUCTION
ERTAINLY, the current web is a changing environment:
the structure of the content and the used standards were

deeply modified in such a short time. Indeed, the data
structure according to the HTML standard was replaced by a
structure based on the standard XML, the latter provides
syntactic and structural description of the data. This structure
is increasingly replaced by a restructuring based on standards
such as RDF [1] and OWL [2], [3], which allows, among other
things, to manage the heterogeneity of the data and their
semantics, thereby giving rise to a web called "semantic web".
The migration to this new web requires an enrichment of
content by semantics.

In this paper, we present a new method that allows
conversion at the schema level of XML documents to
ontologies.

Indeed, an XML document uses other XS documents (. xsd)
to define its structure. This document is called “valid” if its
content complies with the structure described by the XS
grammar. We will therefore be interested in a conversion of
XML documents schema to ontologies. The particularity of
this approach is to allow the classification of generated classes
by converted elements and, unlike other methods that generate
classes for most of elements XS, resulting classes of our
ontology are classified in hierarchical form , each inherits
from a super class that indicate its category.

What remains of this paper is organized as follows: Section
II provides related work. A detailed description of the method
is presented in Section III. Section IV is devoted to the
implementation part. The conclusion will be the subject of the

Jamal Bakkas, Mohamed Bahaj, and Abdellatif Soklabi are with University

Hassan 1, Laboratory LITEN, 26000 Settat, Morocco (e-mail:
jbakkas@gmail.com, mohamedbahaj@gmail.com, abd.soklabi@gmail.com).

last section.

II. RELATED WORKS
Several studies have emerged with aim of integrating XML

content in the Semantic Web. These researches include:
The proposal of tool called "Janus" by Bedini et al [4], [5]

which provides automatic derivation of ontologies from XS
files by applying a set of derivation rules, somewhat later, the
same group proposed a method based on patterns [6], ie a set
of cases occurring in most documents. This proposal deals
with 40 patterns, the conversion of each pattern to OWL
language is provided.

Another proposal is that of Bohring et al [7]. The authors
proposed an approach that covers both schema and data levels.
Their method allows the conversion of XS documents to
concepts and properties of ontology model, and in the data
level, it allows to convert XML documents to instances
(individuals), with possible XS files generation for an XML
document that does not have a schema. This mapping is
implemented by the authors using another XML standard
which is XSLT [8].

N. Yahi et al have proposed an approach [9] that covers two
levels: schema level and data level. Their methods use a set of
Java libraries to generate ontologies from different XML data
sources. Thus, the XMLSchema documents are generated for
XML documents with no schema using the "Trang" (XML to
XML Schema) library. The results of this step are parsed using
XSOM library to provide a result that is taken as input by the
JUNG API (Java Universal Network / Graph framework) to
provide a graph XML-Schema graph (XSG), the latter in turn
is passed as input to the Java API to build the final ontology.

Other studies propose a passage by an intermediate to
convert XML into ontology: for instance the approach
proposed by Xu et al [10]. They proposed the passage by
relational databases by converting XML to RDB, and then
generate ontology from RDB.

III. METHOD DESCRIPTION
Our approach is spread over five main steps:
Preparation: In the first step we create an ontology that we

called template ontology, which we use as template for the
resulting ontology conversion. This ontology is initialized by
set of classes and properties.

Extraction: The second step is to parse the document XS to
be converted with an XML parser to extract its contents
(elements, attributes, values, types ...).

Conversion: In this step we create the ontology elements

Jamal Bakkas, Mohamed Bahaj, Abdellatif Soklabi

Restructuring of XML Documents in the Form of
Ontologies

C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

361

corresponding to the XS document, using the data extracted in
the previous step.

Classification: Each concept or property created in the
conversion step is positioned in its location in the template
ontology; the objective of this operation is to differentiate the
resulting concepts depending on the XS element converted.

Flattening: The last step is to flatten the result of the
previous step, to get the classes of the ontology representing
only elements "xs: element" xsd document.

In what remains of this section we present the classes and
properties that compose the template ontology, which serves
as container of the resulting ontology. Then we detail how
each XS element is converted into its equivalent in ontology
and how it is inserted into template ontology.

A. Template Ontology
The template ontology elements are:
The Element class is a class from which inherits all classes

that represent elements with attributes and/or nested elements.
The ComplexeType class is a class from which inherits all

classes that represent the xs:complexType elements.
The GroupElement class is a class from which inherits all

classes that represent groups of elements. Recalled that the
xs:group element used to group a set of elements under one
name.

Template Ontology also contains a property called data type
DATA, it is the super-property from which inherits all kinds
of data contained in the document XS to convert. This
property is extended by three additional sub-properties that
are:

The ATTRIBUTE property: it is used to extend all
converted properties from the attributes of the complex type
elements.

TEXT property: it is used to extend converted properties
from text content of the converted complex type elements.

The EmptyElement property: it is used to extend the
converted properties from the elements with a simple type.

Once the template ontology is created, we parse the XS
document, and each of its elements is converted and inserted
in the template ontology provided in Fig. 1 according to the
cases bellow:

B. XSD Elements Conversion

1) Simple Element:
A simple element is mapped directly to a data type property

with the same name as the element. This property inherits
from the property EmptyElement. The range of this property is
the type of the XS element if it is specified, otherwise it takes
the type xs:string

2) Complex Element:
Each xs:complexType element having a name generates a

class named the same name as this type and inherits from the
"ComplexeType" class. Then each element having this type is
converted to a class having the same name as element, inherits
from the super class "Element", and related with the class that
represents the type by the "hasType_ComplexName" object

property.
An anonymous complex type is normally created to define

the structure of a single element; this type is mapped to a class
whose name is formed by the name of the element like this:
"CplxT_ElementName".

Let CT be an xs:complexType element, this element can
contain nested elements and/or attributes:

If CT contains attributes, they are converted to data type
properties that inherit from the property "ATTRIBUTE", each
of them is named "hasAttributeName" with as domain the
class that represents CT and as range the type XS of this
attribute. If the attribute "use" with "required" value is used to
define converted attribute, this case is mapped by a cardinality
restriction securing it to 1. Otherwise, no restriction
mentioned.

If CT contains elements, they are converted according to if
they are simple or complex elements as indicated above.

If ElementEltName is a complex element, the class that
represent this element is related to the class that represents CT
by the transitive object property named
"hasNestedElementEltName" to indicate the nesting of the
elements, the domain of this property is the class that
represents CT and its range is the class representing
ElementEltName.

If an element refers to another element using the "ref"
attribute; the classes representing these elements are related
one to another by the object property
"referToeReferencedElementName".

If ElementEltName element contains text, we propose to
add a data type property that inherits from the property
"TEXT" and bearing the name "hasEelemntName_Text". The
domain of this property is the class that represents the element
and its range is the XS type if it is specified in XS document,
otherwise the type xs:string is used.

If the CT element contains a simple element, it is mapped to
a data type property as described above; the domain of this
property is the class that represents CT.

We gave great importance to the nomination of the various
resources in order to ensure the uniqueness of their URI. We
take into consideration that an XML document can have
several elements with the same name whereas the resources of
URI in the ontology must be different all.

The following example shows how to convert a complex
type element containing a simple element and an attribute:

<xs:element name="eltName">
<xs:complexType>
 …
 <xs:attribute name="attributeName" type="xs:string"/>
 <xs:element name="subEltName" type="xs:dataType"/>
 …
</xs:complexType>
</xs:element>
The equivalent in ontology language is as follows:
<owl:Class rdf:ID="CplxT_EltName">
 <rdfs:subClassOf rdf:resource="#ComplexType" />
</owl:Class>
<owl:Class rdf:ID="eltName">

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

362

 <rdfs:subClassOf rdf:resource="#Element" />
</owl:Class>
<owl:ObjectProperty rdf:ID="hasType_ CplxT_EltName">
 <rdfs:domain rdf:resource="#eltName"/>
 <rdfs:range rdf:resource="#CplxT _EltName"/>
</owl:ObjectProperty>
<owl:ObjectProperty rdf:ID="hasNestedEltName">
 <rdfs:domain rdf:resource="#CplxT _EltName"/>
 <rdfs:range rdf:resource="#eltName"/>
</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="hasattributeName">
 <rdfs:domain rdf:resource="#CplxT_EltName" />
 <rdfs:range rdf:resource="&xsd;dataType"/>
 <rdfs:subPropertyOf rdf:resource="#Attribute" />
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="subEltName">
 <rdfs:domain rdf:resource="#CplxT_EltName" />
 <rdfs:range rdf:resource="&xsd;dataType"/>
 <rdfs:subPropertyOf rdf:resource="#emptyelement" />
</owl:DatatypeProperty>
A complex type element can be an extension of another

complex type element in this case each of the two is converted
to a class; these classes are related by an inheritance
relationship as shown in the following example:

<xs:complexType name="cmplxName1">
 <xs:complexContent>
 <xs:extension base="cmplxName2">
 …
 </xs:extension>
 </xs:complexContent>
</xs:complexType>

This case is converted as follows:

<owl:Class rdf:ID="cmplxName1">
 <rdfs:subClassOf rdf:resource="#cmplxName2"/>
 …
</owl:Class>

3) Indicators:
We distinguish seven indicators: order indicators such as

All, Choice and Sequence; The occurrence indicators such as:
minOccurs and maxOccurs. And indicators of group such as
Group and attributeGroup

The order indicators: They indicate the order in which the
elements appear. These indicators are mapped into RDF
element containers. The table below shows for each order
indicator the equivalent container.

TABLE I

EQUIVALENT RDF CONTAINER ELEMENTS TO THE INDICATORS OF ORDER
XML Schema RDF
xs:All rdf:Bag
xs:Choice rdf:Alt
xs:Sequence rdf:Seq

The occurrence indicators: The cardinality restrictions

applied to an XS element are mapped to cardinality

restrictions on the data type property that represents the
element if the element is a simple type, otherwise, they are
mapped to the cardinality restrictions on object properties
linking the class that represents the element to the class that
represents the complex type element that contains this
element.

<xs:element name="paper">
 <xs:complexType>
…
 <xs:element name="autorName" type="xs:string"

maxOccurs="3"/>
…
 </xs:complexType>
</xs:element>
This example is converted as follows:
<!—creation of different elements and properties -->
 <owl:Restriction>
 <owl:onProperty rdf:resource="#hasautorName" />
 <owl:maxCardinality
 rdf:datatype="&xsd;nonNegativeInteger">
 3
 </owl:maxCardinality>
</owl:Restriction>
Groups of indicators: Two group indicators are

distinguished: the group of elements and attribute group.
The xs:group element of XS is used by a complex type to

insert all elements of the group among the elements of the
type. This element is mapped to a class that has the same name
as the group name and inherits from the GroupElement class;
this class is related to the class that represents the complex
type by the object property named
"hasNestedGroupGroupname". It is also related to classes that
represent the member elements of the group by properties of
objects each of which bears the name "hasElementName".

The xs:attributeGroup element is used by a complex type
element to insert a group of attributes among its attributes.
This element is mapped to a data type property with the name
"attributeGroupName", which inherits from the data type
property AttributeGroup, this property has as domain the
classes that represent the complex types that refer to this group
of attributes. Then all attributes of the group are mapped to
data type properties that inherit from the property representing
the group.

<xs:attributeGroup name="attributeGroupName">
 <xs:attribute name="attribute1" type="xs:integer"/>
 <xs:attribute name="attribute2" type="xs:string"/>
 …
 <xs:attribute name="attributn" type="xs:string"/>
</xs:attributeGroup>
<xs:complexType name="cmplxTName1">
 <xs:attributeGroup ref="attributeGroupName"/>
</xs:complexType>
<xs:complexType name="cmplxTName2">
 <xs:attributeGroup ref="attributeGroupName"/>
</xs:complexType>
This script is converted in ontology language as follows:
<owl:DatatypeProperty rdf:ID="attributeGroupName">

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

363

 <rdfs:domain rdf:resource="#cmplxName1"/>
 <rdfs:domain rdf:resource="#cmplxName2"/>
 <rdfs:range rdf:resource="&xsd;string"/>

<rdfs:subPropertyOf rdf:resource="#AttributeGroup"/>
</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="attribute1">
 <rdfs:range rdf:resource="&xsd;integer"/>
 <rdfs:subPropertyOf

rdf:resource="#attributeGroupName"/>
</owl:DatatypeProperty>
 …
<owl:DatatypeProperty rdf:ID="attributen">
 <rdfs:range rdf:resource="&xsd;string"/>
 <rdfs:subPropertyOf

rdf:resource="#attributeGroupName"/>
</owl:DatatypeProperty>

Fig. 1 Insertion on classes and properties in the template ontology

IV. FLATTENING
This step is applied only if we want to switch to the data

level, ie the conversion of the content of XML documents to
individuals of ontology. Indeed, XML documents instances of
XSD document contain only instances of elements defined
using the tag "xs: element" in XSD. The objective of this step
is to flatten the previous model to obtain an ontology that only
keeps the classes that represent the elements "xs: element" of
XSD. This is done through SPARQL queries. To achieve this,
we apply the following rules:

Rule 1: If a subclass (cmplxT) of ComplexType class is
related to another subclass (grpElt) of GroupElement class by
an object property then any object property or data type
property having the domain grpElt changes its domain by the
cmplxT class, thus any e subclasse of the Element class related

to the GrpElt class will be directly linked to the CmplxT class.
Thereafter, we proceed to the removal of all object properties
that link the subclasses of GroupElement class to subclasses of
Element class, as well as those that link the subclasses of
ComplexType class to those of GroupElement class.

The following SPARQL request is used to return all
subclasses of the ELEMENT class belonging to the grpElt
group which is linked to the cmplxT class

PREFIX authorsdb:
 <C:/Users/Jamal/Desktop/ontologie.RDF#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?e
FROM <C:/Users/Jamal/Desktop/ontologie.RDF>
WHERE{

 ?cmplxT rdf:type owl:Class.
 ?e rdf:type owl:Class.
 ?grpElt rdf:type owl:Class.
 ?cmplxT rdfs:subClassOf authorsdb:ComplexType.
 ?grpElt rdfs:subClassOf authorsdb:GroupElement.
 ?e rdfs:subClassOf authorsdb:ELEMENT.
 ?o rdf:type owl:ObjectProperty.
 ?ob rdf:type owl:ObjectProperty.
 ?o rdfs:domain ?cmplxT.
 ?o rdfs:range ?grpElt.
 ?ob rdfs:domain ?grpElt.
 ?ob rdfs:range ?e
}

Rule 2: Let A be a data type property that represents a

group of attributes, it inherits the AttributeGroup data type
property.

A can have multiple classes as domain. These are the
classes that represent the elements of complex type that
includes the attribute group. In this case, all sub properties of
A will have as domain the domain of A, and will inherit
directly from the Attribute property instead of A. this is
equivalent in XS to integrate the attributes of attributes group
in all complexType elements which incorporates the group.
This procedure is applied to all direct sub properties of
AttributeGroup.

PREFIX authorsdb:
 <C:/Users/Jamal/Desktop/ontologie.RDF#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?dtp
FROM <C:/Users/Jamal/Desktop/ontologie.RDF>
WHERE {

 ?dtp rdf:type owl:DatatypeProperty.
 ?superdtp rdf:type owl:DatatypeProperty.
 ?cmplxT rdf:type owl:Class.
 ?cmplxT rdfs:subClassOf authorsdb:ComplexType.
 ?superdtp rdfs:domain ?cmplxT.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

364

 ?dtp rdfs:subPropertyOf ?superdtp
}

Rule 3: If a class E subclass of the ELEEMENT class is

related to CmplxT subclass of the ComplexType class by an
object property that has the domain E and the range CmplxT,
then any object property or data type property having as the
domain CmplxT class, will change its domain by class E.

Rule 4: If an E class, subclass of class EElement linked by
an object property (hasType_ CmplxT) to CmplxT subclass of
the ComplexType class, then all the properties of objects
(hasNestedElement) will change its domain which is cmplxt
by the E class.

This query will return for each e class representing an
element, all classes that represent nested elements in this
element.
PREFIX authorsdb:
<C:/Users/Jamal/Desktop/ontologie.RDF#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
SELECT ?e ?subElt
FROM <C:/Users/Jamal/Desktop/ontologie.RDF>
WHERE{

 ?cmplxT rdf:type owl:Class.
 ?e rdf:type owl:Class.
 ?subElt rdf:type owl:Class.
 ?cmplxT rdfs:subClassOf authorsdb:ComplexType.
 ?e rdfs:subClassOf authorsdb:ELEMENT.
 ?subElt rdfs:subClassOf authorsdb:ELEMENT.
 ?hastype rdf:type owl:ObjectProperty.
 ?hastype rdfs:domain ?e.
 ?hastype rdfs:range ?cmplxT.
 ?hasNested rdf:type owl:ObjectProperty.
 ?hasNested rdfs:domain ?cmplxT.
 ?hasNested rdfs:range ?subElt;
}

Rule 5: The last step is to remove all unnecessary items

from the ontology, thus all object properties whose domain or
range is a subclass of the GroupElement class or of
complexType class are eliminated. Then we delete the
GroupElement class after deleting all its subclasses, we also
remove the AttributeGroup property and all its sub properties,
and finally, we delete ComplexType class and all its
descendant classes.

After these modification, and unlike other methods that
propose to generate classes for the various XS elements, we
got a schema where all classes represent the elements
"xs:element" of document XS. The importance of this
simplification is more visible when passing in conversion of
XML documents at the data level. This conversion is then
made by making assertions of various classes and properties of
the model obtained using the content of XML document.

The form of the resulting ontology is provided by the
following figure:

Fig. 2 The resulting ontology after flattening

V. IMPLEMENTATION AND CASE STUDY
In order to implement this approach, we developed a

prototype using the java language and its various libraries.
Thus, we used the XML parser JDOM [11] to parse the
elements of the XML Schema documents, given that these
documents are XML documents. The output of JDOM is a set
of objects representing the elements and attributes with their
values, this output is used as input of a module based on the
Jena API [12] module. This module is responsible for the
creation of ontology template, and then fills it by classes and
properties created using the module inputs. The output of this
module is the resulting ontology of conversion.

We pass several XML Schema document at input to our
prototype, and we have got ontologies consistent with desired
results. Hereafter, we present an example of XML schema
document with its resulting ontology of conversion.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

365

<?xml version="1.0"?>
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="book">
<xs:complexType>
 <xs:sequence>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="author" maxOccurs="3">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="born" type="xs:date"/>
 <xs:element name="dead" type="xs:date"/>
 <xs:element name="adresse" type="adresseType"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:group ref="editorGroup"/>
 </xs:sequence>
 <xs:attribute name="isbn" type="xs:string" />
 <xs:attribute name="nbPage" type="xs:integer" />
 <xs:attribute name="lang" type="xs:string" />
</xs:complexType>
</xs:element>
<xs:group name="editorGroup">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="webSite" type="xs:string"/>
 <xs:element name="tel" type="xs:string"/>
 <xs:element name="adresse" type="adresseType"/>
 </xs:sequence>
</xs:group>
 <xs:complexType name="adresseType">
 <xs:sequence>
 <xs:element name="number" type="xs:integer"/>
 <xs:element name="street" type="xs:string"/>
 <xs:element name="city" type="xs:string"/>
 <xs:element name="zip" type="xs:decimal"/>
 <xs:element name="country" type="xs:string"/>
 </xs:sequence>
</xs:complexType>
</xs:schema>

Fig. 3 Example of xml schema

Fig. 4 Descriptive figure of our prototype

Fig. 5 Resulting ontology viewed under Protégé

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:2, 2014

366

VI. CONCLUSION
In this paper, we proposed a method to generate an ontology

from a XS document. By applying this method, all the
generated classes represent only the "xs_element" elements of
xsd document, unlike methods that generate classes for other
elements as "xs:complexType", "xs: group" and other. The
advantage of this, is manifested when passing to the data level,
in this level, a valid XML document is composed only of a set
of instances of elements of its xsd schema, which will also
facilitate a conversion at this level by assertions of the
components of the generated model. In addition, the hierarchy
that we propose for the data type properties allows us to
classify the data converted according to their structures in ML
documents.

REFERENCES
[1] Richard Cyganiak, David Wood, Markus Lanthaler, "RDF 1.1 Concepts

and Abstract Syntax" W3C Recommendation 25 February 2014, website
[Online]. Available: http://www.w3.org/TR/2014/REC-rdf11-concepts-
20140225/

[2] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks,
Deborah L. McGuinness, Peter F. Patel-Schneider, Lynn Andrea Stein, "
OWL Web Ontology Language", website [Online]. Available:
http://www.w3.org/TR/owl-ref/

[3] G. Antoniou, F. van Harmelen, “Web Ontology Language: OWL”.
pages 76-92 Springer-verlag .2003

[4] Bedini, Ivan, Georges Gardarin, and Benjamin Nguyen. "Deriving
ontologies from XML schema." arXiv preprint arXiv:1001.4901 (2010).

[5] Bedini, Ivan, Benjamin Nguyen, and Georges Gardarin. "Janus:
Automatic Ontology Builder from XSD files." arXiv preprint
arXiv:1001.4892 (2010).

[6] Bedini, Ivan, et al. "Transforming xml schema to owl using patterns."
Semantic Computing (ICSC), 2011 Fifth IEEE International Conference
on. IEEE, 2011.

[7] Bohring, Hannes, and Sören Auer. "Mapping XML to OWL
Ontologies." Leipziger Informatik-Tage 72 (2005): 147-156.

[8] Extended Style Sheet Transformations http://www.w3.org/TR/xslt
[9] Yahia, Nora, Sahar A. Mokhtar, and AbdelWahab Ahmed. "Automatic

Generation of OWL Ontology from XML Data Source." arXiv preprint
arXiv:1206.0570 (2012).

[10] Xu, Jiuyun, and Weichong Li. "Using relational database to build OWL
ontology from XML data sources." Computational Intelligence and
Security Workshops, 2007. CISW 2007. International Conference on.
IEEE, 2007.

[11] The JDOM website. [Online]. Available: http://www.jdom.org/
[12] The Jena website. [Online]. Available: http://jena.apache.org/index.html

Jamal BAKKAS was born in 1979, in Marrakech, Morocco.
He got his special higher studies degree in engineering of
information systems after completing his license in computer
sciences from University Cadi Ayyad of Marrakech; He is
phd student in the Department of Mathematics and computer
sciences, Faculty of Sciences & Technology of Settat,

University Hassan I, Settat, Morocco. His area of interest includes web
ontologies and semantic web.

Mohamed BAHAJ was born in 1964, in ouezzane, Morocco. He got his PhD
in Applied Mathematics, from University of Pau, France, in 1993. He is now
working as a Professor at the Department of Mathematics & Computer
Sciences, University of Hassan 1er, Faculty of Sciences & Technology Settat,
Morocco. His research interests include pattern recognition, Semantic web &
Ontology in MAS, Controls of mobiles agents.

Soklabi Abdellatif was born in 1985, in El JADIDA,
Morocco. He had a license degree in computer engineering in
2009 and a master's degree in computer systems and networks
in 2011. Now he is a PhD researcher in mobiles agents and
web services in Department of Mathematics & Computer
Sciences, University of Hassan 1er, Faculty of Sciences &

Technology of Settat, Morocco. His research interests include, Load
Balancing & Controls of mobiles agents, Interoperability between different
MAS.

