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Modeling and Analysis of an SIRS Epidemic Model
with Effect of Awareness Programs by Media

Abstract—This paper proposes and analyzes an SIRS epidemic
model incorporating the effects of the awareness programs driven
by the media. Media and media driven awareness programs play
a promising role in disseminating the information about outbreak
of any disease across the globe. This motivates people to take
precautionary measures and guides the infected individuals to get
hospitalized. Timely hospitalization helps to reduce diagnostic delays
and hence results in fast recovery of infected individuals. The aim
of this study is to investigate the impact of the media on the
spread and control of infectious diseases. This model is analyzed
using stability theory of differential equations. The sensitivity of
parameters has been discussed and it has been found that the
awareness programs driven by the media have positive impact in
reducing the infection prevalence of the infective population in the
region under consideration.

Keywords—Infectious diseases, SIRS model, Media, Stability
theory, Simulation.

I. INTRODUCTION

IN recent years, the role of media in controlling the
transmission of epidemic is well accepted. It has great

influence on the individual behaviors as well as on the
construction and implementation of public health intervention
and control policies [4], [5], [6]. The modern communication
tools like internet/internet driven services including media
enabled services, networking sites and free access to
information via websites have made the information available
to the human population almost in real time. These advanced
technologies have strengthened the pro-active roles of the
media, and now a days media is alert everywhere and has
developed the capability to capture, monitor and report even
minor incidences of interest from one part of the world to
another part almost in contemporary times. Infectious diseases
are considered as major barrier to the social and economic
development of humankind and further to the society [1], [2].
The main aim of epidemiological modelling is to lower the
rate of transmission and mortality caused by the diseases.
There should be strong motivation and coordination between
policymakers and health-care providers to accomplish the
target to prepare society to fight against a pandemic and to
reduce the transmission [11]. The target population should
be given appropriate information about the risk factors and
about the precautionary measures to escape from the disease as
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the mode of transmission are different for different infectious
disease which highly effect the rate of the transmission [8].

Media is an influential source in the knowledge transfer
and dissemination process [9]. It plays an important role in
gathering and reproducing information in the beginning of a
epidemic and is considered as the most effective epidemic
management program which can reduce the social burden of
the disease [3]. American ‘National Health Council’ conducted
a study in 1998, where it is was observed that 75% of the
people receive health news via the media (40% from the TV,
35% - by magazines or journals, 16% from newspapers, and
2% through the internet) [10]. In fact it is well understood
that media highly influence the people behavior towards the
disease and helps in controlling the transmission of disease
[7].

Although, the role of media in controlling the outbreak
of SARS and H1N1 flu is well known, even then not
much significant work has been done in the mathematical
formulation of models emphasizing this particular parameter.
Therefore it is imperative for researchers to study the impact
of media on the transmission dynamics of infectious diseases.
Recently, some researchers [6, 12-17], have studied the
role of awareness through media on the spread of disease
transmission. In [6] the authors have analyzed multiple
outbreak of infectious diseases due to the psychological
impact of the reported numbers of infectious and hospitalized
individuals. In [15], impact of public health educational
campaigns on the transmission dynamics of HIV/AIDS is
studied. In [12], [13], authors have considered the impact of
media awareness in the reduction of contact rate constant.
Media coverage can help in reducing the burden of an
epidemic and can shorten the duration of the disease outbreak
[16], [17].

A deeper observation suggests that any awareness program
related to disease can lead to the following three major
advantageous points:

(i) If someone feels that he/she has the symptoms then
he/she can approach to the doctor soon and can recover fast.
So in addition to natural disease related recovery, there can be
some infectives who will recover fast.

(ii) It can alert susceptible individuals and so some
susceptible who comes across with media awareness
campaign, will not interact with infectives.

(iii) Also due to media coverage some fraction of infectives
can be isolated/hospitalized and remain under treatment so
they cannot take part in transmission of disease.

We have formulated the mathematical model keeping the
above mentioned points in focus. Our model follows the
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work proposed by Misra et al. [18], but there are significant
differences in both the models. They have assumed that
the media based awareness programs are influenced by
the outbreak of diseases and depend upon the number of
infectives. They have incorporated one separate equation for
cumulative density of awareness programs. In the proposed
model, including these facts we assume that there is also a
constant input of media related awareness programs which
increases with the increase in number of infectives. Although,
technically it depends on infectives but it is never zero. Since
there are diseases, TB, influenza, malaria, dengue etc., which
are endemic in many part of the world and some sort of
awareness programs are always being communicated on TV
networks, newspapers etc. regularly; so our assumption is
more realistic and close to the real world conditions. Also
in their formulation of the model, it is assumed that some of
the aware susceptibles are going back to susceptible class as
they do not care for getting infected with diseases and are
not afraid of the disease and usually interact with infectives.
This particular nature of some of the human beings, in our
opinion, is erratic and not time dependent. Moreover, if
someone is erratic then he/she will not listen to any of the
media awareness programs and will interact with infectives
in anyway. Hence, sending them back to unaware susceptible
class is not reasonable as once someone is aware, he/she will
remain aware and it is not that after some duration his/her
awareness will vanish. Therefore, in our model we have kept
such kind of individual in aware class only but we assume
that they interact with infectives. This leads to the assumption
that some fraction of total aware susceptible population is
interacting with infectives.

II. THE MODEL

As we are considering an SIRS model, the whole
population under consideration is divided into four disjoint
classes, namely susceptible class (S(t)), infective class (I(t)),
recovered class (R(t)) and aware susceptible class (Sm(t)).
Let M(t) be the cumulative density of the awareness programs
driven by media in the region under consideration. It is
assumed that susceptible individuals who come across with
media campaign move to aware susceptible class and in
general avoid contact with infectives. So only a small
fraction (say αm) of aware susceptible class interacts with
infectives. Also due to the media awareness programs some
of the infectives are identified in their early stage and they
recover fast, so in addition to normal recovery rate we
have added one more recovery rate constant γm which is
driven by media awareness programs. As media also forces
isolation/hospitalization of infectives, so let δm fraction of
infectives are isolated and only (1− δm) fraction of infectives
are interacting with susceptibles. So based upon these facts
we have formulated following model:

dS

dt
= A− βS(1− δm)I − λSM − dS + νR

dI

dt
= βS(1 − δm)I + βαmSm(1− δm)I

−(γ + γm + α+ d)I

dR

dt
= (γ + γm)I − νR − dR (1)

dSm

dt
= λSM − βαmSm(1− δm)I − dSm

dM

dt
= μ+ μ1I − μ0M

Here, A is the recruitment rate constant; β is the transmission
rate constant; λ is the dissemination rate of awareness among
susceptibles due to media awareness programs; d is the
natural death rate constant; ν is the rate at which individual
from recovered class move to susceptible class again after
loosing immunity; γ is the natural recovery rate constant;
α is the disease related death rate constant; μ is the rate
constant corresponding to regular media coverage, μ1 is the
rate constant influenced by number of infectives and μ0 is
the natural decay rate constant of media coverage/awareness
programs. The flow diagram describing population movements
between the compartments is shown in Fig. 1.

All the solutions of (1) which initiate in Ω remain in the
region Ω. This result can be summarized in the following
theorem:
Theorem 1 For all time t ≥ 0, all the solutions of the system
(1) are eventually confined in the compact subset
Ω ={(S0, I0, R0, Sm0) ∈ R5

+ : S0 > 0, I0 ≥ 0, R0 ≥

0, Sm0 ≥ 0;N ≤
A

μ
}

Proof Let (S(t), I(t), R(t), Sm(t)) be any solution
with positive initial conditions (S0, I0, R0, Sm0) with
N(S + I +R + Sm) = S(t) + I(t) +R(t) + Sm(t).
Notice that sum of first four compartments S, I, R and Sm

in (1) is equal to total population size N , hence adding these
equations we obtain the time derivative along the solution of
(1) given as

dN

dt
= A− μN − αI ≤ A− μN , i.e.

dN

dt
+ μN ≤ A.

This follows that

0 ≤ N(t) ≤
A

μ
(1− e−μt) + N0e

−μt, and for t → ∞, we

have
lim
t→∞

supN ≤
A

μ

Thus, Ω is positively-invariant and all solutions are bounded
in the interval [0,∞).

A. Basic Reproduction Number

The system (1) has a disease-free equilibrium (DFE) given
by,

E0 =

(
Aμ0

(λμ+ dμ0)
, 0, 0,

Aλμ

d(λμ + dμ0)
,
μ

μ0

)
.

The basic reproduction number R0 for this model
is computed using the technique stated in [19].
Let x=(I, R)T . Then for our model we have
dxi

dt
=Fi(x) − [V−

i (x) − V+
i (x)] = Fi(x)− Vi(x),

Here Fi(x) represents the rate of appearance of new infections
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Fig. 1 Transfer diagram of the model system (1)

in compartment i, V+
i (x) represents the rate of transfer of

individuals into compartment i by all other means, and
V−

i (x) represents the rate of transfer of individuals out of
compartment i.
Hence we can rewrite it as follows:

dx

dt
= F(x)− V(x),

Using the the same notation as given in [19], the matrices F
and V for the model system (1) are computed as follows.

F =

[
βS(1− δm)I + βαm(1 − δm)SmI

0

]
,

V =

[
(γ + γm + α+ d)I

(ν + d)R

]

We get,
F = Jacobian of F at DFE =[

βS0(1− δm) + βαm(1− δm)Sm0 0
0 0

]

and

V= Jacobian of V at DFE =[
(γ + γm + α+ d) 0

0 (ν + d)

]

The basic reproduction number R0 is given by the spectral
radius (the dominant eigenvalue in magnitude) of the next
generation matrix FV −1. Hence R0 = ρ(FV −1), where,

FV −1 =

[
β(1−δm)(S0+αmSm0)

(γ+γm+α+d) 0

0 0

]

i.e.

R0 =
β(1− δm)(S0 + αmSm0)

(γ + γm + α+ d)

=
β(1 − δm)A(dμ0 + αmλμ)

d(λμ+ dμ0)(γ + γm + α+ d)
(2)

III. EQUILIBRIUM ANALYSIS

The system (1) has two equilibria, namely the disease-free
equilibrium point E0(S0, 0, 0, Sm0

,M0) and the endemic
equilibrium point E1(S

∗, I∗, R∗, S∗

m,M
∗). For the disease

free equilibrium point, S0, Sm0
and M0 are given by as

follows:

S0 =
Aμ0

λμ+ dμ0
, Sm0

=
Aλμ

d(λμ + dμ0)
,

M0 =
μ

μ0
, I0 = 0, E0 = 0.

The endemic equilibrium point E1(S
∗, I∗, R∗, S∗

m,M
∗) is

obtained by putting the right hand sides of the system of
equations (1) to zero. By solving these algebraic equations,
we get following

M∗ =
μ+ μ1I

∗

μ0
,

R∗ =
(γ + γm)I∗

ν + d

S∗

m =
λ(μ+ μ1I

∗)S∗

μ0[d+ βαm(1 − δm)I∗]
,

S∗ =
A+ ν(γ+γm)I∗

(ν+d)

β(1− δm)I∗ + λ
(

μ+μ1I∗

μ0

)
+ d

Also we get a relation between S∗ and S∗

m as follows:

S∗ + αmS
∗

m =
γ + γm + α+ d

β(1 − δm)
. (3)

Now using the above values of S∗ and S∗

m in the equation
(3), we get the following quadratic in I∗,

D1I
∗2 +D2I

∗ +D3 = 0, (4)

where

D1 = β(1 − δm)αm {β(1− δm)μ0 + λμ1}

{(γ + γm + α+ d)d+ (α+ d)ν}
D2 = (ν + d) {β(1 − δm)μ0 + λμ1}

× {(γ + γm + α+ d)d− β(1 − δm)Aαm}
+β(1 − δm) {αm(λμ + μ0d)(γ + γm + α+ d)

×(ν + d)− ν(γ + γm)(αmλμ+ μ0d)}
D3 = (γ + γm + α+ d)(ν + d)d(λμ + μ0d)

−β(1 − δm)A(ν + d)(αmλμ+ μ0d)
= −(γ + γm + α+ d)(ν + d)d(λμ + μ0d)(R0 − 1)

Clearly, D1 > 0 and D3 < 0 under the condition on the
reproduction numberR0 > 1. Hence the quadratic equation (4)
has only one positive root irrespective of the sign of D2. This
positive root, we name as I∗ and then as all other variables
are in terms of I∗, so can be calculated easily.

IV. STABILITY ANALYSIS

The local asymptotic stability of the disease free equilibrium
point E0 is established using variational matrix method and
stated in the following theorem.

Theorem 2 If R0 < 1, the disease free equilibrium E0 is
locally asymptotically stable and is unstable for R0 > 1.
Proof: To study the stability of disease free equilibrium the
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variational matrix M1 of the system corresponding to disease
free equilibrium E0 is obtained as

M1 =

⎛
⎜⎜⎜⎜⎝

m11 m12 ν 0 −λS0

0 m22 0 0 0
0 m32 m33 0 0
m41 m42 0 −d λS0

0 μ1 0 0 −μ0

⎞
⎟⎟⎟⎟⎠

here,
m11 = −(λM0 + d),m12 = −β(1− δm)S0,

m22 = −(γ + γm + α+ d)(1 −R0),
m32 = γ + γm,m33 = −(ν + d),m41 = λM0,

m42 = −βαm(1− δm)Sm0
.

The eigenvalues of this variational matrix are −(λM0 + d),
−(γ + γm +α+ d)(1−R0), −(ν + d), −d and −μ. Clearly,
one of the eigenvalues is positive for R0 > 1 which implies
instability of the disease-free equilibrium E0. Hence, the
equilibrium point E0 is locally asymptotically stable provided
R0 < 1.

The local asymptotic stability of the endemic equilibrium
point E1 is established using variational matrix method and
stated in the following theorem.

Theorem 3 The endemic equilibrium point
E1(S

∗, I∗, R∗, S∗

m,M
∗) is locally asymptotically stable

provided a4 > 0,

∣∣∣∣ a4 a2
1 a3

∣∣∣∣ > 0,

∣∣∣∣∣∣
a4 a2 a0
1 a3 a1
0 a4 a2

∣∣∣∣∣∣ > 0,

∣∣∣∣∣∣∣∣
a4 a2 a0 0
1 a3 a1 0
0 a4 a2 a0
0 1 a3 a1

∣∣∣∣∣∣∣∣
> 0.

where, a0, a1, a2, a3, and a4 are given in the proof of this
theorem.
Proof: See Appendix A.

Theorem 4 If R0 < 1, the disease free equilibrium E0 is
globally asymptotically stable and unstable if R0 > 1.
Proof: This theorem is proved using comparison theorem [20].
The rate of change of the variable representing the infected
component of the system (1) can be rewritten as

dI

dt
= {β(1− δm)(S0 + αmSm0

)− (γ + γm + α+ d)} I

−β(1 − δm){(S0 + αmSm0
)− (S + αmSm)}I,

where S0 and Sm0
are same as in disease free equilibrium E0.

However since S ≤ S0, & S + Sm ≤ S0 + Sm0
= A

d
, so

S + αmSm ≤ S0 + αmSm0
as αm lies between 0 and 1 and

S, Sm, S0, Sm0 are all positive. Hence

dI

dt
≤ {β(1− δm)(S0 + αmSm0

)− (γ + γm + α+ d)}I

(5)
As for R0 < 1 the bracketed term
{β(1− δm)(S0 + αmSm0

)− (γ + γm + α+ d)} of the
inequality (5) is negative, thus it follows that I → 0 as
t → ∞ by the comparison theorem in [20]. Also from the
system (1) it is found that S → S0, R → 0, Sm → Sm0

and
M → M0 whenever I = 0. Thus for R0 < 1, the disease

free equilibrium point E0(S0, 0, 0, Sm0
,M0) is globally

asymptotically stable.

V. SIMULATION

The system (1) is simulated for various set of parameters
using XPP [21]. The stability of disease free equilibrium point
E0 is shown in Fig. 2, where the reproduction number R0 is
equal to 0.799 which is less than one and parameter values
are as follows:

A = 100, d = 0.01666, β = 0.000005, α = 0.0002,

αm = 0.002, δm = 0.2, λ = 0.0002, ν = 0.03, μ = 0.1,

μ0 = 0.03, μ1 = 0.001, γm = 0.01, γ = 0.002.

Figs. 3-6 are showing phase portraits in S-I, S-R, S-Sm and
M − I planes respectively for the following set of parameter
values:

A = 300, d = 0.01666, β = 0.000007, α = 0.0002,

αm = 0.002, δm = 0.2, λ = 0.0002, ν = 0.03, μ = 0.001,

μ0 = 0.03, μ1 = 0.001, γm = 0.01, γ = 0.002.

This corresponds to the stability of the endemic equilibrium
point, for this set of parameter values the reproduction number
R0 is 3.4927.

Figs. 7-10 show the effects of parameters μ1, λ, γm, δm
where increase in any of these parameter value gives rise
to reduction in the equilibrium level of infective population.
It has been observed that with the increase in any of these
parameters except γm, the equilibrium level of recovered class
decreases; where increase in γm increases the equilibrium
level of recovered class as this parameter corresponds to the
recovery of the infected individuals. Also it is found that
with decrease in the parameter value of αm, the equilibrium
level of infective population as well as recovered population
decreases i.e., when fraction of aware susceptibles interacting
with infectives decreases then obviously this will cause the
decrease in the equilibrium level of infectives. This fact is
shown in Fig. 11 and it implies that media is able to convince
people not to interact with infectives.
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Fig. 2 Stability of the disease free equilibrium point E0

for R0 = 0.799.

Fig. 3 Phase portrait corresponding to stability of
endemic equilibrium point E1 in S-I plane.

Fig. 4 Phase portrait corresponding to stability of
endemic equilibrium point E1 in S-R plane.

Fig. 5 Phase portrait corresponding to stability of
endemic equilibrium point E1 in S − Sm plane.

Fig. 6 Phase portrait corresponding to stability of
endemic equilibrium point E1 in M-I plane.
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Fig. 7 Effect of μ1 on the equilibrium levels of I
and R classes.
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Fig. 8 Effect of λ on the equilibrium levels of I
and R classes.
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Fig. 9 Effect of γm on the equilibrium levels of I
and R classes.

VI. CONCLUSION

Our work provides an insight into the effects of media
driven programs focusing on the transmission dynamics of
infectious diseases. We have formulated and investigated a
simple deterministic SIRS epidemic model incorporating the
effect of media driven awareness programs on the transmission
of diseases (such as influenza, tuberculosis, etc). This model
has two equilibria: the disease free equilibrium point and
the endemic equilibrium point. The disease free equilibrium
point is locally as well as globally stable when the basic
reproduction number R0 < 1. The endemic equilibrium point
exists only when R0 > 1 and is locally asymptotically
stable under some conditions on the parameter values. Finally,
numerical simulation has been performed for varied set of
parameters. The study suggests that with increase in the
rate of implementation of awareness programs through media
there is subsequent decline in the number of infectives in
the targeted population. As the spread of infectious diseases
depends on a variable number of factors, real time information
dissemination about the disease and its risk factors through
media have positive impact in controlling the transmission
of infectious diseases as it changes people’s perspective and
behavior making them aware of the disease.
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Fig. 10 Effect of δm on the equilibrium levels of I
and R classes.
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Fig. 11 Effect of αm on the equilibrium levels of I
and R classes.

APPENDIX A: PROOF OF THEOREM 3

The variational matrix, M2 corresponding to the system (1) at
E1(S

∗, I∗, R∗, S∗

m,M
∗) is given by

M1 =

⎛
⎜⎜⎜⎜⎝

m11 m12 m13 0 m15

m21 0 0 m24 0
0 m32 m33 0 0
m41 m42 0 m44 m45

0 m52 0 0 m55

⎞
⎟⎟⎟⎟⎠

where, m11 = −{λM∗ + d+ β(1− δm)I∗},
m12 = −β(1− δm)S∗, m13 = ν,

m15 = −λS∗, m21 = β(1 − δm)I∗,
m24 = β(1− δm)αmI

∗, m32 = γ + γm,

m33 = −(ν + d), m41 = λM∗, m42 = −βαm(1− δm)S∗,

m44 = −{d+ βαm(1− δm)I∗}, m45 = λS∗,

m52 = μ1, m55 = −μ0

The characteristic polynomial corresponding to the variational
matrix M1 is given by

ψ5 + a4ψ
4 + a3ψ

3 + a2ψ
2 + a1ψ + a0 = 0,

where,

a4 = −(m11 +m33 +m44 +m55)
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a3 = m55(m11 +m33) +m11m33 + (m52m24

−m42m24)−m21m12

a2 = − [(m11 +m33 +m55)(m52m24 −m42m24)

+m11m33m55 +m21(m32m13 +m52m15)]
+m12m21(m44 +m33 +m55)−m12m24m41

a1 = {m55(m11 +m33) +m11m33}

(m52m24 −m42m24) +m11m33m44m55

+m21(m32m13m55 +m52m15m33) + (m32

m13 +m52m15)(m21m44 −m41m24)
−m21m12{m55(m44 +m33) +m44m33}

+(m33 +m55)m12m24m41

a0 = −m11m33m55(m52m24 −m42m24)− (m21

m44 −m41m24)(m32m13m55 +m52m15m33)
−m12m33m55(m24m41 −m21m44)

Here, clearly a4 > 0, so E1 will be locally asymptotically
stable if the other three inequalities stated in Theorem 3 are
also satisfied.
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