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Abstract—This paper presents a set of artificial potential field 

functions that improves upon, in general, the motion planning and 

posture control, with theoretically guaranteed point and posture 

stabilities, convergence and collision avoidance properties of the 

general3-trailer system in a priori known environment. We basically 

design and inject two new concepts; ghost walls and the distance 

optimization technique (DOT) to strengthen point and posture 

stabilities, in the sense of Lyapunov, of our dynamical model. This 

new combination of techniques emerges as a convenient mechanism 

for obtaining feasible orientations at the target positions with an 

overall reduction in the complexity of the navigation laws. 

Simulations are provided to demonstrate the effectiveness of the 

controls laws. 

 

Keywords—Artificial potential fields, 3-trailer systems, motion 

planning, posture. 

I. INTRODUCTION 

OTION planning for tractor-trailer mobile robots is 

currently one of the most active areas of mobile robots 

technologies and has attracted the attention of many scholars 

in the field of robotics and control engineering. Following the 

appearance of various new methods and new technologies, 

researchers to date have more in-sight into the motion 

planning problem. 

The nonholonomic motion planning problem involves 

finding a feasible path from some initial configuration to some 

desired final configuration for a system with nonholonomic 

velocity constraints. These nonintegrable constraints arise 

from the condition of non-slippage on the wheels in rolling 

contact with another rigid body. Some examples of these types 

of nonholonomic systems include mobile robots, tractor-trailer 

vehicles and mobile manipulators. A wide range of problems 

in various robotic applications have been solved by utilizing 

the artificial potential field method. Its major advantages 

include easier analytic representation of system singularities 

and inequalities, its simplicity and processing speed. The 

underlying principle of this method is to attach attractive fields 

to the target and repulsive fields to the obstacles. The robot's 

workspace is then filled with positive and negative fields, in 

which the robot is attracted to its designated target and 
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repulsed away from the obstacles. The pioneer work on 

motion planning and control of robots via the artificial 

potential fields was done by Khatib in [1]. 

Tractor-trailer systems constitute a generalization of the 

mobile robots. They are basically composed of a mobile robot, 

and several trailers pulled by the mobile robot, which satisfy 

nonholonomic restrictions as well. Tractor trailer mobile 

robots have great applications in labor intensive work or in 

areas which pose a high risks to human health. These 

articulated robot systems are found in a variety of places, such 

as airports, factories, railway stations, nuclear power plants, 

mines, in multiple-trailer trucks as they increase transportation 

efficiency. Researchers are currently designing various control 

algorithms for motion planning of these multi-body vehicles 

that are capable of performing a wide range of tasks in various 

environments. 

Many researchers have studied tractor-trailer systems with 

on axle hitching, but only a few have focused on the off-axle 

hitched trailer systems due to its kinematic structure which is 

highly complicated. As such, analysis and controller design 

becomes difficult, especially with rear wheel driven prime 

movers. In [2], the authors used a front wheel drive tractor to 

derive the kinematic model for the general n-trailer to solve 

the nonholonomic motion planning problem. In [3], Bolzernet 

al. proposed control laws for the off-axle hitched trailer 

system based on linearization of a virtual on-axle vehicle 

which shares some properties with the actual one. In [4], Lee 

et al. presented experimental data for the design and control of 

passive multiple trailer systems, both off and on-axle. Motion 

planning and collision avoidance schemes were considered by 

minimizing the trajectory tracking error with the reference 

trajectory implying the trajectory of the towing vehicle. In [5]-

[9], the authors considered motion planning and posture 

control and formations types of the standard and general 1-

trailer robots where point to point motion were controlled 

using a Lyapunov based control scheme. Ghost walls and the 

distance optimization technique (DOT) were utilized to 

orchestrate "near perfect" final orientations of every solid 

body of the articulated robot, inside a designated parking bay. 

This paper makes use of Lyapunov techniques as a tool for 

themotion planning of tractor-trailer robots. Specifically, 

theauthors deal with the general 3-trailer system. Themulti-

body robot navigates its way towards the target in 

aconstrained workspace populated with fixed obstacles. Here, 

thewalls of the bounded workspace and the static obstacles 

aretreated as ghost obstacles. To avoid these obstacles, we 

utilize Khatib's collision avoidance scheme to propose 

potential fields tosafely traverse in the workspace towards the 

K. Raghuwaiya, B. Sharma, J. Vanualailai 

Motion Planning and Posture Control of the General 

3-Trailer System 

M 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:3, 2014

574

 

 

target position andattain the desired final posture. 

The paper is organized as follows. In Section II, the vehicle 

modelis defined. In Sections III, IV and V, motion planning is 

carried out. Theconstruction of stabilizing control laws is 

presented in SectionVI, while Section VII contains some 

simulation results. The paperends with some concluding 

remarks in Section VIII. 

II. VEHICLE MODEL 

Two different trailer systems can be distinguished from 

literature; standard and the general trailer systems, grouped 

into two different categories based upon their different 

hooking schemes. Basically, these systems consist of a tractor 

towing an arbitrary number of trailers, which mostly are 

passive in order to reduce the costs ofimplementation. The 

authors will consider a rear wheel drivencar-like vehicle, and 

an off-axle (general system) hitched two-wheeled passive 

trailer, in Euclidian plane. The tractor robot utilized herein 

basicallyperforms motions similar to that of a car-like robot, 

with front-wheel steering and decrees the path of the attached 

trailer. 

In this research, the general3-trailer system embodies a car-

like tractor robot and three off-axle hitched two-wheeled 

passive trailers. That is, the trailer is not attached exactly to 

the midpoint of the rear axle of the tractor robot but here the 

coupling joint is located beyond the center point of the rear 

axle i.e. at a positive distance 0id >  (see Fig. 1}). 

Essentially, a kingpin joins the two solid bodies with 0id >

and G
iL for 0,...,3i = , as positive lengths, from the midpoint 

of the rear axles of the two vehicles.  

 

 

Fig. 1 Kinematic model of the general 3-trailer robot 

 

With reference to Fig. 1, ( ),i ix y
 
represents the Cartesian 

coordinates and gives the reference point of the ith solid body 

of the articulated robot while iθ gives its orientation with 

respect to the 1z axis. Also, 0L is the distance between the two 

axles of the tractor robot, and l is the length of each axle. The 

connections between any two bodies give rise to the following 

holonomic constraints on this system: 
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for 0,...,3i = . We define 1:i id aε= + where ia is a small 

offset for the ith vehicle (see Fig. 2). These constraints will 

reduce the dimensionof the configuration space, since the 

position ( ),i ix y
 
can be expressed completely in terms of

( )0, ,o ix y θ for 0,...,3i = . 

 

 

Fig. 2 Schematic diagram of a general 3-trailer system and the ghost 

walls 

  

If we let m be the mass of the full robot, F the force along 

the axis of the tractor robot, Γ the torque about a vertical axis 

at ( )0,ox y and I the moment of inertia of the tractor robot, then 

the dynamic model of a general 3-trailersystem extended from 

[5] is given in (1). 

 The selection of the reference points is due to the simplicity 

in the construction of the potential field functions. It is 

important to note that when 0id = , the kinodynamical model 

for the off-axle hitching is exactly the same as that of the 0n-

axle hitching, provided we define G S
i iL L= , where S

iL is the 

corresponding length for the standard trailer system. 

A. Minimizing C-Space 

To ensure that the entire vehicle safely steers pass an 

obstacle,the planar vehicle can be represented as a simpler 

fixed-shapedobject, such as a circle, a polygon or a 

convexHull [10]. This representation is facilitated with 

theinherent view of minimizing the obstacle space in the 

workspace. 
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In thisresearch, given the clearance parameters 1ε and 2ε  

the authors enclose the articulated vehiclewithin separate 

protective circular regions (as seen inFig. 2), i.e. a protective 

region for each solidbody, which basically reduces the 

unnecessary growth of theC-space inas [8] and subsequently 

presents a greaterset of options. Hence, circular region 
iC is 

centered at ( ),i ix y for 0,...,3i = , with radius 
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If we let 0 0

G

i
L L d= +  for 1,...,3i = then 

0V Vir r= . Also with 

the choice of the reference points and theradius of the circular 

regions of the vehicles, we have
0 id d=  for 1,...,3.i =  

III. ATTRACTIVE POTENTIAL FIELD FUNCTIONS 

This section formulates collision free trajectories of the 

robot system under kinodynamic constraints in a fixed and 

bounded workspace. It is assumed that the car-like robots have 

priori knowledge of the whole workspace. We want to design 

the acceleration controllers, 
1

σ and 
2σ , so that the mobile 

robot moves safely towards itstarget. 

A. Attraction to Target 

 A target is assigned for the robot to reach after some time t. 

For the ith body of the tractor trailer system, we define a target  

 

 ( ) ( ) ( ){ }2 22 2

1 2 1 1 2 2 , : i i iT z z z p z p rt= ∈ − + − ≤ℝ  

 

with center ( )1 2,i ip p  and radius 
irt . For the attraction to its 

designated target, we consider an attractive potential function  
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B. Auxiliary Function 

 To guarantee the convergence of the mobile robot to its 

designated target, we design an auxiliary function defined as: 
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where
3ip is the desired final orientation of the ith body of the 

articulated robot. These potential functionsare then multiplied 

to the repulsive potential functions to be designed in the 

following sections. 

IV. REPULSIVE POTENTIAL FIELD FUNCTIONS 

We desire the ith body of the mobile robot to avoid all 

stationary obstacles intersecting their paths. For this, we 

construct the obstacle avoidance functions that merely 

measure the distances between each body and the obstacles in 

the workspace. To obtain the desired avoidance, these 

potential functions appear in the denominator of the repulsive 

potential field functions. This creates a repulsive field around 

the obstacles.  

A. Fixed Obstacles in the Workspace 

 Let us fix w solid obstacles within the workspace and 

assume that the qth obstacle is circular with center ( )1 2,q qo o

and radius qro . For the ithbody with a circular avoidance 

region of radius 
Vir  to avoid the lth obstacle, we adopt 
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for 0,...,3i = and 0,...,q w= . 

B. Workspace Limitations 

We desire to setup a framework for the workspace of our 

robot. Our workspace is a fixed, closed and 

boundedrectangular region, defined, for some 2k rη >  for k=1, 

2 with  
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We require the robot to stay within the rectangular region at 

alltime 0t ≥ . Therefore, we impose the following 

boundaryconditions: 

Left Boundary: ( )1 2 1, : 0z z z = , 

Upper Boundary: ( )1 2 2 2, :z z z η= , 

Right Boundary: ( )1 2 1 1, :z z z η= , 

Lower Boundary: ( )1 2 2, : 0z z z = . 

In our Lyapunov-based control scheme, these boundaries 

areconsidered as fixed obstacles. For the ith body of each 

robot to avoid these, we define the following potential 

functions for the left, upper, right and lower boundaries, 

respectively: 

1 ,i i ViW x r= −                                                                    (5) 

( )2 2
,

i i Vi
W y rη= − +                                                          (6) 

( )3 1
,

i i Vi
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4i i ViW y r= −                                                                     (8) 

for 0,...,3i = . Now, since 
3
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 
>  
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∑  for 1, 2k = each of 

the functions is positive in WS.Embedding these functions into 

the control laws will contain themotions of the tractor-trailer 

robot within the specifiedboundaries of the workspace and 

will prevent it from crossing overthe boundaries. 

C. Orientations 

One difficulty that exists with continuous time-

invariantcontrollers is that although the final position is 

reachable, itis virtually impossible to get exact orientations at 

the equilibrium point of this special class of dynamical 

systems, adirect result of Brockett's Theorem [9]. 

In this paper, we construct ghost walls along the sides of 

thetarget parallel to the desired final orientation of the robot, 

anda third ghost wall erected in-front of the target. This 

techniquereduces the possible entry routes to a single opening 

as the otherentry routes are blocked by the ghost walls.Next, 

we utilize an idea inspired by the work carried out byKhatib in 

[1], for the avoidance of these ghost wallsin order to force the 

desired orientations. The technique we usecalculates the 

minimum distance from the robot to a ghost wall andavoids 

the resultant point on that ghost wall. Avoiding theclosest 

point on any line basically affirms that the mobile robotavoids 

the whole wall. This algorithm helps greatly simplify 

thenavigation laws. 

Now let us consider the kth ghost wall in the ( )1 2,z z -plane, 

from the point ( )2 2
,

k k
a b to the point ( )1 1

,
k k
a b . We assume that 

the point ( ),i ix y isclosest to it at the tangent line which passes 

through the point.From geometry, it is known that if 

( ),ik ikLx Ly is thepoint of intersection of this tangent, then 
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 If 

1ikλ ≥ then we let 1ikλ = , if 0ikλ ≤ , then we let 0ikλ = , 

otherwise we accept the value of ikλ  between 0 and 1, in 

which case there is a perpendicular line to the point 

( ),ik ikLx Ly on the ghost wall from the center ( ),i ix y of ith 

body of the articulated vehicle at every time 0t ≥ .For the ith 

body of the robot to avoid the closest point of eachof the kth 

line segment, we consider a positive potential fieldfunction: 
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2
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               (9) 
 

for 0,...,3i = and 1,...,k m= . 

V.  DYNAMIC CONSTRAINTS 

Practically, the steering and bending angles of themobile 

robots are limited due to mechanical singularities while the 

translational speed is restricted due to safety reasons. 

Subsequently, we have; ( ) maxv v≤i  , where 
maxv is the maximal 

speed of the tractor; ( ) 2max
πφ φ≤ <ii  , where 

maxφ is the 

maximal steering angle, and ( ) 1 max 2i i
πθ θ θ−− ≤ <iii  where 

maxθ

is the maximum bending angle of the trailer with respect to the 

orientation of the tractor. The trailer can freely rotate within 

( )2 2
,π π− about their linking point with the tractor.  

Considering these constraints as artificial obstacles, we 

have the following potential field functions: 
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(12) 

 

These potential functions guarantee the adherence to the 

above restrictions placed upon the translational velocity v , 

steering angle φ , and the rotation 
iθ , for the ith trailer. 

VI. CONTROL LAWS 

Combining all the potential functions ( )2 12− , and 

introducing constants, denoted as the control parameters, 

, , , , 0ik ij j iq sα β ζ γ κ > , , , ,i j k q s∈ℕ , we define a candidate 

Lyapunov function  
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Clearly, ( )xL is locally positive and continuous on the 

domain ( ) ( ) ( ) ( ){ 8 : 0,  0,  0,        ij ik iqD L W LS FO= ∈ > > >x x x xℝ

( ) ( ) }0, 0j sDC U> >x x . We define ( )1 2 3: , , ,0,0e i i ip p p=x  an 

equilibrium point of system(1). Thus, we have ( ) 0x
e

L = .  

 

 

Fig. 3 The total potential 

 

The total potentials as in Fig. 3 aregenerated for target 

attraction and avoidance of two stationary disk-shaped 

obstacles. For better visualization the target of the leader is 

located at ( ) ( )1 2, 35,35t t = , and the disks are fixed at 

( ) ( )11 12, 9,10o o = , ( ) ( )21 22, 11,19o o =  with radii of 
1 2 1.2ro ro= = , 

while 
1 20lα = , 1,2l = . Also, the velocity and angular 

components of the robot have been treated as constants such 

that 0.5v= , 0ω= , and 
0 0θ = .  

To extract the control laws, we differentiate the various 

components of ( )L x separately and carry out the necessary 

substitutions from ( )1 . The nonlinear control laws for system 

(1) will be designed using Lyapunov's Direct Method. The 

process begins with the following theorem: 
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for 1, , ,i n= …  where 
1 2, 0δ δ >  are constants commonly known 

as convergence parameters and 3n = . 

Proof: The time derivative of our Lyapunov function ( )L x

along a particular trajectory of system ( )1  is then: 
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1 21
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0
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where the functions 
if , , , , ,i i i j sg h g m d for , 1,...,3i j = , 3n = and 

1,2s = are defined as (upon suppressing x ): 
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A careful scrutiny of the properties of our scalar function 

reveals that xe is an equilibrium point of system (1) in the 

sense of Lyapunov and ( )xL is a legitimate Lyapunov 

function guaranteeing stability. This is in no contradiction 

with Brockett’s result [11] as we have not proven asymptotic 

stability. 

VII.  SIMULATION 

To illustrate the effectiveness of the proposed controllers, 

we present a scenario, see Fig.  4,of where the car-like robot 

and its passive trailers move towards its designated goal while 

avoiding fixed obstacles in its workspace. The use of the ghost 

walls helps in attaining the desired posture of the tractor and 

the trailer robots. 

 

 

Fig. 4 The resulting stable trajectory of the general 3-trailer robot 

 

Fig. 5 Orientations of the tractor and its trailers 

 
TABLE I 

NUMERICAL VALUES OF INITIAL STATES, CONSTRAINTS AND PARAMETERS 

FOR SCENARIO 1 

 Initial Conditions 

Initial 

Configuration 
( ) ( )0 0, 5,10x y = , 0.5v = , 0ω = , 

( ) ( )0 2 3 4 4 4, , , 0, , 0,π πθ θ θ θ =  

Final Configuration  

 
( )

( )
01 02 03 13 23 33, , , , ,

23,14.5,0,0,0,0

p p p p p p

=
 

Fixed Obstacles ( ) ( ) ( ) ( )11 12 21 22

1 2

, 9,10 , , 11,19 ,

1.2

o o o o

ro ro

= =

= = 
 

Physical 
Limitations max 5v = , 

max 2
πφ = , 

min 0.14ρ =  

Dimensions of 

Robots 
1 0.75, 0.965, 0.5,

0.215

G

i

i

L L l

c d

= = =

= =

   
1.2ω =  

Workspace 
Boundaries 

1 2 24η η= =  

Clearance 

Parameters 
1 2 0.1ε ε= =  

Safety Parameters 
1 2 0.41ξ ξ= =  

C
o
n
tr
o
l 
P
ar

a
m

et
er

s Ghost 

Walls 
0.01ikα =  

Fixed 

Obstacles 
0 1 2 38, 2, 3, 3q q q qγ γ γ γ= = = =  

Dynamic 

Constraints 
1 2 31, 3, 1sξ ξ ξ κ= = = =  

Workspace 

Restrictions 
1ijβ =  

Convergence 

Parameters 
1 2 120δ δ= =  

 

Graph in Fig. 5 show the orientations of the tractor and its 3 

off-axle trailers.The corresponding initial and final states and 

other details for the simulation are listed in Table I (assuming 

that appropriate units have been taken into account). 

VIII. CONCLUSION 

This paper presents a set of artificial field functions derived 

using Lyapunov’s direct method that improves upon, in 

general, the posture control with theoretically guaranteed point 

and posture stabilities, and convergence and collision 

avoidance of a general 3-trailer mobile robot. We have a 
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centralized trajectory planning algorithm, which to some 

extent, demonstrates autonomy and multitasking capabilities 

of humans. The new algorithm provides us with a suitable and 

fitting platform to harvest collision-free trajectories from 

initial to desired states and generate maneuvers that culminate 

to practically reasonable postures within a constrained 

environment, whilst satisfying the nonholonomic constraints 

of the system. The proposed controllers stabilize the 

configuration coordinates of the vehicle to an arbitrary 

smallneighborhood of the target. We note here that 

convergence is only guaranteed from a number of initial states 

of the system. 

The derived controllers produced feasible trajectories and 

ensured a nice convergence of the system to its equilibrium 

state while satisfying the necessary kinematic and dynamic 

constraints. We note here that convergence is only guaranteed 

from a number of initial states of the system. 

Future research will address a swarm of thegeneral 3-

trailermobile robots. 
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