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Abstract—This work reports on the fabrication of tin 

nanoclusters by sputtering and inert-gas condensation inside an ultra-
high vacuum compatible system. This technique allows to fine tune 
the size and yield of nanoclusters by controlling the nanocluster 
source parameters. The produced nanoclusters are deposited on 
SiO2/Si substrate with pre-formed electrical electrodes to produce a 
nanocluster device. Those devices can be potentially used for gas 
sensor applications. 
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I. INTRODUCTION 
TOMIC nanoclusters are aggregates of atom that are 
nanometer in size, and their physical and chemical 

properties are different from their bulk equivalents. Upon 
reducing a material size into nanosize, the number of surface 
atoms becomes large compared with the total number of atoms 
inside the material. The surface atoms of a nanocluster have 
fewer nearest neighbors, thus, less strongly bound. This has 
great impact on the ability of nanoclusters to interact with 
external materials. Therefore, they can be utilized efficiently 
for gas sensing applications [1]-[5]. Tin oxide (SnO2) 
nanoclusters are of the most used nanoclusters for gas sensor 
applications due to their supreme performances in terms of 
sensitivity and stability compared to other nanoclusters [6], 
[7].  

The objective of this work is to fabricate tin (Sn) 
nanoclusters by sputtering and inert gas condensation, and 
investigate the effect of nanocluster source parameters on 
nanocluster size and yield. This technique of nanocluster 
fabrication has many advantages such as [8]-[10]: the high 
purity of the produced nanoclusters; size selection of 
nanoclusters is possible using a suitable mass filter since the 
produced nanoclusters are charged; the produced nanoclusters 
are of narrow size distribution; the size of nanoclusters can be 
tuned “easily” within a range of sizes correspond to the source 
design by controlling the source parameters (as discussed 
below); the composition of the produced nanoclusters is 
controlled by controlling the composition of the target 
material; the produced nanoclusters can be self-assemble 
directly on a substrate to create a device; the coverage of the 
deposited nanoclusters on the substrate and thus the sensitive 
layer thickness is controllable by controlling the deposition 
time; and the technique could be used on an industrial scale. 
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II. EXPERIMENTAL 
Tin nanoclusters were produced using a magnetron 

sputtering plasma and inert-gas condensation source inside an 
ultra-high vacuum (UHV) compatible system [8], [9]. The 
system consists of two chambers: the source and main 
chambers, which were evacuated to a base pressure of ~10-8 
mbar before nanocluster production. The dc magnetron type 
discharge was utilized to generate nanoclusters from a Sn 
target using a discharge power (P) of 15 W unless it is stated 
otherwise. Argon (Ar) gas was used to generate the plasma, 
sputter the material from a 99.995% purity Sn target that was 
fixed on the magnetron sputter head, and aggregate Sn 
nanoclusters from the sputtered material. A MKS Instruments 
mass flow controller was used to control Ar flow rate (f) in the 
range of 0 – 100sccm (sccm stands for standard cubic 
centimeter per minute). The magnetron gun was mounted on a 
motorized linear translator, enabling the aggregation length 
(L) to be varied by up to 100mm. The aggregation length is 
the distance from the surface of the sputtering target to the 
source exit nozzle. Ar gas inside the source chamber created a 
pressure difference between the source and the main chambers 
that forced the nanoclusters to travel through the quadrupole 
mass filter (QMF) and then to the main chamber. Ar gas was 
pumped away from the source and main chambers using two 
turbo pumps (for details see [8], [9]).  

The QMF was used to measure the nanocluster size 
distribution before its deposition inside the main chamber, 
with a maximum resolution U/V = 0.168. The quadrupole 
mass filter was operated by connecting one pair of rods to a 
potential (U+Vcosωt) and the other to -(U+Vcosωt), where U 
is a dc voltage and Vcosωt is an ac voltage [11]. Assuming 
spherical nanoclusters, the size of a nanocluster (D) refers to 
its diameter. A grid located at the exit of the mass filter –
Faraday cup– was used to measure the electric current signal 
for ionized nanoclusters of each selected size, and the current 
was measured by a picoammeter. The area under a size 
distribution curve refers to the number of nanoclusters 
generated inside the source and detected using the Faraday 
cup. Thus, the area under a size distribution curve is defined in 
this context as the “nanocluster yield”.  

A directed nanocluster beam is formed once the 
nanoclusters leave the QMF. The nanoclusters deposition rate 
is measured using a quartz crystal monitor (QCM). The QCM 
is fixed on a motorized linear translator that enables driving 
the QCM in front of the exit nozzle, check the deposition rate, 
and then drive it back away from the beam path. The position 
of the liner translators holding the magnetron gun, QCM, and 
sample holder can be varied without venting the system. 
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mechanism [17]. When the two–body collision mechanism is 
dominant, larger nanoclusters are produced [8], [17]. As f 
increases, the mean–free–path decreases, and this in turn 
increases the probability of the two–body collisions which 
allows further nanocluster–atom and nanocluster–nanocluster 
collisions [16]. Therefore, the increase of D with f for Sn 
indicates the dominance of the two–body collision mechanism 
for Sn nanocluster production.  

The decrease in the nanocluster yield with f, observed in 
Fig. 2 (b), is a result of consuming the nanoclusters to produce 
larger nanoclusters. This argument is consistent with the 
variation of D with f, where the increase in D with f is mainly 
due to nanocluster–nanocluster (two–body) collision 
mechanism. The small number of produced nanoclusters at 
low f, observed in Fig. 2 (b) could be the result of low 
nanocluster yield of Sn at the lowest possible f. Nanocluster 
growth via the two–body collision mechanism involves either 
nanocluster–nanocluster collisions, or/and nanocluster–atom 
collisions. The probability of these collisions governs the 
number of produced nanoclusters [15]. The nanocluster yield 
is expected to increase with f if the nanocluster–atom collision 
is dominant and more condensation occurs. Nevertheless, the 
nanocluster yield is likely to decrease with f if the 
nanocluster–nanocluster collision is dominant because 
nanoclusters are expended to produce larger ones [17]. 
Therefore, the maximum yield at f = 70sccm in Fig. 2 (b) 
indicates that the nucleation and growth are dominated by 
two–body collision mechanism (nanocluster–atom). The small 
number of nanoclusters at low f indicates that their production 
is determined mainly by the two–body (nanocluster–
nanocluster) collision mechanism as evident in Fig. 2. Thus, 
nanoclusters are consumed to generate larger ones. 
Nevertheless, the low yield at high f might be assigned to a 
larger contribution of the nanocluster–nanocluster collision 
compared to the nanocluster–atom collision which could be 
attributed to the larger mass of Sn atoms (smaller mean-free-
path). 

The direct increase of D with L, illustrated in Fig. 3 can be 
understood in terms of nanocluster nucleation and growth 
time. Increasing the aggregation length causes the 
nanoclusters to remain longer within the aggregation region, 
which in turn supports nanocluster growth and yield. 

Optimizing the sputtering discharge power is crucial for 
producing nanoclusters with a required size and adequate 
yield. An insufficient discharge power would not produce 
enough self-bias on the target, thus, nanoclusters cannot be 
detected. Low yield of nanoclusters were produced at lower or 
higher discharge power. Experimental studies showed that 
nanoclusters can be produced within an optimum range of 
sputtering discharge power [12]. At low sputtering power 
insufficient self-bias on the target would produce a tiny 
number of small nanoclusters. On the other hand, the plasma 
becomes unstable when P is too high, which causes an 
intermittent in nanocluster production [12]. As a result, the 
amount of sputtered material decreases, which in turn 
decreases the probability of material collision, and thus, 
nanocluster yield.  

The non-linear I(V) characteristics shown in Fig. 6 indicates 
that Coulomb blockade dictate the transport properties of the 
nanocluster network between the adjacent nanoclusters, or 
nanocluster film with the electrodes [18]. This behavior has 
been observed previously for other nanocluster and nanorod 
systems [19]. 

V. CONCLUSION 
In conclusion, tin nanoclusters were formed by sputtering 

and inert-gas condensation inside an ultra-high compatible 
vacuum system. This technique enabled fine tune of 
nanocluster size and yield by controlling the nanocluster 
source parameters. The produced nanoclusters were used to 
fabricate nanocluster devices. Those devices were found to 
exhibit non-linear I(V) characteristics, and they have a 
potential to be used for gas sensor devices.  
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