
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

479

Abstract—The main purpose of this paper was to find a simple

solution for load balancing and fault tolerance in OSGi. The
challenge was to implement a highly available web application such
as a shopping cart system with load balancing and fault tolerance,
without having to change the core of OSGi.

Keywords—Fault tolerance, load balancing, OSGi, shopping cart

system.

I. INTRODUCTION
HE OSGi (Open Services Gateway initiative) Service
Platform [2] (or just OSGi for short) is a Java platform,

which “delivers an open, common architecture to develop,
deploy and manage services in a coordinated fashion.” The
platform is freely available and constantly developed by the
OSGi Alliance. There are both commercial and non-
commercial implementations of OSGi, including Eclipse
Equinox, Apache Felix, Knopflerfish and ProSyst’s mBedded
Server. Although OSGi was originally designed for embedded
systems, nowadays it finds more and more use in enterprise
systems.

The core of the platform is the OSGi Framework, which
helps to create loosely coupled, service-oriented, extensible
applications called bundles that can be loaded and removed at
runtime. The framework simplifies the development and
deployment of bundles, by decoupling the bundle’s
specification from its implementation, i.e., a bundle is accessed
through its interface, which is by definition separate from the
bundle’s implementation. This separation enables changing the
bundle’s implementation without changing the environment
itself and other bundles.

The OSGi Framework provides a service registry to register
services, so that services can be found and used by other
bundles. Also the framework provides methods and services
for core functionalities such as life cycle management and
security. In addition, there are many implemented services for
other tasks such as event handling, logging and database access
but not for load balancing and fault tolerance. As an attempt to
fill a gap in this field, we present the implementation of a
simple yet reasonable solution for load balancing and fault
tolerance in OSGi. The solution is based on previous
conceptual work from [3].

Irina Astrova is with Institute of Cybernetics, Tallinn University of

Technology, Tallinn, Estonia (e-mail: irina@cs.ioc.ee).
Prof. A. Koschel, Thole Schneider, Johannes Westhuis, and Jürgen

Westerkamp are with Faculty IV, Department of Computer Science, Hannover
University of Applied Sciences and Arts, Hannover, Germany (e-mail:
akoschel@acm.org).

The rest of the paper is organized as follows. Section II will
demonstrate our own implementation of load balancing and
fault tolerance in OSGi. The demo implemented a shopping
cart system. Section III will give a short overview about related
work. Sections IV and V will make a conclusion with a critical
overview on the demo implementation.

II. SHOPPING CART SYSTEM
To demonstrate and test the design solutions proposed in our

previous paper [3], we implemented some of them in a simple
demo running in the OSGi Framework.

The demo resamples a web application, which provides a
shopping cart system. The system should be 24/7 available to
users. A user can log into the system, add items to the shopping
cart, remove items from the shopping cart and logout of the
system. After logout, the shopping cart is deleted, assuming
that a transaction has completed. For simplicity, we
implemented vertical load balancing.

Fig. 1 shows the demo components, including Replica,
Session Service, Db4oService, HTTP Server, HTTP
Wrapper and Load Balancer. All these components were
implemented as OSGi bundles.

A. Replica
In the demo we used replication, which is a common

approach to fault tolerance [6].
Fig. 2 shows the class diagram of a bundle Replica, which

represents one instance of the web application. In the demo, all
replicas had the same functionality and differed in their
symbolic names only. Since the business logic represents the
shopping cart system, a bundle Replica has the following
methods:
• login: This method creates a new shopping cart. It also

saves in the database a new session state with a given user
name.

• addItem: This method adds a given item to the shopping
cart. It returns the contents of the shopping cart.

• removeItem: This method removes a given item from the
shopping cart. It returns the contents of the shopping cart,
which can be empty.

• logout: This method deletes the session state from the
database.

• getCartContent: This method returns the content of the
shopping cart, which can be empty.

If a replica receives an update, all other replicas have to be
informed about that update.

Shopping Cart System: Load Balancing and Fault
Tolerance in the OSGi Service Platform
Irina Astrova, Arne Koschel, Thole Schneider, Johannes Westhuis, Jürgen Westerkamp

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

480

One approach is to keep a consistent state of the session
among all the replicas is to use a shared persistent memory,
which might be implemented by saving the session state
persistently in a database. In addition, the session state has to
be available globally to all the replicas.

In the demo, we used shared memory. OSGi’s service
registry makes it easy to integrate a bundle, which employs
other services for storing the session state. This bundle can
preserve the state information in a database.

Instead of using services, the communication can also be
done through events. For example, a bundle Replica can send
one of the following events to a bundle Session Service:
• REQUEST: This event asks for the current session state.
• SAVE: This event asks to save a given session state.
• REMOVE: This event asks to remove a given session

state.

B. Session Service
Fig. 3 shows the class diagram of a bundle Session

Service. The main task of this bundle is to distribute a
consistent state of the session to all the (functional) replicas.
Therefore, the bundle has to listen to all the events, which are
sent by replicas, and reacts on them, by sending one of the
following events:
• REPLY: This event contains the current state for a given

session.
• NOTFOUND: This event notifies that no state is available

for a given session.
• EXCEPTION: This event indicates that the saving of the

session state failed.
To store the session state, db4o was used.

C. Db4oService
Db4o is an object-orientated database, which is primarily

designed for embedded systems. We selected db4o because of
its support of OSGi – specifically db4o is delivered with a
bundle Db4oService, which can create a database, handle
constraints and perform transactional CRUD (create, read,
update and delete) operations. In other words, this bundle
provides all the operations needed for storing the session state.

D. HTTP Server
Fig. 4 shows the class diagram of a bundle HTTP Server.

This is a component, which accepts HTTP requests from
outside the system. In the demo, the bundle is just listening for
HTTP requests and redirects them to a bundle HTTP Wrapper.

E. HTTP Wrapper
Fig. 4 shows the class diagram of a bundle HTTP Wrapper.

The task of this bundle is to perform the mapping of HTTP
requests and responses from outside the system into OSGi
service calls and vice versa. The main reason to insert this
component was to make the demo extensible. With the bundle
HTTP Wrapper, replicas have no dependency on the HTTP
protocol. So it should be easy to integrate a new interface, e.g.,
a web service endpoint. In this case, only an extra bundle HTTP

Wrapper needs to be added, which performs the mapping from
web services to OSGi services.

In the demo, Pax Web [4] was used. It is an implementation
of OSGi’s HttpService. Pax Web supports servlets, filters,
listeners and some other functionality. Important for the demo
was the servlet support, because the bundle HTTP Wrapper
depends on servlets. The following servlets were implemented
within the demo:
• IndexServlet: This servlet represents a static index

page. It returns a page with a form where the user has to
enter the user name. On submission, the user name is
given over as a parameter to the login page. Additionally, a
cookie with the session ID of a type java.util.UUID is
set up in the response from the IndexServlet.

• ReplicaServlet: This servlet represents all other pages.
The constructor from the Replica Servlet expects the
reference to the bundle Load Balancer. The
ReplicaServlet stores all the parameters in a map.
Then a method doAction from the bundle Load
Balancer is called with the session ID, the name of the
requested service and the map. As a return value, a map
with the response parameters is expected. Based on them,
the HTML response is generated, which presents the
shopping cart of the user.

When the service from the bundle Load Balancer is
present, the servlets can be registered. At first, the
IndexServlet is registered under an alias index as shown
below:

httpService.registerServlet("/index", new
IndexServlet(), null, null);

After that, the ReplicaServlet is registered in a loop with

different aliases for all other pages as shown below:

String[] urls = {"login", "add", "remove",
"logout", "get"};
...
for (int i=0; i<this.urls.length; i++) {
httpService.registerServlet("/"+this.urls[i],
new ReplicaServlet (this.service), null, null);
}

When a request arrives, the HttpService looks up for an

URL and calls a registered servlet, whose alias matches the
requested URL. Then the selected servlet is started and the
HTTP request is given over. To achieve fault tolerance, the
ReplicaServlet catches exceptions from the bundles Load
Balancer and Replicas. If an exception comes up, an
individual failure page is sent to the user. This makes system
failures transparent to the user. When the bundle HTTP
Wrapper is stopped, all the servlets are unregistered.

F. Load Balancer
Since it would be very inconvenient to let users switch

between replicas (especially in web applications), some kind of
a dispatcher called load balancer is needed to allocate the
incoming requests to the replicas [5].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

481

Fig. 5 shows the class diagram of a bundle Load
Balancer. The task of this bundle is to connect replicas with
the system – specifically it forwards service requests from the
bundle HTTP Wrapper to a bundle Replica and returns the
response. The bundle Load Balancer consists of the three
main classes: LoadBalancer, Scheduler and Facade.

To map service requests to one or more replicas, the bundle
Load Balancer implements a class LoadBalancer, which
tracks the state of all the service events from the replicas. This
is done using OSGi’s class ServiceTracker, which is
registered with the interface name of a replica. If a replica is
registered, the bundle LoadBalancer caches the reference and
the corresponding object. When the service is unregistered, the
reference and the object are removed from the cache. The
cache was internally implemented as a hash map. To provide
access to the cached objects and spread the requests over all the
(functional) replicas, the class LoadBalancer uses a scheduler
implemented in a class Scheduler. The scheduler has access
to the cache and is updated by the class LoadBalancer
whenever a replica is registered or unregistered. In the demo,
the round robin algorithm was implemented in a class
RoundRobin as the scheduler. This class uses a simple counter
to schedule the access to the objects in the cache. When an
object is requested but no replica is available, the scheduler
throws a ReplicasUnvailableException.

To provide access to replicas from the bundle HTTP
Wrapper, the class LoadBalancer registers a service with an
instance of a class Facade. This class assures that every
service request is redirected to another replica. For this reason,
the class Facade provides a method doAction to send service
requests to the replicas. For each call of this method, the class
Facade gets a replica from an instance of the class
LoadBalancer, interprets the service request and calls the
corresponding method of the replica (i.e., login, logout,
addItem, delItem or getCartContent).

With the class Facade, it also becomes possible to keep the
core of the bundle Load Balancer independent from the
managed service. Any kind of service can be scheduled and
load balanced by this class. Only the class Facade has to be
customized to the managed service. A simplified
communication among the bundles HTTP Wrapper,
Replicas and Load Balancer is illustrated in Fig. 6.

G. Testing
To test the demo, we used the life cycle management

functionality from the OSGi Framework. At first, a replica was
stopped within the running system. The load balancer reacted
to this change, by deleting the replica from the list. The system
continued working. After restart of the replica, it was
automatically added to the list.

Next, all the replicas were stopped. The load balancer threw
an exception, which then was displayed to the user. After
restart of a replica, the system was working again. The user
session was not affected, even with the complete loss of all of
the replicas.

Finally, we tested that all the exceptions and errors were
transferred to the client in case of failures. After a failure has
been detected, the failed bundle has to be isolated. Otherwise,
the failure can spread to the other bundles in the system. In
OSGi a bundle can be isolated by stopping it. Later the bundle
can be restarted and recovered if needed. If the bundle has a
permanent failure, the bundle has to be uninstalled and checked
manually.

III. RELATED WORK
Ahn, Oh and Hong [1] proposed a proxy-based fault tolerant

approach to OSGi. The authors used a proxy, which wraps a
service object, intercepts service requests and routes the
requests to the best service at runtime. To provide reliability,
the proxy monitors faults. When a fault is detected, the proxy
recovers and isolates the failed services.

Another approach to providing high availability and fault
tolerance is the Virtual OSGi Framework. Papageorgiou [8]
presented a global OSGi Framework, which acts as a
virtualization layer on top of local OSGi Frameworks. The
global OSGi Framework connects two or more local OSGi
Frameworks running on different nodes and can handle
dynamic changes of the network. Maragkos [7] described the
replication and migration mechanisms of bundles in the Virtual
OSGi Framework. These features can be used to provide high
availability and fault tolerance.

Ahn, Oh and Hong’s approach assumes that all the parts of
the system are running in the same OSGi instance. For
solutions with more than one OSGi instance, the Virtual OSGi
Framework should be used. However, the Virtual OSGi
Framework requires modification of the OSGi Framework,
thus breaking compatibility with already existing bundles.
Moreover, the Virtual OSGi Framework does not cover
monitoring with the life cycle management over different
framework instances. A possible solution is to use an
individual management agent for every framework. This agent
could communicate over the Virtual OSGi Framework with a
central management server. But such a solution would become
much more difficult to implement and therefore, is not
recommended.

IV. CONCLUSION
This paper presented a simple solution for vertical load

balancing and fault tolerance, and demonstrated how these
concepts could be implemented in OSGi, without having to
change the OSGi Framework. The demo implementation
showed that the OSGi Framework offers many possibilities to
achieve vertical load balancing and fault tolerance. Even
though it still has open issues and spaces for possible
improvements, the demo implementation gives a closer look at
how these important goals can be reached.

It should be noted that the demo implementation is
extensible through many possible input sources and different
possible applications, which can run in OSGi.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

482

ou
ho

no
ap
ch
ho
sy
ap
ag

re
im
re
re

of
se
ei
fa
sy
do
of
O
co
Db
w
w
th

Due to the ti
ur previous
orizontal load

A. Load Bala
Since the per

ot enough to h
pplication suc
hoice would
orizontal load
ystem. By con
pplication ser
gainst hardwar

In the demo
eported to th
mplement a tra
eact on the f
equests to the f

B. Fault Tole
Moreover, th

f failure. For
ession state c
ther. Therefo

ailure. A singl
ystem. If one o
own. Therefor
f the system
therwise, the

omponent of
b4oService

with Replicas
were started, th
hus, could stor

V. FUT

me limitation
paper [3] w
balancing wa

ancing
rformance of
handle all the
ch as the shop

usually be
d balancing e
ntrast, vertical
rver and ther
re failures.
o implementa
he client. A
ansparent failo
failures of th
functional one

erance
he demo imple
example, if th
annot be sav
re, it is impo
le point of fa
of the compon
re, it is signifi
has to be hi
single point o
the system.
is an easy ta

s and reacts on
his bundle wou
e the session s

TURE WORK
s, not all the s

were impleme
s omitted.

one applicatio
requests for a
pping cart sy
horizontal lo
enables to bu
l load balanci
refore, it can

ation, all sof
useful exten

over so that the
he replicas an
es.

ementation lef
he bundle Db4
ved and the r
ortant to prev
ilure indicates
nents fails, th
icant that ever
ghly availabl
of failure is ju

The replica
ask, because i
n events only.
uld also recei
state.

solutions prop
ented – spec

on server is no
a frequently us
stem, the me

oad balancing
uild a fault t
ng relies on a

n offer no to

ftware failure
nsion would
e load balance
nd distribute

ft some single
4oService fa
replicas canno
vent single po
s a bottleneck

he whole syste
ry critical com
e and fault t
ust shifted to
ation of the
it is loosely c
. If a second d
ve all the eve

Fig. 1 Ove

posed in
cifically

ormally
sed web
thod of

g. Also
tolerant
a single
olerance

es were
be to

er could
service

e points
ails, the
ot work
oints of
k in the
em goes
mponent
tolerant.
another
bundle

coupled
database
ents and

Ba
are
rep
wh
res
app
app
ex
ow
too
too
an
wi

all
cen
pin
fai
po
app
op
rep

sep
dis
fun
fun
an
mo
act
ser
cor

erview of shopp

A similar
alancer, HTT
e single point
plicate. For e
hich controls
start them if n
plication serv
plication is r
ception come

wn. For examp
ol, which ping
ol can discove
exception. Th

ithout the abili
Another kind

l application
ntral managem
ngs. An applic
ilure condition

ossible. The pr
plication serv

pportunity to m
plicas.
In OSGi a m
parate bundle
scover failure
nctionality f
nctionality, it
d restart the
onitoring of re
t as a proxy, w
rvice. This wa
rrectness of th

ping cart system

problem exi
TP Wrapper a
ts of failure
example, we
the life cycl

needed. A ma
ver or just a p
running on.

es up but it c
ple, monitoring
gs the server i
er a failure eve
his would be t
ity to signal an
of monitoring
servers send
ment server
cation server, w
n. Also a pro
roxy forwards
vers. In this c
monitor the sta

management to
e. In addition
es, it can u
from the O
becomes muc
em in case
eplicas is also
which provide
ay the proxy
he results and

m

ists for oth
and HTTP Ser
too. But aga
can use a m

e and status
anagement too
program on th
This tool co

can also moni
g could be don
in periodic int
en though the
the case wher
n exception.
g is passive ch

d pings in pe
is listening t
which does no

oxy-based mon
all the reques
entral position

atus of the serv

ool can be ea
to the use o

use the life
OSGi Frame
ch easier to m

of failures.
o possible in O
es access to a
has the ability
the response t

her bundles:
rver. These b
in they are e

management b
of the bundl

ol could be an
he server whe

ould react wh
itor resources
ne by a manag
tervals. This w
system never
e the system c

hecking. In thi
eriodic interv
to all the inc
ot send a ping,
nitoring appro
ts from clients
n the proxy h
vice requests a

asily integrate
of a ping met

cycle manag
ework. With

monitor other b
. The proxy
OSGi. A servi
monitored bun
y to check, e
time.

Load
bundles
easy to
bundle,
les and
n extra
ere the
hen an

on its
gement
way the

admits
crashes

is case,
vals. A
coming
, is in a
oach is
s to the
has the
and the

ed as a
thod to
gement
h this
bundles
y-based
ice can
ndle or
.g., the

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

483

F

Fig. 2 Repli

Fig. 3 Session S

ica

Service

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

484

Fig. 4 HT

F

TP Server and H

Fig. 5 Load Bal

HTTP Wrapper

lancer

r

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

485

C
m
(E
Es
fin

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Irina Astrov
entre of Exce

mainly by the
ERDF). Irina
stonian Mini
nanced researc

] Ahn, H., Oh
Framework an
Engineering (

] OSGi Allianc
accessed: Jan

] Koschel, A.,
Roelofsen, R
OSGi Service
in Engineerin

] Comunity, P
/display/paxru

] Schlossnagle,
IN, USA, 200

] Torrao, C.: F
accessed: Ja
carlostorrao-m

] Maragkos, D
Virtual OSG
collection.eth

] Papageorgiou

ACKNOW

va’s work wa
ellence in Com
e European
Astrova’s wo

istry of Edu
ch theme no. 0

REFE

h, H., Hong, J.
nd Applications.
(2007), Nr. 5, 137
ce: OSGi – The D
uary 2014, http://
Schneider, T., W
.: Providing Load
e Platform. In: M

ng & Environmen
Pax-Runner: Pax
unner/Pax+Runne
, T.: Scalable Inte
06.
Fault Tolerance
anuary 2014, h
midterm.pdf.

D.: Replication an
Gi Framework. L
hbib.ethz.ch/eserv
u, D.: The Virtual

Fig. 6 Comm

WLEDGMENT
as supported
mputer Scienc

Regional De
ork was also
ucation and
0140007s12.

ERENCES
: Towards Relia
In: Journal of In

79-1390.
Dynamic Module
/www.osgi.org.

Westhuis, J., Weste
d Balancing and

Mathematical Me
ntal Science (2011
x-Runner. online
er.
ernet Architectur

in the OSGi S
http://www.gsd.in

nd Migration of
Last accessed: Ja
v/eth: 30549/eth-3
l OSGi Framewor

munication amo

by the Esto
ce (EXCS) fun
evelopment F
supported by
Research ta

able OSGi Ope
nformation Scienc

e System for Java

erkamp, J., Astro
Fault Tolerance

ethods and Techn
1), 426-430.
e. http://wiki.ops

res. Sams Indiana

Service Platform.
nesc-id.pt/~ler/re

OSGi Bundles i
anuary 2014, ht
30549-01.pdf.
rk. 2008.

ng Load Balanc

onian
nded
Fund
y the
arget-

erating
ce and

a. Last

ova, I.,
in the

niques

s4j.org

apolis,

. Last
eports/

in the
ttp://e-

cer, HTTP Wraapper and Repliicas

