International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:1, 2014

Migration of the Relational Data Base (RDB)
to the Object Relational Data Base (ORDB)

Alae El Alami, Mohamed Bahaj

Abstract—This paper proposes an approach for translating an
existing relational database (RDB) schema into ORDB. The
transition is done with methods that can extract various functions
from a RDB which is based on aggregations, associations between
the various tables, and the reflexive relationships. These methods can
extract even the inheritance knowing that no process of reverse
engineering can know that it is an Inheritance; therefore, our
approach exceeded all of the previous studies made for the transition
from RDB to ORDB. In summation, the creation of the New Data
Model (NDM) that stocks the RDB in a form of a structured table,
and from the NDM we create our navigational model in order to
simplify the implementation object from which we develop our
different types. Through these types we precede to the last step, the
creation of tables.

The step mentioned above does not require any human
interference. All this is done automatically, and a prototype has
already been created which proves the effectiveness of this approach.

Keywords—Relational databases, Object-relational databases,
Semantic enrichment.

I. INTRODUCTION

ANY problems have emerged with the RDB [9]. We

recall from them the reconstruction of complex objects
split across relational tables is costly because it causes many
joins. For this a solution has appeared, it is the ORDB [7].
Who has addressed most of these problems, we recall the use
of reference facilitates the use of very large multimedia data
by allowing them to be easily shared and costs less. Yet, the
question that arises is how to achieve a migration from a RDB
to an ORDB.

Several approaches have addressed the topic of migration
which shows the transformation of the aggregation and
associations from the conceptual model to the object relational
model [1]. Based on the notion of collections of the Unified
Modeling Language [8]. Other approaches are based on the
creation of an ORDB from the UML [4]. In those authors have
proposed the use of cardinalities to preserve and store the
aggregations and compositions [10].

An approach takes all of the relational database and stores it
in a structured table [2], [5], [6] that contains several
parameters, tables, attributes, classifications, class types
(abstract / concrete), the names of the relationships, class that

Alae El Alami is a Phd in the Faculty of Science and Technology /
Department of Mathematics and Computer Sciences, University Hassan |
Settat, Morocco (e-mail: elalamialae@gmail.com).

Mohamed Bahaj is Professor the Faculty of Science and Technology /
Department of Mathematics and Computer Sciences, University Hassan |
Settat, Morocco (e-mail: mohamedbahaj@gmail.com).

interacts with the relationship and cardinalities in order to
realize the schema translation.

Yet all approaches require the interference of the human
factor in order to achieve migration, either on all the work, or
on one or several parts. Therefore, in this paper we propose a
method that requires no human interference.

Our approach is based on capturing metadata from a RDB
that treats and stores it as a structured table that holds the
information necessary for the migration.

This paper deals with the steps of the migration that are
composed of 3 parts: the first is the implementation of the
structured table to the NDM in Section II; the second part is
the conversion from the NDM to the navigational model [3] in
Section I11; and the third part deals with the transformation of
the Navigational Model (NavM) to the ORDB.

I1.SEMANTIC ENRICHMENT OF RELATIONAL DATABASE: NEW
DATA MODEL

A. Definition and Identification of the New Data Model

The NDM is a type of table describing the different classes
extracted from a RDB with the data necessary for the
realization of an ORDB.

The NDM is defined as a collection of classes

NDM: = {C | C: = (cn, degree, cls, a, contributor)}

Cn =the name of the class.

Degree = first degree (the tables that contain PK) | 2nd
degree (the tables that contain FK without PK).

Cls=aggregation, association, inheritance, simple class (the
class that does not belong to the other classifications).

Contributor=class list.

A=attribute:={a | a := (an, t, tag, I, n, d)} (An :name of the
attribute, T:type of the attribute, Tag: primary key(PK) |
foreign key(FK),L: length of the attribute, N:if the attribute
takes the parameter null, D:the default value of the attribute)

*QObservation: treating cardinalities cannot help us since the
transformation of the Conceptual Data Model (CDM) to the
Logical Data Model (LDM) in the RDB has been treated for
the migration of attributes.

1. Classification (cls)
For the classification, classes are composed of four parts:

e Aggregation is when the class interacts with a single class
(the class itself may be the (first degree | 2nd degree)), not
included in the classification and inheritance as the class
has a FK;

249

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:1, 2014

e Associations: a class of 2nd degree which interacts with
two or more classes; Special case: for reflexive
relationships including their cardinalities in the CDM
were « 1-n» «0-n » becomes an association with two FK
with the name of the attribute of FK not found in any
other table in the RDB, which includes a special treatment
of the entities to know the referencing.

e Inheritance: When a class inherits from another class (no
reverse approach can identify the inheritance).

For this we have developed a technique that is based on
creating a table that will contain a maximum of possible
probabilities of inheritance in accordance with the naming
standards. Our table will consist of two columns: the first
containing the mother class; and the second, the subclasses.

In order to know the inheritance we compare the names of
the first-degree classes of the NDM with the first column of
our created table. If a correspondence is found, we compare all
the discovered classes that interact with our class within the
NDM with the subclasses from the corresponding line of the
table that contain possible inheritances. If an inheritance is
found in this step, we precede to the last step of verification.
We verify whether the PK value of the subclasses is
equivalent to the PK value of the mother class in order to
avoid a breach of the rules for naming tables.

So if there is a match we will extract an Inheritance, if not
we will continue our treatment of classification knowing that
the treatment of inheritance is the first step of the
classification.

Here is an example that shows the most famous case of use
of heritage shown in Table I.

TABLE I
THE CASE OF INHERITANCE THE MOST COMMON

Inherited By Inherits
Person Student

Teacher
Animal Cat

Dog

Horse
Document Book

Newspaper
Account Savings

Current

e The simple classes: the classes of the first degree, which
are not within the classification of aggregation,
inheritance and association.

2. Contributor

It defines the list of classes that the class starts interacting
with themselves. The purpose of this part is to know whether
it is an aggregation, an association, a single class or a class
that inherits from the class starting, also for the creation of
reference during the transition to the ORDB.

B. Generation of the NDM from a RDB

The translation of the RDB to the NDM is the first step of
the migration into the ORDB

Consider that the RDB includes in Fig. 1. Example of NDM
show in Table Il generated from a RDB.

kids proj
kno kname sexe pno prno pname description
34 badr m d543 1 Payment Management integration of a module in an erp open source
23 sarah f d343 2 tramway casa realization of management complette Tramway casa
21 jeff m g234
works_on employ
pno prno pno salary grade
ds43 1 ds43 9000 engineer
fs52 2 g234 12000 director
e234 1 552 7000 commercial
trainee dept
pno level type dno dname
e23d master hiring 1 computer
2 commercial
3 after-sales service
person
pno pname bdate adress dno pnosup
d543 alae 15/03/1987 residence ibn sina appt 3 1 g234
e234 fouad 03/01/1987 rayhan imm 4 appt 5 2 ds43
g234 azar 24/04/1984 lotissemnt 34 rue des farappt6 1 null
552 jean 28/05/1975 rue la fayette residence bmo imm majid appt9 3 d543

Fig. 1 The tables representing the relational database (the pks are underlined in bold ex, the fks are underlined ex)

250

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:1, 2014

TABLE Il
RESULT OF THE GENERATION OF A NDM

Cn Degre Classification Attribute Contributor
An Type tag | N D
Person 1st inherBy Pno Varchar PK N Kids
Works_on
Trainee
Employ
Pname Varchar N
Bdate Date N
Adress Varchar 255 N
Dno Int FK N Dept
PnoSup Varchar FK Y Person
Trainee 2n Inherts Pno Varchar FK N Person
Level Varchar N
Type Varchar N
Employ 2n Inherts Pno Varchar FK N Person
Salary Int Y
Grade Varchar N
Works_on 2n Association Prno Int FK N Proj
Pno Varchar FK N Person
Dept st Simple Dno Int PK N Person
Dname Varchar N
Proj 1st Simple Prno Int PK N Work_on
Prname Varchar N
Description Varchar 255 Y
Kids 1st Aggregation Kno Int PK N
Kname Varchar N
Sex Char N
Pno Varchar FK N Person
Observation. VARCHAR is synonymous with TABLE I
VARCHAR2 but this usage may change in future versions Simpl’:AV'GAT'ON SYMBOL OF THE Nam?:'ple

(provided for backward compatibility only for Oracle
datatypes [11]).

I1l. NAVM (NAVIGATIONAL MODEL)
After obtaining the NDM, we create the navigational model.

A. Definition and Objectives

- A model that plots the object implementation of a
database while drawing up the navigation path between
relations with the principle of referencing.

- Facilitates the transition towards the object by a set of
rules for transposition.

- Promotes the Visualization of complex structures and
possible navigation paths.

Why navigational?

The model introduces the logical links of the type REF
(REF implementation is undetermined in the conceptual
level).

The references (ref or REF) facilitate the navigation
between objects.

——— > Single link —pp Multiple link

O—, Single link o_» Multiple link

can be null can be null
Single link H Multiple link
necessarily valued necessarily valued
The absence of the circle means necessarily valued

The classes will be divided into two parts, the external
classes and internal classes:
+ Internal classes are the classes classified as aggregation in
the NDM.
+ External classes are the other classifications in the NDM.

251

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:1, 2014

Example

Extemnal
Arrl
Attr2
Attr3
Attrd

Intemal

Attrd
Attr

Fig. 2 The composition of the external and internal classes

Example of the NavM extracted from the UML.:

Job Job

nok noA

nameA nameA
0.1 Employers O
employs
0.n Employ

Employ nok

nok namek

name profession

profession

Note: The association is made by an externallink
thatusesa reference toone ormany abjects of
the class “Emplay”.

Navlv]

Fig. 3 From the conceptual model to the navigational model

g5

Fig. 4 Modeling inheritance in navigational

B. Transformation Rules

Inheritance: It follows the same principle of the class
diagram in the UML, either for the parent class or subclass.

Association: The navigation link is simple and necessarily
valued keeping attributes if there is an association with the
class attributes.

The navigation links starts from the association class to the
class that interacts with it (universal solution).

Class1
Attrl
Attr2

Association
Refl

Ref2 ®

l

Class 2
Attr3
Attrd

Fig. 5 How to model the association link

Aggregation: It becomes an internal class type object
referenced by an attribute of assembly with a multiple link that
can be valueless.

Simple class: For the simple class we must see the
classification of the class that interacts with it in the NDM.

+ If the simple class interacts with an association, we will
not need to trace the path of navigation because it is
already done.

+ If a simple class interacts with another simple class, we
have two navigation links:

- -The first link starts of the class that contains a foreign
key, which is a primary key in the other class, and is
simple and cannot be valueless.

- -The second link starts from the other class, which is
multiple and can be valueless.

C.The NDM Transformed into the NAVM

This stage of the migration is a part of reverse engineering
to show the transition by reference and the elimination of
joints, and plays a pivot role between the conceptual and
implementation object.

252

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:1, 2014

Person
Pno
Pname
Bdate wWorks _on
Adress
theDept e @ thePerson Bl
theKids Prno
theProj — Prname
Description
Kids g -
Kno
Kname
Sexe Seot
Dno
Dname
O theEmps
Employ Trainee
Pno Pro
Salary Level
Grade Type

Fig. 6 Transformation of the relational model to the navigational model

IV. TRANSLATION OF THE NDM TO AN ORDB
A. Approach for the Translation of the NDM into an ORDB

1. The Creation of Types

+ Creation of the types defined in the NDM as aggregation.
+ Creation of the types defined in the NDM as association.
To create these types we keep the same name listed in the

RDB and we add _type (concatenation).

+ Creation of composite types, those classes entering in
collaboration with the aggregation taking into account
their classification, and other types whose classification in
the NDM is simple.

+ The creation of the types defined in the NDM as an
inheritance starting with the parent class and ending with
the subclasses.

2. Creating Tables

The creation of tables is made by the typed classes and is
classified in the NDM as inheritance (parent, subclasses),
association, and simple class. The aggregations are included in
the first-degree class that interacts with itself. All tables are
created with the necessary constraints.

B. Method of Creating and Naming Rule

To create the types we keep the same name that appears in
the RDB and we add _type (concatenation).

e Syntax

CREATE [OR REPLACE] TYPE nameRDB_Type AS
OBJECT

(columnl typel, column2 type2,...)

To create types that contain other types that represent
aggregations, the type name that represents the aggregation
remains the same and we add _t.

e Syntax
CREATE [OR REPLACE] TYPE nameRDB1_Type AS
OBJECT

(columnl typel, column2 type2,...)

/

CREATE [OR REPLACE] TYPE nameRDB2_Type AS
OBJECT

(columnl typel, column2 type2, nameRDB1 t set(
nameRDB1_type),...)

For the creation of types with references, we add a ref _next
to the name of the RDB with the keyword REF and the
referenced type.

Observation: For reflexive relationships near many
recordings [1-n] we concatenate the PK with the FK, and the
side of a single record [1-1] we concatenate the FK with the
PK.

e Syntax

CREATE [OR REPLACE] TYPE nameRDB1_Type AS
OBJECT

(columnl typel, column2 type2,...)

/

CREATE [OR REPLACE] TYPE nameRDB2_Type AS
OBJECT

(columnl typel, column2 type2,nameRDB1_t
nameRDB1_type,...)
/

CREATE [OR REPLACE] TYPE nameRDB3_Type AS
OBJECT

(columnl typel, column2 type2,ref nameRDB2 REF
nameRDB2_type,...)

For the creation of types that represent the inheritance, we
add Under for the sub class and the keyword not final if the
type has subtypes, and final if the type has no subtypes.

e Syntax

CREATE [OR REPLACE] TYPE nameRDB1_Type AS
OBJECT

(columnl typel, column2 type2,...)

NOT FINAL

/

253

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:1, 2014

CREATE [OR REPLACE] TYPE nameRDB2_Type under
nameRDB_type

(columnl typel, column2 type2,nameRDB1_t
nameRDB1_type,...)

FINAL

Creating tables starts from typed classes. The table keeps
the same name that appears in the RDB, and then we add the
keyword OF and the type corresponding with the constraints
captured in the NDM (PK constraint, reference constraint, not
null constraint ...).

e Syntax:

CREATE TABLE [schema.]nameTable OF [schema.]
nameType

[(column [DEFAULT expression]

[constraintOnLine [constraintOnLine]...

| constraintREFONL.ine]

| { constraintOffline | constraintREFOffline }

[,column...])]

V.CONCLUSION

The aforementioned work shows the steps of migrating
from a RDB to an ORDB with a simple and practical method
to capture the relationships between different classes,
associations, aggregations and as well as the inheritance.
Currently no approach has proposed such a solution to extract
the inheritance from a RDB. We can trace the navigational
model to better see how the navigation is made between
classes and respect the navigation links for best listings.

This method is done with a normalized database to exploit
the power of the object-relational as our solution of
inheritance is based on a normalized database. If the
normalized database is not used, we will have a simple class
with an aggregation in place of the mother and sub class.

This solution exceeds the existing works as it generates an
ORDB without the interference of the human factor. This
approach also allows the possibility to make changes in the
physical schema of the database obtained in cases where the
user wants to manually update the database. Since the work is
done in console mode, a prototype was created to prove the
effectiveness of this approach.

A forthcoming article will present a prototype that examines
the subsequent stage of the migration that affects the passage
of the data from a RDB to an ODB.

TABLE IV
FINAL RESULT OF THE MIGRATION

CREATE TYPE kids_type AS OBJECT
(kno int, kname varchar(20),sex char(1),pno varchar(20))

/

CREATE TYPE dept_type AS OBJECT
(dno int, dname varchar(20))

/

CREATE TYPE proj_type AS OBJECT
(prno int, prname varchar(20),description varchar(255))

/

CREATE TYPE person_type AS OBJECT

(pno varchar(10),pname varchar(20),

bdate date,address varchar(255),

dno int, pnosup varchar(20),

kids_t set(kids_type),

ref_dept ref (dept_type)scope dept,
ref_pno_pnosup set(ref(person_type)),
ref_pnosup_pno ref(person_type) scope person)
NOT FINAL

/

CREATE TYPE trainee_type UNDER person_type
(pno varchar(10), level varchar(20),type varchar(20))
FINAL

/

CREATE TYPE employe_type UNDER person_type
(pno varchar(10),salary int,grade varchar(20))
FINAL

/

CREATE TYPE work_on_type AS OBJECT
(prno int, pno varchar(20),

ref_proj set (ref(proj_type)),
ref_person set(ref(person_type)))

/

CREATE TABLE dept OF dept_type(
constraint pk_dept primary key(dno));

CREATE TABLE proj OF proj_type(
constraint pk_proj primary key(prno));

CREATE TABLE work_on OF work_on_type(
constraint refer_work_on_person ref_person references person,
constraint refer_work_on_proj ref_proj references proj);

CREATE TABLE person OF person_type(
constraint pk_person primary key(pno),
constraint refer_person ref_dept references dept);

CREATE TABLE trainee OF trainee_type UNDER person;
CREATE TABLE employe OF employe_type UNDER person;

254

[1]

[2]

[3]

[4]

[5]

[6]

[7

(8]
[9]
[10]

[11]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:8, No:1, 2014

REFERENCES

G. O. Young, “Synthetic Structure of Industrial Plastics (Book Style
with Paper Title and Editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed.
New York: McGraw-Hill, 1964, pp. 15-64.

Abdelsalam Maatuk, Akhtar Ali, Nick Rossiter: Semantic Enrichment:
The First Phase of Relational Database Migration. In CIS2E '08, 6pp,
Bridgeport, USA, 2008.

Nora Koch, Hubert Baumeister, Rolf Hennicker and Luis Mandel. :
Extending UML to Model Navigation and Presentation in Web
Applications. In Proc. of the Workshop Modeling Web Applications in
the UML, UML’00, 2000.

Ming Wang.: Using UML for Object-Relational Database Systems
Development: A Framework. Issues in Information Systems, VOL 9,
No. 2, 2008.

Maatuk, A., Ali, M. A. and Rossiter, N.: An Integrated Approach to
Relational Database Migration. In IC-ICT '08, pp. 16, Bannu, Pakistan,
2008.

Abdelsalam Maatuk,M. Akhtar Ali,Nick Rossiter.: Converting
Relational Databases into Object-relational Databases. in JOT, vol. 9,
no. 2, pages 145-161, 2010.

Stonebraker, Michael, Moore and Dorothy. Object-Relational DBMSs:
The Next Great Wave (Morgan Kaufmann Series in Data Management
Systems) ISBN: 1558603972.

K. Barclay and J. Savage-Object-Oriented Design with UML and
Java,2004, ISBN 0 7506 6098 8.

S. Sumathi, S. Esakkirajan —Fundamentals of Relational Database
Management Systems, 2007, ISBN 978-3-540-48397-7.

JW. Rahayu, E. Pardede and D. Taniar, On Using Collection for
Aggregation and Association Relationships in XML Object-Relational
Storage. ACM Symposium on Applied Computing, Nicosia, Cyprus,
2004.

http://www.oracle.com/technetwork/database/enterprise-
edition/documentation/index.html.

255

