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Convergence Analysis of an Alternative Gradient

Abstract—Non-negative matrix factorization (NMF) is a useful
computational method to find basis information of multivariate
nonnegative data. A popular approach to solve the NMF problem is
the multiplicative update (MU) algorithm. But, it has some defects.
So the columnwisely alternating gradient (cAG) algorithm was
proposed. In this paper, we analyze convergence of the cAG
algorithm and show advantages over the MU algorithm. The
stability of the equilibrium point is used to prove the convergence
of the cAG algorithm. A classic model is used to obtain the
equilibrium point and the invariant sets are constructed to guarantee
the integrity of the stability. Finally, the convergence conditions of
the cAG algorithm are obtained, which help reducing the evaluation
time and is confirmed in the experiments. By using the same
method, the MU algorithm has zero divisor and is convergent at
zero has been verified. In addition, the convergence conditions of
the MU algorithm at zero are similar to that of the cAG algorithm
at non-zero. However, it is meaningless to discuss the convergence
at zero, which is not always the result that we want for NMF. Thus,
we theoretically illustrate the advantages of the cAG algorithm.

Keywords—Non-negative matrix factorizations, convergence, cAG
algorithm, equilibrium point, stability.

I. INTRODUCTION

NON-NEGATIVE matrix factorization (NMF) is a useful
computational method to find basis information of

multivariate nonnegative data [1, 6]. And it has such linear
and non-negative approximate representation. Given a
non-negative data matrix V ∈ Rm×n, NMF finds an
approximate factorization

V ≈ WH, (1)

where W and H are m× r and r × n non-negative matrices,
respectively. Usually, the positive integer r is chosen as smaller
than m or n, so that W and H are smaller than the original
matrix V .

In 1994, NMF was first proposed in [4], when it was
called positive matrix factorization. Recently, NMF has been
paid much attention and applied to many application areas
including image databases [5], text data mining [7, 8],
subsystem identification [9], spectral data analysis [10],
speech processing [11, 12], blind source separation (BSS)
[14], etc.
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To find the matrices W and H , the problem in (1) is
commonly reformulated as minimizing the following cost
function:

f(W,H) :=
1
2
‖ V − WH ‖2

F , (2)

where ‖ • ‖F represents the Frobenius norm.
There have been various types of NMF techniques in the

literatures, such as gradient descent methods [15], alternating
least squares [3], the popular multiplicative update algorithm
(MU) [1] and so on. But, the algorithm in [1], proposed by
Lee and Seung, fails to approach to a stationary point. This
defect is showed in [2] by numerical examples. After that,
for the defect that the MU algorithm appears inner iteration
and zero divisor, Lin [13] proposed three algorithms on
NMF problem, which are the columnwisely alternating
gradient (cAG) algorithm, the columnwisely alternating
projected gradient (cAPG) algorithm and the elementwisely
alternating projected gradient (eAPG) algorithm. And the
latter two algorithms are based on the cAG algorithm. Since
there does not exist exact mathematical proof of convergence
of the above algorithms. Therefore, in this paper, we analyze
the convergence of the cAG algorithm and show the
advantages over the MU algorithm theoretically.

Currently, there are many classical methods on the
convergence analysis of the algorithms for the non-negative
matrix factorization, such as projected gradient approaches
[17], bound optimization [18] and so on. What’s more, some
algorithms to accelerate the convergence are designed in
[19]. In this paper, we will utilize the stability of the
equilibrium point to prove the convergence of the cAG
algorithm. First, we prove the existence of the equilibrium
point by Squeeze Theorem. Then, a classic model, which
was proposed in [20], is used to obtain the equilibrium point.
At last, using the method in [16], we construct the invariant
sets to constrain the area of the initializations to guarantee
the integrity of the convergence analysis.

Using the theory of the previous paragraph, we have that
the cAG algorithm has not zero equilibrium point, which
verifies the algorithm has not zero divisor. Meanwhile, we
obtain that the cAG algorithm is locally convergent, and
realize that good initialization can improve the speed and
accuracy of the algorithm. If the initializations are not in the
invariant sets, the W and H are approaching to be negative
in the iterations. Similarly, the MU algorithm has zero
divisor and is convergent at zero has been verified. In
addition, the convergence conditions of the MU algorithm at
zero are similar to that of the cAG algorithm at non-zero.
However, it is meaningless to discuss the convergence at
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zero, which is not always the result that we want. Thus, we
theoretically illustrate the advantages of the cAG algorithm.

Our contributions can be summarized as follows. First, we
prove the convergence of the cAG algorithm and obtain the
structure of the equilibrium points, which lay a foundation for
better understanding of the cAG algorithm. Second, we show
the advantages of the cAG algorithm theoretically. Finally, we
realize that the conditions of the initialization constraints can
accelerate the convergence of the algorithm.

This paper is structured as follows. A brief overview of the
MU algorithm and the cAG algorithm are given in Section
II. In Section III, we prove the existence of the equilibrium
points of the cAG algorithm and obtain their expressions by
using the classic model in [20]. In Section IV, we construct
the invariant sets to constrain the area of initializations. We
prove the convergence of the cAG algorithm in Section V. In
Section VI, the simulations of the cAG algorithm confirm our
theories and the advantages over the MU algorithm are showed
theoretically. Finally, a conclusion is given in Section VII.

II. NON-NEGATIVE MATRIX FACTORIZATION
ALGORITHMS

The multiplicative update (MU) algorithm is proposed by
Lee and Seung [1] to solve the NMF problem (2), which is a
variation of the gradient descent method using the following
rules:

Hkj ←− Hkj
[WT V ]kj

[WT WH]kj
(3)

for 1 ≤ k ≤ r and 1 ≤ j ≤ n;

Wik ←− Wik
[V HT ]ik

[WHHT ]ik
(4)

for 1 ≤ i ≤ m and 1 ≤ k ≤ r.
The MU algorithm is not defined well if one of the elements

of WT WH or WHHT is zero. In addition, it may appear
inner iteration. To avoid these defects, Lin [13] proposes the
cAG algorithm which is described generally as the following.

When W is fixed, H is updated column by column. For the
j-th column, define

η∗
j = arg min

ηj

1
2
‖Vj − W (Hj − ηj [grad(H)]j)‖2

=
‖grad(H)]j‖2

‖Wgrad(H)]j‖2
,

(5)

where

grad(H) :=
∂f(W,H)

∂H
= WT (WH − V ), (6)

Vj , Hj and [grad(H)]j denote the j-th column of the matrices
V , H , and grad(H), respectively. For the i-th element of Hj ,
the algorithm for H is

hij ←− hij − ηij [grad(H)]ij , (7)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n,

ηij = min
[grad(H)]ij>0

{
η∗

j ,
hij

[grad(H)]ij

}
, (8)

and [grad(H)]ij denotes the (i, j)th element of the gradient
matrix grad(H).

Similarly, when H is fixed, define

ξ∗i = arg min
ξi

1
2
‖V T

i − HT (WT
i − ξi[grad(W )]Ti )‖2

=
‖[grad(W )]Ti ‖2

‖HT [grad(W )]Ti ‖2
,

(9)
where

grad(W ) :=
∂f(W,H)

∂W
= (WH − V )HT , (10)

V T
i , WT

i and [grad(W )]Ti stand for the ith column of V T ,
WT , and [grad(W )]T , respectively. For the j-th element of
WT

i , the algorithm for W is

wij ←− wij − ξij [grad(W )]Tji, (11)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n,

ξij = min
[grad(W )]ij>0

{
ξ∗i ,

wij

[grad(W )]ij

}
, (12)

and [grad(W )]ij denotes the (i, j)th element of the gradient
matrix [grad(W )].

The choices of ηj and ξi ensure the nonnegativity of H and
W . From (5) and (9), the denominators are not zero, unless
W [grad(H)]j = 0 or HT [grad(W )T

i ] = 0 for some j or i.

III. EXISTENCE OF EQUILIBRIUM POINTS

Similarly, as the method in [16], before analyzing the
convergence of the cAG algorithm, we need to prove the
existence of the equilibrium points and obtain the structures
of them. Both Hj and Wi will be updated alternately using
(7) and (11), but they are computed separately. Thus, it is
reasonable to consider W being fixed firstly to prove that the
equilibrium point of H exits, and obtain its structure by
using the model in [20]. Then, we fix H to prove that the
equilibrium point of W exits, and obtain its structure in the
same way.

For simplicity, we denote the following notation for any
{xij}rn, which means that xij stands for the (i, j) element of
a matrix X ∈ Rr×n, and 1 ≤ i ≤ r, 1 ≤ j ≤ n.

By calculating the matrix, we define

WT V =
{ m∑

p=1

wipvpj

}
rn

≡ {aij}rn,

WT W =
{ m∑

p=1

wipwpi

}
rr

≡ {bik}rr

and

[grad(H)]j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r∑
k=1

b1khkj − a1j

r∑
k=1

b2khkj − a2j

...
r∑

k=1

brkhkj − arj

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

A1

A2

...
Ar

⎞
⎟⎟⎠ .
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From (5), it follows that

η∗
j =

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
. (13)

If η∗
j >

hij

[grad(H)]ij
, then ηij =

hij

[grad(H)]ij
. From (7), for

the i-th element of Hj , there is

hij ←− hij − hij

[grad(H)]ij
[grad(H)]ij . (14)

Then, we have

hij ←− hij − hij

(
r∑

k=1

bikhkj − aij)

r∑
k=1

bikhkj − aij

= 0. (15)

If η∗
j ≤ hij

[grad(H)]ij
, then ηij = η∗

j =
‖[grad(H)]j‖2

‖W [grad(H)]j‖2
.

Similarly, the learning rule will be

hij ←− hij − ‖[grad(H)]j‖2

‖W [grad(H)]j‖2
[grad(H)]j . (16)

Then, we have the following algorithm

hij ←− hij − Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
. (17)

From (8) and the above analysis, to discuss the convergence
of algorithm (7) which is the cAG algorithm for H, we only
need to discuss the convergence of algorithm (17).

Definition 1. For the algorithm (17), a point hij ∈ R is called
an equilibrium if and only if it satisfies

Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
= 0. (18)

Theorem 1. Equation (18) has not zero solution i.e., hij �=
0.

Proof. The contradiction method is used to show this
theorem.

From (18), the denominator is not zero, i.e.,
m∑

p=1

[
r∑

i=1

(wpiAi)]2 > 0. (19)

Thus, there exits a p�, such that

[
r∑

i=1

(wp�iAi)]2 > 0. (20)

Since η∗
j ≤ hij

[grad(H)]ij
, we obtain

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
≤ hij

r∑
k=1

bikhkj − aij

.

Let’s assume that (18) has zero solution, i.e., hij = 0. From
the above equation, it follows that

0 ≤

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
= 0.

Then, we have Ai = 0, i = 1, 2, ...r. Obviously,

[
r∑

i=1

(wp�iAi)]2 = 0, (21)

which is contradictory with (20). Therefore, (18) has not zero
solution. �

From Theorem 1, it verifies that the cAG algorithm has
not zero divisor, which is one of the advantages over the MU
algorithm.

Denote

f(hij) = Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
, (22)

where

Ai =
r∑

k=1

bikhkj−aij =
i−1∑
q=1

biqhqj+
r∑

q=i+1

biqhqj+biihij−aij .

(23)
Let’s assume Hj except hij , aij and bij in WT V and
WT W are constants. In addition, in each iteration, both wij

and hij will be updated alternately. Thus, it is reasonable to
consider wij as a constant here for the convergent analysis
of hij . Similarly, for the analysis of wij , we consider hij as
a constant.

Theorem 2. There exists h
(0)
ij ∈ [0,∞), such that f(h(0)

ij ) =
0, i.e., h

(0)
ij is the equilibrium of algorithm (17).

Proof. Obviously, f(hij) is a continuous function. From
(20), there exits a i�, such that wp�i�Ai� �= 0. Thus, we have

r∑
i=1

(Ai)2 > 0.

From (19), it follows that
r∑

i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
> 0. (24)

For the initialization of A in algorithm (17), let h
(1)
ij > 0 and

r∑
k=1

bikh
(1)
kj < aij . From (23), we obtain A

(1)
i < 0. Thus, from

(22), there is

f(h(1)
ij ) = A

(1)
i

r∑
i=1

(A(1)
i )2

m∑
p=1

[
r∑

i=1

(wpiA
(1)
i )]2

< 0.
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Increasing h
(1)
ij , we can obtain another point h

(2)
ij , such that

r∑
k=1

bikh
(2)
kj > aij . Similarly,

f(h(2)
ij ) = A

(2)
i

r∑
i=1

(A(2)
i )2

m∑
p=1

[
r∑

i=1

(wpiA
(2)
i )]2

> 0.

According to the median theorem, there exists h
(0)
ij , h

(1)
ij <

h
(0)
ij < h

(2)
ij , such that

f(h(0)
ij ) = A

(0)
i

r∑
i=1

(A(0)
i )2

m∑
p=1

[
r∑

i=1

(wpiA
(0)
i )]2

= 0.

�
From Theorem 2, algorithm (17) exists the equilibrium point

h
(0)
ij . Next, we need to obtain the structure of h

(0)
ij to analyze

the stability of algorithm (17). From the classic model in [20],
we have the following lemma.

Lemma 1. In difference system x(t + 1) − x(t) =F (x(t)),
there exists an equilibrium point x�, if F1(x) ≤ F (x)
≤ F2(x), where F1(x) and F2(x) are monotonous, which
satisfies η1F2(x�) − F (x�) = F (x�) − η2F1(x�) = 0.

The Lemma 1 is used to obtain the structure of the
equilibrium point. For simplicity, we denote

a1 = min
1≤i≤r,1≤j≤n

{aij}, a2 = max
1≤i≤r,1≤j≤n

{aij}, (25)

b1 = min
1≤i,k≤r

{bik}, b2 = max
1≤i,k≤r

{bik}, (26)

w1 = min
1≤p≤m,1≤i≤r

{wpi}, w2 = max
1≤p≤m,1≤i≤r

{wpi}, (27)

r∑
k=1

hkj =
i−1∑
q=1

hqj +
r∑

q=i+1

hqj + hij = P + hij . (28)

We have the following theorem.
Theorem 3. There exists a non-zero equilibrium point of

algorithm (17), for some constants 0 ≤ η1 ≤ 1 and η2 ≥ 1,
the structure of the equilibrium point is hij =

a1

η1b2
− P or

hij =
a2

η2b1
− P in the condition η2a1b1 = η1a2b2.

Proof. For the term Ai =
r∑

k=1

bikhkj − aij , from (25) and

(26), it follows that

Ai ≤ b2(
r∑

k=1

hkj) − a1.

From (28), there is

b1(P + hij) − a2 ≤ Ai ≤ b2(P + hij) − a1. (29)

Using Lemma 1 to obtain the solutions of (18), both sides
of the inequality (29) must satisfy the following conditions,
respectively,

b2(P + hij) − a1 ≥ 0 (30)

and
b1(P + hij) − a2 ≤ 0. (31)

From the above inequalities, there exists two cases,

(b1 + b2)(P + hij) ≥ (a1 + a2) (32)

and
(a1 + a2) > (b1 + b2)(P + hij). (33)

For case 1, from the inequality (29), it follows that

[b1(P + hij) − a2]2 ≤ (Ai)2 ≤ [b2(P + hij) − a1]2.

From (27), we obtain

w2
1r

2[b1(P + hij) − a2]2

≤ [
r∑

i=1

(wpiAi)]2 ≤ w2
2r

2[b2(P + hij) − a1]2.

In the above inequalities, only hij is variable and all the others
are constants, there is

[b1(P + hij) − a2]3

mrw2
2[b2(P + hij) − a1]2

≤ Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2

≤ [b2(P + hij) − a1]3

mrw2
1[b1(P + hij) − a2]2

.

(34)

For the given initializations of W and H, we can choose two
constants 0 ≤ η1 ≤ 1 and η2 ≥ 1, such that

[η2b1(P + hij) − a2]3

mrw2
2[b2(P + hij) − a1]2

≤ Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2

≤ [η1b2(P + hij) − a1]3

mrw2
1[b1(P + hij) − a2]2

.

(35)

Base on Lemma 1, we analyze the following two equations,

[η1b2(P + hij) − a1]3

mrw2
1[b1(P + hij) − a2]2

= 0 (36)

and
[η2b1(P + hij) − a2]3

mrw2
2[b2(P + hij) − a1]2

= 0. (37)

Equation (36) has solution

hij =
a1

η1b2
− P. (38)

And equation (37) has solution

hij =
a2

η2b1
− P. (39)

For case 2, there is
[b2(P + hij) − a1]2

mrw2
2[b1(P + hij) − a2]

≤ Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2

≤ [b1(P + hij) − a2]2

mrw2
1[b2(P + hij) − a1]

.

(40)
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Choosing two constants 0 ≤ η1 ≤ 1 and η2 ≥ 1 which are
different from η1 and η2 in the inequality (35), it follows that

[η1b2(P + hij) − a1]2

mrw2
2[b1(P + hij) − a2]

≤ Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2

≤ [η2b1(P + hij) − a2]2

mrw2
1[b2(P + hij) − a1]

.

(41)

Similarly, we get the following two solutions,

hij =
a1

η1b2
− P (42)

and
hij =

a2

η2b1
− P. (43)

Although η1 and η2 in (42) and (43) are different from η1 and
η2 in (38) and (39), but the structures of the solutions in (18)
are the same.

From Theorem 2 and the above analysis, there exists an
equilibrium point for the algorithm (17) if the non-zero
solutions of (18) satisfy

a1

η1b2
− P =

a2

η2b1
− P. (44)

The above equation can be simplified to

η2a1b1 = η1a2b2. (45)

Therefore, for the algorithm (17), the structure of the
equilibrium point is (37) or (38) which satisfies (45). �

Analogously, for a fixed H, we can get similar results with
respect to W. Similarly, we denote the following notation,

V HT =
{ n∑

j=1

vpjhji

}
mr

≡ {cpi}mr,

HHT =
{ n∑

j=1

hijhji

}
rr

≡ {dki}rr,

and

[grad(W )]Ti =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

r∑
k=1

wikdk1 − ci1

r∑
k=1

wikdk2 − ci2

...
r∑

k=1

wikdkr − cir

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

B1

B2

...
Br

⎞
⎟⎟⎠ .

From (9), it follows that

ξ∗i =

r∑
i=1

(Bi)2

n∑
j=1

[
r∑

i=1

(hjiBi)]2
.

If ξ∗i >
wij

[grad(W )]ij
, then ξij =

wij

[grad(W )]ij
. From (11), for

the j-th element of WT
i , there is

wij ←− wij − wij

[grad(W )]ij
[grad(W )]Tji.

Then, we have

wij ←− wij − wij
r∑

k=1

wikdkj − cij

(
r∑

k=1

wikdkj − cij) = 0.

If ξ∗i ≤ wij

[grad(W )]ij
, then ξij = ξ∗i =

‖[grad(W )]Ti ‖2

‖HT [grad(W )]Ti ‖2
.

Similarly, the learning rule will be

wij ←− wij − ‖[grad(W )]Ti ‖2

‖HT [grad(W )]Ti ‖2
[grad(W )]Tji.

Hence, we need to discuss the convergence of the following
algorithm,

wij ←− wij − Bi

r∑
i=1

(Bi)2

n∑
j=1

[
r∑

i=1

(hjiBi)]2
. (46)

Definition 2. For the algorithm (46), a point wij ∈ R is
called an equilibrium if and only if it satisfies

Bi

r∑
i=1

(Bi)2

n∑
j=1

[
r∑

i=1

(hjiBi)]2
= 0. (47)

Denote

c1 = min
1≤p≤m,1≤i≤r

{cpi}, c2 = max
1≤p≤m,1≤i≤r

{cpi},

d1 = min
1≤k,i≤r

{dki}, d2 = max
1≤k,i≤r

{dki},

h1 = min
1≤i≤r,1≤j≤n

{hij}, h2 = max
1≤i≤r,1≤j≤n

{hij},

r∑
k=1

wik =
j−1∑
q=1

wqk +
r∑

q=j+1

wqk + wij = Q + wij .

From (22), contrarily, only wij is variable and all the others
are constants, then we have

d1(Q + wij) − c2 ≤ Bi ≤ d2(Q + wij) − c1, (48)

which is similar to the inequality (29). From this expression,
we have the following Theorem.

Theorem 4. There exists a non-zero equilibrium point of
algorithm (46), for some constants 0 ≤ η1 ≤ 1 and η2 ≥ 1,
the structure of equilibrium point is wij =

c1

η1d2
−Q or wij =

c2

η2d1
− Q in the condition η2c1d1 = η1c2d2.

Proof. The proof is similar to Theorem 2 and Theorem 3.
�
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IV. INVARIANT SETS

Using the similar method in [16], we construct the invariant
sets to constrain the area of the initializations.

Definition 3. [21] A set S is called an invariant set for a
dynamic system xn+1 = f(xn), if for any initial value x0 ∈ S,
the updates xn+1 of system starting from x0 will remain in S
for all n ≥ 0.

From the proof of Theorem 3, we assume all the others are
constants except hij , which can be decided in the upcoming
discussion. We can prove Theorems 5 and 6.

Denote

H1 = {hij |hij ∈ R,
a1

b2
− P ≤ hij ≤ a2

b1
− P}, (49)

W1 = {wij |wij ∈ R,
c1

d2
− Q ≤ wij ≤ c2

d1
− Q}. (50)

Theorem 5. Suppose a1, a2, b1, b2 and P are constants,
H1 is an invariant set of algorithm (17).

Proof. Suppose

0 <
a1

b2
− P ≤ hij(t) ≤ a2

b1
− P. (51)

From algorithm (17), for the (t + 1)th update, we have

hij(t + 1) = hij(t) − Ai

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
. (52)

From the proof of Theorem 3, we need to discuss two cases.
For case 1, from the inequality (34), it follows that

hij(t)− [b2(P +hij(t))−a1]3

mrw2
1[b1(P +hij(t))−a2]2

≤ hij(t+1)

≤ hij(t)− [b1(P +hij(t))−a2]3

mrw2
2[b2(P +hij(t))−a1]2

,

(53)
where mw2

1 = b1, mw2
2 = b2, a1, a2, b1, b2 and P are

constants. From (32), we have | b2(P + hij) − a1 | ≥ | b1(P
+hij) − a2 |. Thus, from (52), there is

hij(t) − b2(P + hij(t)) − a1

rb1
× 1 ≤ hij(t + 1)

≤ hij(t) − b1(P + hij(t)) − a2

rb2
× 1.

(54)

The above inequality follows that

(rb1 − b2)hij(t) − b2P + a1

rb1
≤ hij(t + 1)

≤ (rb2 − b1)hij(t) − b1P + a2

rb2
.

From the inequality (51), we have

(rb1 − b2)(
a1

b2
− P ) − b2P + a1

rb1
≤ hij(t + 1)

≤
(rb2 − b1)(

a2

b1
− P ) − b1P + a2

rb2
.

(55)

Thus, the above inequality can be simplified to

0 <
a1

b2
− P ≤ hij(t + 1) ≤ a2

b1
− P, (56)

which is same as the inequality (51). The inequality (56) shows
that for any t ≥ 0, if

a1

b2
−P ≤ hij(t) <

a2

b1
−P , there always

exists
a1

b2
− P ≤ hij(t + 1) ≤ a2

b1
− P .

For case 2, from (33) and (40), using the above method, it
follows that

hij(t) − a2 − b1(P + hij(t))
rb1

≤ hij(t + 1)

≤ hij(t) − a1 − b2(P + hij(t))
rb2

.

Similarly, from the inequality (51), the above inequality
becomes

0 <
a1

b2
− P ≤ hij(t + 1) ≤ a2

b1
− P,

which is same as the inequality (56).
Therefore,H1 is an invariant set of algorithm (17). �
Theorem 6. Suppose c1, c2, d1, d2 and Q are constants,

W1 is an invariant set of algorithm (46).
Proof. The proof can be omitted since it’s similar to

Theorem 5.
Theorem 5 and 6 guarantee that any trajectory of

algorithm (17) and algorithm (46) starting from any points in
the invariant sets H1 and W1 will stay in H1 and W1

correspondingly. For some initializations are not in the
invariant sets, the W and H are approaching to be negative
in the iterations, which will be verified in the experiments.
In the following section, we will prove the equilibrium point
is stable to complete the proof of convergence.

V. CONVERGENCE ANALYSIS

Theorem 7. For the algorithm (17), the non-zero
equilibrium point is stable if it satisfies the conditions (45)
and (49).

Proof. From (52) and (22), it follows that

hij(t + 1) = hij(t) − f(hij(t)). (57)

To discuss the convergence of algorithm (17), from (18), we
just need to discuss the stability of f(hij). From the proof of
Theorem 3, we discuss two cases to obtain the structure of
equilibrium point. Thus, we should also discuss two cases to
prove the stability of equilibrium point.

For case 1, from the inequality (35), for simplicity, we
denote

G1(hij) =
[η1b2(P + hij) − a1]3

mrw2
1[b1(P + hij) − a2]2

(58)

and

G2(hij) =
[η2b1(P + hij) − a2]3

mrw2
2[b2(P + hij) − a1]2

, (59)

then we have

G2(hij) ≤ f(hij) ≤ G1(hij).

Using Lemma 1 to obtain the equilibrium point, G1(hij) and
G2(hij) must satisfy monotonicity. In addition, the terms
that we substitute the equilibrium point into the derivatives
of G1(hij) and G2(hij) need to be less than 1 [21].
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First, we discuss the following derivatives of G1(hij) and
G2(hij).

G′
1(hij)

=
[η1b2(P + hij) − a1]2[b1(P + hij) − a2]

mrw2
1[b1(P + hij) − a2]4

×
{3η1b2[b1(P + hij) − a2] − 2b1[η1b2(P + hij) − a1]},

similarly

G′
2(hij)

=
[η2b1(P + hij) − a2]2[b2(P + hij) − a1]

mrw2
2[b2(P + hij) − a1]4

×
{3η12b1[b2(P + hij) − a1] − 2b2[η2b1(P + hij) − a2]}.

Substituting the non-zero solutions of (38) and (39) into the
above equations, we obtain

d(G1(hij))
dhij

| a1

η1b2
− P

= 0

and
d(G2(hij))

dhij
| a2

η2b1
− P

= 0.

Hence, there is

d(G1(hij))
dhij

| a1

η1b2
− P

=
d(G2(hij))

dhij
| a2

η2b1
− P

< 1,

which means since any time when hij(t) =
a1

η1b2
− P or

hij(t)=
a2

η2b1
−P , the derivatives of the terms f(hij(t + 1)),

f(hij(t + 2)), . . . will always be less than 1. It satisfies the
condition of stability. Therefore, the equilibrium point is
stable if G1(hij) and G2(hij) are monotonous.

Then, we discuss the monotonicity of G1(hij) and G2(hij).
To simplify the analysis, we denote

G(x) =
[ηc1(P + x) − c2]3

mrc2
3[c4(P + x) − c5]2

, (60)

where c1, c2, c4, c5 and c3 represent the same position of
b2, a1, b1, a2 and w1 in (58), similarly, c1, c2, c4, c5 and c3

represent the same position of b1, a2, b2, a1 and w2 in (59).
The derivative of G(x) is

G′(x) = [ηc1(P +x)−c2]2[c4(P +x)−c5]×
[ηc1c4(P + x) − 3ηc1c5 + 2c2c4]

mrc2
3[c4(P + x) − c5]4

.

If G′(x) ≥ 0, then G(x) is monotonous. Hence, we need

c4(P + x)−c5≥ 0 and ηc1c4(P + x)−3ηc1c5 + 2c2c4≥ 0.

For x = hij ≥ 0, c2c4 ≥ 0 and P ≥ 0, the equilibrium point
is stable if

c4P − c5 ≥ 0 (61)

and
ηc1c4P − 3ηc1c5 ≥ 0. (62)

To guarantee the monotonicity of G(x), we need both the
above two inequalities (61) and (62) are satisfied.

From the inequality (61), we need

b1P − a2 ≥ 0.

From (45), the above inequality becomes

b1P − η2a1b1

η1b2
≥ 0.

Since 0 ≤ η1 ≤ 1 and η2 ≥ 1, to guarantee the above
inequality holds, we need

b2P ≥ η1b2P ≥ η2a1 ≥ a1.

Hence, to guarantee (61) holds, the following inequality must
be satisfied.

b2P ≥ a1. (63)

Similarly, from the inequality (62), we need

η1b1b2P − 3η2b2a2 ≥ 0.

From (45), the above inequality becomes

η2
1b1b2P − 3η2

2a1b1 ≥ 0.

For 0 ≤ η1 ≤ 1 and η2 ≥ 1, to guarantee the above inequality
holds, we need

b2P ≥ η2
1b2P ≥ 3η2

2a1 ≥ a1.

Hence, to guarantee (62) holds, the following inequality must
be satisfied,

b2P ≥ a1, (64)

For case 2, by using the above method, from the inequality
(41), denote

G1(hij) =
[η1b2(P + hij) − a1]2

mrw2
2[b1(P + hij) − a2]

and

G2(hij) =
[η2b1(P + hij) − a2]2

mrw2
1[b2(P + hij) − a1]

.

Then, we obtain

d(G1(hij))
dhij

| a1

η1b2
− P

=
d(G2(hij))

dhij
| a2

η2b1
− P

< 1.

Using the same way, from (60), we denote

G(x) =
[ηc1(P + x) − c2]2

mrc2
3[c4(P + x) − c5]

,

and the derivative of G(x) is

G′(x) =
[ηc1(P + x) − c2][ηc1c4(P + x) − 2ηc1c5 + c2c4]

mrc2
3[c4(P + x) − c5]2

.

By using the similarly mathematical analysis, there exists
G′(x) ≥ 0 in the condition b2P ≥ a1 which is same as the
inequality (63). Fortunately, under the condition (45), the
inequality b2P ≥ a1 holds. �

By the same way, we have the stability theorem for wij in
algorithm (46).

Theorem 8. For the algorithm (46), under the condition
(50), the non-zero equilibrium point exists and is stable.
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From Theorem 3 and Theorem 7, we have that the
equilibrium point of algorithm (17) is stable, and from
Theorem 5 we know that all the initializations are
constrained in the invariant sets, which means the
equilibrium point of algorithm (17) is stable in H1.

According to the Theorem 5 in [22], we obtain the cAG
algorithm is locally convergent at the equilibrium points in
the invariant sets. There are two conditions to constrain the
convergence of the cAG algorithm. For hij , one condition
comes from the monotonicity constraints of (58) and (59),
and another condition comes from the restrictions on
invariant set H1. For some initializations which are not in
the invariant sets, the W and H are approaching to be
negative in the iterations. Now, we will confirm this
circumstance in the experiments.

VI. SIMULATION AND DISCUSSIONS

NMF algorithms have been extensively used to test data
for signals and images with various statistical distributions.
In this section, first, we present numerical experimental
results to illustrate the convergence of the cAG algorithm
and analyze the importance of the two convergence
conditions, especially the invariant sets. Second, by using the
same way, the convergence conditions of the MU algorithm
are obtained. We compare the cAG algorithm with the MU
algorithm by analyzing the difference of the convergence
conditions and theoretically illustrate the advantages of the
cAG algorithm.

A. Convergence of the cAG Algorithm in Experiments.

By testing several groups data, we want to choose suitable
initializations to obtain the correct data separation for NMF
algorithms in the practical application. To estimate the original
sources in a very small error, the stable conditions (50), (51)
and (65) are satisfied in the initializations. Similar as [16], we
have the following description of the algorithm steps.

1. Initialize the vector hij and non-negative matrix W =
{wpi}mr with positive decimal numbers;

2. According the computing result of P , Q and {vpj}m×n,

select suitable α = 1 − w2
2

w1
for the test;

3. To avoid the divergence, set the threshold for hij and wij

to 0.001-0.005, testing the convergence condition;
4. Compute hij and wij according to the algorithm (17) and

(46) to obtain the factorization of vpj .
5. If hij and wij have not converged, go back to step 3.
In experiment 1, we first select a group of data to

demonstrate the analysis results. Without loss of generality,
we only consider the convergence of w11 and h11 with
different initializations. From algorithm (17), it follows that

h11 ←− h11 − A1

r∑
i=1

(Ai)2

m∑
p=1

[
r∑

i=1

(wpiAi)]2
, (65)

where Ai =
r∑

k=1

bikhk1 − ai1, bik =
m∑

p=1
wipwpk and ai1 =

m∑
p=1

wipvp1.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8

9

10

Number of iterations

h 11

Fig. 1 The convergence of h11.
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Fig. 2 The convergence of w11.

We test the algorithm (65) for a randomly generated full
column rank matrix V ∈ R100×100. For initializations of P =

r∑
k=1

hk1 − h11 = 1.397, with the condition b2P ≥ a1, where

b2 =
m∑

p=1
w2w2 = mw2

2 , and a1 =
m∑

p=1
w1vpj = mw1vpj , we

select α = 0.01. Then, there is
w2

2

w1
= 1 − α = 1 − 0.01 =

0.99. Here, we show the convergence of h11 in Fig. 1 and
the convergence of w11 in Fig. 2, respectively. Therefore, for
different initializations of h11, it always converges to the same
constant if the condition b2P ≥ a1 is satisfied. And w11 has
the same result. The convergence of the cAG algorithm is
verified.

In experiment 2, to illustrate the importance of the invariant
sets in the cAG algorithm, we test the algorithm (65) for a
randomly generated full column rank matrix V and the matrix
W ∈ R100×100. For initializations of P = 67.19, with the
condition b2P ≥ a1, we select w1 = 0.1 and w2 = 1.4. To
show the simulation result, we change v11.

Fig. 3 shows the importance of the initializations in the
cAG algorithm. A good initialization can improve the speed
and accuracy of the algorithm. If the initializations are not in
the invariant sets, even it satisfies the condition (63), the W
and H are approaching to be negative in the iterations. It’s
clear that the negative matrix separation is meaningless.

We verify the convergence of the cAG algorithm and
illustrate the importance of the initializations in experiments.
In addition, the conditions of the initialization constraints
can accelerate the convergence of the algorithm. It will lay a
foundation for better understanding of the cAG algorithm.
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Fig. 3 The initializations are not in the invariant sets.

In this subsection, we analyze the convergence of the MU
algorithm by using the same method. From (3) and (4), we
obtain the following two algorithms,

hij ←− hijaij
r∑

k=1

bikhkj

(66)

and
wij ←− wijcij

r∑
k=1

wikdkj

. (67)

Then the equilibrium points of algorithm (66) are
{

0,
η2a1

b2
− P

}
, and

{
0,

η1a2

b1
− P

}
, (68)

which verify the MU algorithm has zero divisor.
Considering the non-zero solutions hij =

η2a1

b2
− P and

hij =
η1a2

b1
− P , the equilibrium point is stable, if it satisfies

the following conditions,

η2a1b1 = η1a2b2 (69)
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Fig. 4 In the condition b2P = a1, the algorithm (66) is stable.

and
b2P < a1. (70)

Comparing with the inequalities (45) and (70), we want to
discuss the convergence in the condition b2P = a1 in the
experiments.

In experiment 3, we test the algorithm (66) for the same
matrix V ∈ R100×100 as that in experiment 1. From b2P = a1,

there is
w1

w2
2

=
P

v
. For different initializations of P , with the

condition
w1

w2
2

=
P

v
, Fig. 4 shows the simulation result.

Fig. 4 shows the algorithm (66) is convergent in the
condition b2P = a1. By testing several groups data, we find
the results are the same. For different initializations, the MU
algorithm always converges to the same constant if the
condition b2P = a1 is satisfied.

Hence we obtain the non-zero equilibrium point of the MU
algorithm is stable, if the following equation is satisfied

b2P ≤ a1. (71)

The two inequalities (45) and (71) are of opposite sign. Then
we discuss the case of zero solution.

sets of MU algorithm as follows,

H1 = {hij |hij ∈ R,
a1

b2
≤ hij ≤ a2

b1
},

and
W1 = {wij |wij ∈ R,

c1

d2
≤ wij ≤ c2

d1
}.
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Fig. 5 The MU algorithm is convergent at zero.

the algorithm (66) will be convergent at zero if

b2P > a1. (72)

It’s clear that the convergence conditions of the MU algorithm
at zero are similar to that of the cAG algorithm at non-zero.

In experiment 4, to illustrate the different convergence
properties of the cAG algorithm and the MU algorithm in
the condition b2P > a1, we test the algorithm (66) for a new
generated matrix V ∈ R100×100. With different initializations
of P and v11, the convergence of the MU algorithm is
shown in Fig. 5.

Fig. 5 shows the MU algorithm is convergent at zero in
the condition b2P > a1. However, it is not meaningful to
discuss the convergence at zero. Thus, when the condition

b2P > a1 is satisfied, which means
w2

2

w1
>

vpj

P
, using the

cAG algorithm is more effective. More concretely, when the
MU algorithm is convergent at zero, to prevent validly the
appearance of zero divisor, we use the cAG algorithm for
NMF. Therefore, from the above experiments, we
theoretically illustrate the advantages of the cAG algorithm.

B. Comparison of Algorithms

Using the same method in Section IV, we obtain the invariant

Similarly, using the same method in Section V, we obtain
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VII. CONCLUSION

In this paper, we analyze the convergence of the cAG
algorithm by utilizing the stability theorem of the
equilibrium point. We verify that the cAG algorithm has not
zero divisor. The convergence conditions and the structure of
the equilibrium points are also obtained. In addition, the
conditions of the initialization constraints can accelerate the
convergence of the algorithm. Using the same convergence
analysis, we verify the MU algorithm has zero divisor and
obtain the convergence conditions at zero. In the end,
simulations illustrate the advantages of the cAG algorithm
and confirm our theories.
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