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Abstract—Optimal Power Flow (OPF) problem in electrical 

power system is considered as a static, non-linear, multi-objective or 
a single objective optimization problem. This paper presents an 
algorithm for solving the voltage stability objective reactive power 
dispatch problem in a power system .The proposed approach employs 
cat swarm optimization algorithm for optimal settings of RPD control 
variables. Generator terminal voltages, reactive power generation of 
the capacitor banks and tap changing transformer setting are taken as 
the optimization variables. CSO algorithm is tested on standard IEEE 
30 bus system and the results are compared with other methods to 
prove the effectiveness of the new algorithm. As a result, the 
proposed method is the best for solving optimal reactive power 
dispatch problem. 
 

Keywords—RPD problem, voltage stability enhancement, CSO 
algorithm.  

I. INTRODUCTION 
EACTIVE power dispatch (RPD) is one of the important 
tasks in the operation and control of power system. 

Efficient distribution of reactive power in an electric network 
leads to minimization of the system losses and improvement 
of the system voltage profile. One of the important operating 
requirements of a reliable power system is to maintain the 
voltage within the permissible ranges to ensure a high quality 
of customer service. The optimal power flow (OPF) has been 
widely used for both the operation and planning of a power 
system. Therefore, a typical OPF solution adjusting the 
appropriate control variables, so that a specific objective in 
operating a power system network is optimized (maximizing 
or minimizing) with respect to the power system constraints, 
detected by electrical network. 

The problem that has to be solved in a reactive power 
optimization is to determine the required reactive generation at 
various locations so as to determine the required reactive 
generation at various locations so as to optimize the objective 
function. Here the reactive power dispatch problem [1]-[3] 
involves best utilization of the existing generator bus voltage 
magnitude, transformer tap setting and the output of reactive 
power sources so as to minimize the loss and to enhance the 
voltage stability of the system. 

To solve the RPD problem, a number of conventional 
optimization techniques have been proposed. These include 
the Gradient method, Non-linear Programming (NLP), 
Quadratic Programming (QP), Linear programming (LP) and 
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Interior point method. Though these techniques have been 
successfully applied for solving the reactive power dispatch 
problem, still some difficulties are associated with them. One 
of the difficulties is the multimodal characteristic of the 
problems to be handled. Also, due to the non-differential, non-
linearity and non-convex nature of the RPD problem, majority 
of the techniques converge to a local optimum. Recently, 
Swarm Intelligence techniques like Particle Swarm 
Optimization [4]-[6], Cat Swarm Optimization techniques [7]-
[12], have been applied to solve the optimal dispatch problem.  

In this paper, CSO approach has been proposed to solve the 
RPD problem. Nowadays voltage instability has become a 
new challenge to power system planning and operation. 
Insufficient reactive power availability or non-optimized 
reactive power flow may lead a power system to insecure 
operation under heavily loaded conditions. By reallocating 
reactive power generations in the system by adjusting 
transformer taps, generator voltages and switchable VAR 
sources, the problem can be solved to a far extent. In this 
paper, CSO algorithm is used to solve the voltage constrained 
reactive power dispatch problem. The proposed algorithm 
identifies the optimal values of generation bus voltage 
magnitudes, transformer tap setting and the output of the 
reactive power sources so as to minimize the transmission loss 
and to improve the voltage stability [13], [14]. The 
effectiveness of the proposed approach is demonstrated 
through IEEE-30 bus system. 

II. VOLTAGE STABILITY ENHANCEMENT 
Consider a system where, n_total number of busses, with 1, 

2… g generator busses (g), g+1, g+2… g+s SVC busses (s), 
g+s+1… n the remaining busses (r=n-g-s) and t_number of 
OLTC transformers. The transmission system can be 
represented using a hybrid representation, by the following set 
of equations. A load flow result is obtained for a given system 
operating condition which is otherwise available from the 
output of an on-line state estimator. The load flow algorithm 
incorporates load characteristics and generator control 
characteristics. Using the load flow results, the L-index is 
computed as 

 

1
1

gN
i

j ji
i j

VL F
V=

= −∑         (1)     

 
where j=g+1…, n and all the terms within the sigma on the 
RHS of (1) are complex quantities. The values F ji are 
obtained from the Y bus matrix as follows: 
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where, IL, VL are the currents and voltages vectors at the load 
nodes. VG, IG are the currents and voltages vector at the 
generator nodes. ZLL, FLL, KGL, YGG are the sub-matrices of the 
hybrid matrix H. The H matrix can be evaluated from the Y 
bus matrix by a partial inversion, where the voltages at the 
load buses are exchanged against their currents. This 
representation can then be used to define a voltage stability 
indicator at the load bus, namely Lj which is given by, 
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where 
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The term V 0 j is representative of an equivalent generator 

comprising the contribution from all generators. The index Lj 
can also be derived and expressed in terms of the power terms 
as the following: 
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* indicates the complex conjugate of the vector 
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The complex power term component S jcorr represents the 

contributions of the other loads in the system to the index 
evaluated at the node j. It can be seen that when a load bus 
approaches a steady state voltage collapse situation, the index 
L approaches the numerical value 1.0. Hence for an overall 
system voltage stability condition, the index evaluated at any 
of the buses must be less than unity. Thus the index value L 
gives an indication of how far the system is from voltage 
collapse. This feature of this indicator has been exploited in 
our proposed algorithm to evolve a voltage collapse margin 
incorporated RPD routine. The L -indices for a given load 
condition are computed for all load buses. The equation for the 
L -index for j-th node can be written as 

 

jiji

gi

i j

i
jij V

VFL δδθ −+<−= ∑
=

=1
0.1

             (9) 

( )m
ji

r
ji

gi

i j

i
j jFF

V
VL +−= ∑

=

=1
0.1

                (10) 

jijiji FF θ<=
 ( )jijiji

r
ji FF δδθ −+= cos

 ( )jijiji
m

ji FF δδθ −+= sin
               (11)

  
It can be seen that when a load bus approaches a steady 

state voltage collapse situation, the index L approaches the 
numerical value 1.0. Hence for an overall system voltage 
stability condition, the index evaluated at any of the buses 
must be less than unity. Thus the index value L gives an 
indication of how far the system is from voltage collapse. This 
feature of this indicator has been exploited in our proposed 
algorithm to evolve a voltage collapse margin incorporated in 
RPD routine. This paper presents an algorithm for reactive 
power optimization using the linear programming technique to 
improve voltage stability margin based on L-index 
minimization.  

III. PROBLEM FORMULATION 

A. Nomenclature: 

lossP    Network real power loss  

iP , iQ    
Real and reactive powers injected into network at 

bus i 

ijG
, ijB

  
Mutual conductance and susceptance between bus i 

and bus j  

iiG
, iiB   Self- conductance and susceptance of bus i  

giQ
    

Reactive power generation at bus i  

ciQ     
Reactive power generated by thi  capacitor bank  

 kt    Tap setting of transformer at branch k  

iV     Voltage magnitude at bus i  

jV
   

Voltage magnitude at bus j 

ijθ
   

Voltage angle difference between bus i and bus j  

lS
    

Apparent power flow through the thl
 
branch  

kg
    

Conductance of branch k  

BN
    

Total number of buses  

1−BN
   

Total number of buses excluding slack bus  

PQN
   

Number of PQ buses  

gN
   

Number of generator buses  
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CN
   

Number of capacitor banks  

TN    Number of tap-setting transformer branches  

lN     Number of branches in the system  

iδ    Voltage phase angle of thi  generator bus 
The optimal power flow problem is a nonlinear 

optimization problem. It consists of a nonlinear objective 
function defined with nonlinear constraints. The optimal 
power flow problem requires the solution of nonlinear 
equations, describing optimal and/or secure operation of 
power systems. The general optimal power flow problem can 
be expressed as a constrained optimization problem as 
follows. 
 
Minimize         f(x) 
Subject to       g(x) = 0, equality constraints 
                      h(x) ≤ 0, inequality constraints 
 

The objective of ORPD is to identify the reactive power 
control variables, which minimizes of L-index value. This is 
mathematically stated as follows  
  
Minimize F=max(Lj ; j=1,2,...,n ) 
  
where n: number of buses. The reactive power optimization 
problem is subject to the following constraints 

B. Equality Constraints 
These constraints represent load flow equation such as 
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C. Inequality Constraints  
These constraints represent the system operating 

constraints. Generator bus voltages (Vgi), reactive power 
generated by the capacitor (Qci), transformer tap setting (tk), 
are control variables and they are self restricted. Load bus 
voltages (Vload) reactive power generation of generator (Qgi) 
and line flow limit (Sl) are state variables, whose limits are 
Satisfied by adding a penalty terms in the objective function. 
These constraints are formulated as 

1.Generator bus voltage limits 
min max

; BGi Gi Gi i NV V V ∈≤ ≤         (14) 

2.Load bus voltage  limits 
min max

; BLi Li Li i NV V V =≤ ≤                  (15) 

3.Generator  reactive power capability limit 
m in m ax ;g i g i g i gQ Q Q i N≤ ≤ ∈               (16) 

 

4.Capacitor  reactive power generation limit 
m in m a x ;c i c i c i cQ Q Q i N≤ ≤ ∈        (17) 

5.Transformer tap setting limit 
m in m ax ;k k k Tt t t k N≤ ≤ ∈      (18) 

  IV. CAT SWARM OPTIMIZATION 

A. Overview 
CSO algorithm is divided into two sub models based on two 

of major behavioral traits of cats. These are termed as 
“Seeking mode” and “Tracing mode”.   

Seeking mode has four essential factors. Such as SMP, 
SRD, CDC, SPC which are designed as follows. 
• Seeking Memory pool (SMP):- It is used to define the size 

of seeking memory of each cat, indication any points sort 
by cat.  

• Seeking Rang of Selected Dimensions (SRD):- It is used 
to declare mutative ration for selected dimensions. While 
in seeking mode; if a dimension is selected for mutation, 
the difference between old and new ones may not be out 
of range, the range defines by SRD. 

• Counts of Dimensions to Change (CDC):- It is used tell 
how many dimensions to will be varied. All these factors 
play important roles in seeking mode. 

• Self Position Consideration (SPC):- It is a Boolean valued 
variable, and indicates whether the point at which the cat 
is already standing will be one of the candidate point to 
move to.SPC cannot influence SMP. 

B. Seeking Mode: Resting and Observing 
The seeking mode of the CSO algorithm models the 

behavior of the cats during the period of resting but staying 
alert-observing its environment for its next move. 

The seeking mode of the CSO algorithm can be described 
as follows 
Step 1. Make j copies of the present position of each catk, 

where j=SMP. if the value of SPC is true. Let j=(SMP-
1), then retain present position as one of the candidates. 

Step 2. For each copy according to CDC add or subtract SRD 
percent values and replace the old ones. 

Step 3. Calculate the fitness values (FS) of all candidate points. 
Step 4. If all the FS are not exactly equal calculate the 

selecting probability (19) of each candidate point. 
Otherwise set all the selecting probability of each 
candidate point to 1. 

 

  jiwhere
FSFS
FSFS

P
bi

i <<
−

−
= 0,

minmax
                  (19)                   

 
If the global of the fitness is to find the minimum solution; 

FSb=FSmax , otherwise FSb=FSmin. 
Step 5. Randomly pick the point to move to form the candidate 

points, and replace the position of catk . 
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C. Tracing Mode:- Running After a Target 
Step 1. Update the velocities for every dimension (Vid) 

according to (20). 
Step 2. Check if the velocities are in the range of maximum 

velocity is over-range, it is set equal to the limit. 
Step 3. Update the position of catk according to (21). 
 

( )idgdidid XPrCVWV −+= ***                           (20)                                                               
 
where, W is inertia weight ,Pgd is position of cat, who has the 
best fitness value. Xid is the position of catk, C is constant r is a 
random value in the range of [0,1].  
 

ididid VXX +=                                              (21)                                  

D. CSO Movement = Seeking Mode + Tracing Mode  
When applying the CSO algorithm to solve optimization 

problems, the initial step is to make a decision on the number 
of individuals or cats to use. Each cat in the population has the 
following attributes:  
1. a position made up of M dimensions;  
2. velocities for each dimension in the position; 
3. a fitness value of the cat according to the fitness function; 

and  
4. a flag to indicate whether the cat is in seeking mode or 

tracing mode.  
The CSO algorithm keeps the best solution after each cycle 

and when the termination condition is satisfied, the final 
solution is the best position of one of the cats in the 
population. CSO has two sub-modes, namely seeking mode 
and tracing mode and the mixture ratio MR dictates the joining 
of seeking mode with tracing mode. To ensure that the cats 
spend most of their time resting and observing their 
environment, the MR is initialized with a small value. The 
CSO algorithm can be described in 6 steps as presented in [7]-
[9].  
Step 1. Create N cats in the process.  
Step 2. Randomly sprinkle the cats into the M-dimensional 

solution space and randomly give values, which are in-
range of the maximum velocity, to the velocities of 
every cat. Then haphazardly pick number of cats and 
set them into tracing mode according to MR, and the 
others set into seeking mode.  

Step 3. Evaluate the fitness value of each cat by applying the 
positions of cats into the fitness function, which 
represents the criteria of our goal, and keep the best cat 
into memory. Note that we only need to remember the 
position of the best cat (xbest) because it represents the 
best solution so far.  

Step 4. Move the cats according to their flags, if catk is in 
seeking mode, apply the cat to the seeking mode 
process, otherwise apply it to the tracing mode process.  

Step 5. Re-pick number of cats and set them into tracing mode 
according to MR, then set the other cats into seeking 
mode. 

Step 6. Check the termination condition, if satisfied, terminate 
the program, and otherwise repeat Step 3 to Step 5. 

E. CSO Flow Chart 

 
Fig. 1 CSO flow chart 

V. RESULTS 
The OPF using CSO has been carried out on the IEEE 30 

bus system. The network consists of 41 branches, six 
generator buses and 24 load buses. Four branches 6–9, 6–10, 
4–12 and 27–28 have tap changing transformers with 20 
discrete steps of 0.01p.u each. The buses with possible 
reactive power source installations are 10, 12, 15, 17, 20, 21, 
23, 24, 29. The available reactive powers of capacitor banks 
are within the interval 0 to 0.18 p.u in discrete steps of 0.06 
p.u. All bus voltages are required to be maintained within the 
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