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Abstract—In this paper, steady-state ampacity (current carrying 

capacity) evaluation of underground power cable system by using 
analytical and numerical methods for different conditions (depth of 
cable, spacing between phases, soil thermal resistivity, ambient 
temperature, wind speed), for two system voltage level were used 132 
and 380 kV. The analytical method or traditional method that was 
used is based on the thermal analysis method developed by Neher-
McGrath and further enhanced by International Electrotechnical 
Commission (IEC) and published in standard IEC 60287. The 
numerical method that was used is finite element method and it was 
recourse commercial software based on finite element method.  
 

Keywords—Cable ampacity, Finite element method, 
underground cable, thermal rating. 

I. INTRODUCTION 
HE use of underground transmission and distribution 
cables has grown significantly over the years with the 

rapid increase in demand for electric energy to cover a very 
large expansion in populated urban areas. To meet the 
growing demand for electric energy, the power utilities are 
continuously looking for technologies to improve load 
handling capabilities of their underground transmission and 
distribution systems to use their cables to the maximum 
allowable ampacity rating. This leads to care of the cable 
temperature due to transfer of power demand and shall not 
exceed the specified design of cable insulation. If this 
temperature is exceeded, the lifetime and reliability of the 
cable can be reduced and it may lead to unexpected premature 
failure. 

Two methods have been developed to calculate the cable 
ampacity. The first one is analytical methods or traditional 
methods based on the thermal analysis method developed by 
Neher-McGrath [1] which approximates the cable circuit 
configuration and assumes uniform soil conditions around the 
cable. Because of limited computer capability at that time, 
theNeher-McGrath Model has been widely accepted for over 
40 years and was developed and enhanced by International 
Electrotechnical Commission (IEC) and published in standard 
IEC 60287 [2]. But such approximations and assumptions lead 
to inaccuracies in the calculations and often force cable 
engineers to use unnecessarily large safety factors and overly 
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conservative designs. Therefore, the analytical methods are 
inaccurate in ampacity computation of cables. 

The second method is the numerical calculation method 
such as finite element method, which began to appear with the 
development of computers. The principle of this method is to 
analyze the temperature distribution in the cables and the area 
of the cable location. The numerical calculation method is 
more effective, because it considers the actual conditions, 
which makes the result more accurate. However, many 
research have been done for underground cable ampacity 
calculation by using finite element method for environment 
and condition [3]-[8] and an experiment was done to confirm 
that the accuracy of finite element method in steady-state 
ampacity [9]. 

In this paper, a comparison between IEC and FEM for 
calculating ampacity in different conditions (depth of cable, 
native soil thermal resistivity, ambient temperature, wind 
speed, spacing between phases) was done for two system 
voltage level 132 and 380 kV. 

II. MODEL PARAMETERS 
Direct buried three-phase 132 and 380 kV cable has been 

modeled. Cross section of cable and parameters of cable [10] 
are illustrated in Fig. 1 and Table I. 

 

 
Fig. 1 Cross section cable for 132 kV and 380 kV 
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TABLE I 
CABLE PARAMETERS 

Symbol Parameter 
Value 

Units 
380 kV 132 kV 

n Number of conductor in the 
cable 1 1 - 

dc Diameter of conductor 61.5 44 mm 

ρc 
Thermal resistivity of 

copper 0.002584 0.002584 K.m/W 

Dsemicon 
Diameter over semi-

conductive tape N/A 45.2 mm 

ρsemicon 
Thermal resistivity of semi-

conductive tape N/A 3.5 K.m/W 

Dcs 
Diameter over conductor 

screen 65.4 47.2 mm 

ρcs 
Thermal resistivity of 

conductor screen 2.5 2.5 K.m/W 

Di Diameter over insulation 121.4 85.2 mm 

ρi 
Thermal resistivity of 

insulation (XLPE) 3.5 3.5 K.m/W 

Dis 
Diameter over insulation 

screen 125.4 87.2 mm 

ρis 
Thermal resistivity of 

insulation screen 2.5 2.5 K.m/W 

Dst1 
Diameter over water 

swelling tape 1 126.9 88.4 mm 

ρst1 
Thermal resistivity of water 

swelling tape 1 3.5 3.5 K.m/W 

Dcuw Diameter of copper wires 2.56 2.13 mm 
Ncuw Number of copper wires 96 78 - 

tcut 
Thickness of copper tape 

(Open Helix) 0.13 0.15 mm 

Dcut Diameter over copper tape 132 93 mm 

Dst2 
Diameter over water 

swelling tape 2 134.7 93.8 mm 

ρst2 
Thermal resistivity of water 

swelling tape 2 3.5 3.5 K.m/W 

Dlat 
Diameter over laminated 

aluminum tape 135.4 94.4 mm 

ρlat 
Thermal resistivity of 

laminated aluminum tape 0.00422 0.00422 K.m/W 

Dj Diameter over jacket 144 104.4 mm 
ρj Thermal resistivity of jacket 3.5 3.5 K.m/W 

III. IEC METHOD 

IEC 60287 provides method for calculation of ampacity of 
cable for different design parameters of cable (cross section, 
thermal resistivity, thickness of layer … etc.) as well as for 
different environment (ambient temperature, soil condition, 
depth of cable, spacing of phases … etc.).The current rating 
(ampere) using in the IEC standard is 
 

ܫ ൌ ቂ ∆ఏି ௐ೏ሾ଴.ହ భ்ା ௡ሺ మ்ା య்ା ర்ሻሿ
ோೌ೎ሾ భ்ା௡ሺଵାఒభሻ మ்ା௡ሺଵାఒభାఒమሻሺ య்ା ర்ሻሿቃ

଴.ହ
    (1) 

 
where Δθ [oC] is temperature rise between ambient 
temperature and cable conductor temperature, Wd [W/m] is 
dielectric loss of cable insulation, T1, T2, T3 [K.m/W] are 
equivalent thermal resistances calculated from the cable 
material’s thermal properties, T4 [K.m/W] is the cable external 
thermal resistance, Rac [Ω/m] is the AC electrical resistance of 
the cable conductor at maximum temperature and λ1 and λ2are 
the ratio of losses in the metal sheath to total losses in all 
conductors and the ratio of losses in the armouring to total 
losses in all conductors, respectively.  

IV. FINITE ELEMENT METHOD 

The heat transfer model developed here is for the three 
phase circuit. The boundary at two side of x-axis and below 
circuit (y-axis) are set as open boundary condition and extends 
to 20 m from the centre-line of the cable group [11]. The top 
boundary condition is set as a convective heat transfer surface. 
The relationship between heat flux, q [W/m2], at surface and 
heat transfer coefficients of convection, hc [W/(m2.K)], are  

 
ݍ ൌ ݄௖൫ߠ௚௥௢௨௡ௗ െ  ௔௜௥൯ (2)ߠ

 
where θground and θair are ground and air temperature 
respectively, and hc can be obtained from the following 
expression [11]: 

 
݄௖ ൌ 7.371 ൅  ଴.଻ହ (3)ݒ6.43

 
where v is the air velocity in m/s. 

The thermal resistivity of air gap between copper wires 
shall be calculated considering the radiation and convection 
effect and this can be derived from the following expression 
[12], [13] 
 

௔௜௥,௘௙௙ߩ ൌ
1

ሺ݄௖௩ ൅ ݄௥ሻ ൈ ݀
 (4) 

 
where ρair,eff [K.m/W] is the effective thermal resistivity of air 
inside the gap, d [mm] is the thickness or width of the air gap 
in the direction of heat flow, the hcv [W/(m2.K)] and hr 
[W/(m2.K)] are convective and radiative heat transfer 
coefficient respectively, and can be obtained by using the 
following expression 
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where Nu is Nusselt number, ρair [K.m/W] is the thermal 
resistivity of air, σ [W/m2.K4] is Stefan-Boltzmann constant, 
Tav [K] is average temperature of inner and outer surface of 
gap, ɛi and ɛo are the emissivity of inner and outer surface 
respectively, Lh [mm] and Lw [mm] are the height and width 
of the gap. 

The heat sources in cable are coming from losses in the 
cable and it occur in three regions of the cable; joule losses in 
the conductor, dielectric losses and sheath loss due to induced 
currents in the sheath. These losses are calculated as follows. 

Joule losses: Joule loss is the heating power [W/m] of the 
conductor due to the resistance of the conductor and is given 
by 

 
௖ܹ ൌ  ଶܴ௔௖ (7)ܫ
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where Wc is joule loss per unit length, I [ampere] is current, 
and Rac is ac resistance per unit length. 

Sheath Losses: Sheath loss is due to losses in the sheath or 
screen caused by circulating currents (λ1') and eddy currents 
(λ1'') and given by 
 

ଵߣ ൌ ଵߣ
ᇱ ൅ ଵߣ

ᇱᇱ (8) 
 

In the IEC standard, sheath loss is calculated as a function 
of the joule loss using a multiplier, λ1 [2]. 

Dielectric Losses: Dielectric loss is due to the charge 
leakage and hysteresis effects in the dielectric. These can be 
expressed as 
 

ௗܹ ൌ ௗܷ௢ܥ߱
ଶ(9) ߜ݊ܽݐ 

 
where Wd [W/m] is dielectric loss of cable insulation, ω = 2πƒ 
where ƒ is the system frequency, Uo [V] is the voltage to earth, 
tanδ is the loss factor of the insulation at power frequency and 
operating temperature and Cd [F/m] is the insulation 
capacitance and can be expressed as  
 

ௗܥ ൌ
ߝ

18 ݈݊ ቀ஽೔

஽೎
ቁ

10ିଽ (10) 

 
where ɛ is the relative permittivity of the insulation, Di [mm] 
is the external diameter of the insulation and Dc [mm] is the 
diameter of conductor, including screen. 

The finite element software package ANSYS [14] was used 
to determine the ampacity of the cable. 

V. ANALYSIS MODEL 

The analyses were done for circuit with voltage level 132 
kV and 380 kV for different environmental parameter (depth 
of cable, thermal resistivity of backfilling and native soil, 
ambient temperature, wind speed and spacing between cable 
phases) and then calculate the steady state ampacity at 
maximum operating temperature of cable by using IEC 
method and FEM as shown in the following: 

A. Depth of Cable 

The ampacity was calculated using the IEC and FEM at 
nine burial depths in mm for each voltage level; 100, 300, 600, 
900, 1200, 1500, 1800, 2100, and 2400. The ambient 
temperature, wind speed, spacing between cable phases for 
132 kV and 380 kV, thermal resistivity of native soil was kept 
35oC, 0 m/s, 400 mm, 800 mm and 2 K.m/W respectively. Fig. 
2 shows the result of ampacity versus the depth of cable. 

 
Fig. 2 Ampacity versus depth of cable 

 
In Fig. 2 the IEC and FEM are in agreement and accurate 

with increasing the depth of cable unlike reducing the depth of 
cable. 

B. Thermal Resistivity of Soil 

The twelve different thermal resistivity native soil was used 
to calculate the ampacity by using the IEC and FEM for each 
voltage level; 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8 and 
3 K.m/W. The ambient temperature, wind speed, spacing 
between cable phases 132 kV and 380 kV, depth of cable 132 
kV and380 kV was kept 35oC, 0 m/s,400 mm, 800 mm, 1500 
mm and 1700 mm, respectively. Fig. 3 shows the result of 
ampacity versus the thermal resistivity native soil. 

 

 
Fig. 3 Ampacity versus thermal resistivity native soil 

 
IEC and FEM are in agreement for different thermal 

resistivity as show in Fig. 3. However, IEC is more accurate 
for 380 kV system than 132 kV because of the increasing 
depth of cable.  

C. Ambient Temperature 
The ampacity was calculated with eleven different ambient 

temperature by using the IEC and FEM for each voltage level; 
0, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50oC, the wind speed, 
spacing between cable phases132 kV and 380 kV, thermal 
resistivity native soil, depth of cable132 kV and 380 kV was 
kept 0 m/s, 400 mm, 800 mm, 2 K.m/W, 1500 mm and 1700 
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mm, respectively. Fig. 4 shows the result of ampacity versus 
the ambient temperature.  

 

 
Fig. 4 Ampacity versus ambient temperature 

 
Again the IEC and FEM are in agreement for different 

ambient temperature, and the accuracy of IEC for 380 kV 
system is more than 132 kV because the 380 kV cable is 
buried deeper than the 132 kV cable.  

D. Wind Speed 
The ampacity was calculated with nine different wind speed 

by using FEM for each voltage level; 0, 0.28, 1.389, 2.78, 
5.56, 11.11, 16.67, 22.22 and 33.33 m/s, the ambient 
temperature, spacing between cable phases132 kV and 380 
kV, thermal resistivity native soil, depth of cable 132 kV and 
380 kV was kept 35oC, 400mm, 800mm, 2 K.m/W,1500 mm 
and 1700mm, respectively. Figs. 5 and 6 show the result of 
ampacity versus the wind speed for 132 kV and 380 kV 
respectively.  

 

 
Fig. 5 Ampacity versus wind speed for 132 kV system 

 
Fig. 6 Ampacity versus wind speed for 380 kV 

 
From Figs. 5 and 6, the ampacity calculation based on IEC 

have no effect for changing the wind speed, while the results 
of FEM shows little improvement in the ampacity when 
increasing the wind speed. However, the wind speed has 
significant effect on the ampacity when reducing the depth as 
shown in Fig. 7, which shows the conductor temperature of 
middle cable (the hottest cable) versus wind speed for 
different depth and for both systems. 

E. Cable Phases Spacing 
The ampacity was calculated with fourteen different 

spacing by using IEC and FEM for 132 kV system; 150, 200, 
250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750 and 800 
mm, and thirteen different spacing for 380 kV kV system; 
400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 
1500 and 1600 mm, the wind speed, ambient temperature, 
thermal resistivity of native soil, depth of cable132 kV and 
380 kV was kept 0 m/s, 35oC, 2 K.m/W, 1500 mm and 1700 
mm, respectively. Figs. 8 and 9 show the result of ampacity 
versus the cable phases spacing for 132 kV and 380 kV 
respectively. 

 

 
Fig. 7 Conductor temperature versus wind speed by using FEM 
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Fig. 8 Ampacity versus spacing of cable phases for 132 kV 

 

 
Fig. 9 Ampacity versus spacing of cable phases for 380 kV 

 
From Figs. 8 and 9, the IEC and FEM are in agreement and 

IEC become more accurate when reducing the spacing 
between cable phases. Whenever spacing reduced, this lead to 
significant increase (nonlinear) loss in sheath in all cable 
phases due to presence of eddy current and this reduce the 
ampacity of cable as shown in Fig. 8 while this effect did not 
appear in Fig. 9 due to absence of the eddy current. 

VI. CONCLUSION 
Using finite element method is more accurate and reliable 

in computations of underground cable ampacity as confirmed 
in many research. Therefore, it is used in this paper to 
determine the accurate of computations of underground cable 
ampacity by using IEC method and the conclusion are shown 
below: 
a. The IEC become more accurate with increasing the depth 

of cable and vice versa. In practical cases, it is 
recommended that the depth of the cables should be in the 
order of ten times their external diameter. 

b. IEC are in agreement with FEM for different thermal 
resistivity of native soil, ambient temperature and cable 
phases spacing. 

c. FEM have capability to calculate the ampacity for 
different wind speed unlike the IEC which does not 
consider it in ampacity calculation. However, the wind 
speed has significant effect on the ampacity when 
increased and the depth is reduced. 

In general, the IEC method is less accurate and the results 
are almost higher than exact the solution and in some cases the 
inaccuracy is increase or limits ampacity calculations which 
lead to reduce reliability of using IEC in underground cable 
ampacity computation.  
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