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Reductions of Control Flow Graphs
Robert Gold

Abstract—Control flow graphs are a well-known representation of
the sequential control flow structure of programs with a multitude
of applications. Not only single functions but also sets of functions
or complete programs can be modeled by control flow graphs. In
this case the size of the graphs can grow considerably and thus
makes it difficult for software engineers to analyze the control flow.
Graph reductions are helpful in this situation. In this paper we define
reductions to subsets of nodes. Since executions of programs are
represented by paths through the control flow graphs, paths should
be preserved. Furthermore, the composition of reductions makes a
stepwise analysis approach possible.

I. INTRODUCTION

CONTROL flow graphs are widely used since many years
to represent the sequential control structure of software

and for its graphical representation. Each statement is repre-
sented by a node in the graph, the edges reflect the control flow
between them. Among the manifold applications of control
flow graphs are white box testing, test coverage notions [11],
[12], [21], [23], [28], [35], [37] and generation of test cases [4],
[16], [20]. Furthermore, control flow graphs are useful in the
control flow analysis in compiler construction and optimization
[2], [3], [10] and in the definition and evaluation of source code
metrics [13], [19], [21], [31], such as, cyclomatic complexity
[24].

Control flow graphs can not only be applied to single
functions in a program, but there are also approaches for
interprocedural frameworks [17], [18], [22], [29] that define
control flow graphs for sets of functions or for complete
programs. Each node that represents a function call is split
in a call node and a return node and linked to the control
flow graph of the called function by newly introduced edges.
The problem with interprocedural control flow graphs is their
large size. Especially, when software engineers use control
flow graphs in program analysis the size of the graphs makes
it difficult to understand the control flow structure. Therefore,
the user should be enabled to apply reductions to the graphs
that preserve the control flow and other important properties.
One reduction that can be found very often in the related
literature is to merge each maximal block of consecutive nodes
with a single entry and a single exit, e.g., [2], [7], [11], [21].
Sequential statements are then represented by a single node.
The size of the graphs is decreased, but in most cases only
slightly. One property of this reduction is that the paths in the
original control flow graph can be reconstructed when in the
paths in the reduced graph the blocks are expanded again. In
previous papers [12], [13], [14], [15] we adopted the approach
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of Paige [27] and defined a reduction where only entry nodes
and exit nodes of the control flow graph and such nodes are
kept that represent decisions, for example, if-statements. The
resulting graphs are called decision graphs. Each edge in the
decision graph corresponds to a branch in the program [14].
We reduce branches to single edges and get smaller graphs
with less nodes. Since the branching structure of the programs
is preserved, decision graphs can be used in branch testing and
in the analysis of cyclomatic complexity [13]. Decision graphs
can also be employed in the design of algorithms and functions
to help the designer to focus on the decision structure.

In this paper we will generalize this approach of graph
reductions with special focus to interprocedural control flow
graphs. We will define a general reduction method to arbitrary
subsets of nodes and give examples such as the reduction to
the interface nodes and the reduction to the D-nodes that leads
to decision graphs. Paths in the control flow graph represent
executions of the program. Therefore, the control flow should
be preserved by the reduction in the sense that the paths in
the control flow graph should correspond to the paths in the
reduced graph. This enables the software engineer to analyze
the executions also in the reduced graph.

The contribution of this paper is to provide a general frame-
work for graph reductions that preserve paths. The reductions
can be applied to control flow graphs but are not restricted
to them. This opens a wide field of other applications of
graphs for graph reductions. We show that reductions can be
applied to already reduced graphs and define the composition
of reductions. That makes it possible to “zoom out” of a graph
in several steps until the desired level of information details
is reached, which supports the analysis of programs.

The remainder of this paper is organized as follows. We
start with the necessary definitions about directed graphs

reduction and investigate its properties. The following chapter
extends the reduction to interprocedural control flow graphs
of sets of functions or of complete programs and shows the

II. BASIC DEFINITIONS

In this section definitions about graphs necessary for the
following are summarized. The definitions are partly taken
from previous papers [14], [15], a detailed introduction to
graphs can be found, e.g., in [5] or [8].

Definition 1. A directed graph (with multiple edges) is a pair
G = (N,E) consisting of a finite set N of nodes and a
(possibly infinite) set E of edges with N ∩ E = ∅, together
with functions start : E → N and end : E → N that
associate a start node and an end node, respectively, with each
edge.
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and control flow graphs. In Section III we define the graph

compositionality of reductions. Section V concludes the paper.
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The indegree and outdegree of a node n is the number of
edges that end and start in n, respectively, i.e., indegree(n) =
|{e ∈ E | end(e) = n}|, outdegree(n) = |{e ∈ E |
start(e) = n}|, or ω if there are infinitely many such edges.
A node n with indegree(n) = 0 is called entry node and a
node with outdegree(n) = 0 exit node of the graph.

A path d in a graph is a non-empty, finite sequence of edges
e1 e2 . . . ek such that end(ei) = start(ei+1) for i = 1, . . . , k−
1. The nodes start(e1) start(e2) . . . start(ek) end(ek) in the
path d form a sequence denoted by nodes(d). The start node
of the first edge e1 is called the start node of d, the end
node of the last edge ek—the end node of d, denoted by
start(d) and end(d). The nodes start(e2), . . . , start(ek) are
called inner nodes of d. The concatenation of two paths
d = e1 e2 . . . ek and d′ = e′1 e

′
2 . . . e′m is defined by d d′ =

e1 e2 . . . ek e
′
1 e

′
2 . . . e′m if end(ek) = start(e′1).

We represent multiple edges between two nodes graphically
as one arc with the number of edges between these two nodes
as a label at the arc. Infinitely many edges are denoted by ω.
If there is only one edge between two nodes the number 1 is
omitted.

As mentioned in the introduction, each statement in a
function is represented by a node in the control flow graph. The
control flow between statements is modeled by the edges. An
additional entry node nin and an additional exit node nout is
added that identify the entry when called and the exit when the

only control flow graphs of single functions. Therefore the
exit from and the entry to the graph when a function is
called within the function are not represented as exit and
entry nodes. The examples in this paper are mostly written
in the programming language C, but of course control flow
graphs are not restricted to this language. Which constructs are
represented by nodes is not always consistent in the literature.
We consider such constructs which are syntactically statements
in the programming language C [14].

Definition 2. The control flow graph Gf = (N,E) of a
function f is a directed graph that consists of

• a node na for each statement a in f ,
• one additional entry node nin and one additional exit node

nout,
• an edge (na, na′) if the statement a′ is executed imme-

diately after the statement a,
• an edge (nin, na1) for the first statement a1 in f or an

edge (nin, nout) if f contains no statements at all,
• edges (na′ , nout) for each statement a′ after which the

control flow leaves the function. This could be because of
a return-statement or when the right brace that terminates
the function is reached.

The definition ensures that in the control flow graph Gf of a
function f each node—with the exception of nin and nout—
corresponds to a unique statement in the function. Between
two nodes there is at most one edge. Therefore control flow
graphs don’t have multiple edges and their sets of edges are
finite.

As an example, the following function find which looks
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Fig. 1. The control flow graph of the function find

in a linked list for the last name and the first name of a person
is examined:

list find(list namelist,
string last, string first)

{
printf("start ");

while (namelist != NULL)
{
if (namelist->lastname == last)
{
printf("lastname found ");

if (namelist->firstname == first)
{
printf("name found ");
return namelist;

}
}

printf("next name ");
namelist = namelist->next;

}

printf("name not found ");
return NULL;

}

Fig. 1 shows the control flow graph of this function. For
better readability the nodes in the control flow graph can be
labeled. The labels “in” and “out” are assigned to the entry
and exit nodes. The other nodes are labeled by “=”, “while”
etc. to show which kind of statements is represented.

III. GRAPH REDUCTIONS

In a graph reduction we select a subset of nodes and thus
decrease the number of nodes. But paths should be preserved.

function returns. In this chapter and Chapter III we will examine



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:3, 2014

435

Therefore, for each path between two nodes in the subset an
edge is introduced in the reduced graph. Before we define the
graph reduction we need the following notation about sets of
paths in directed graphs.

Definition 3. Let G = (N,E) be a directed graph and let N ′ ⊆
N be a subset of its nodes. We will examine the following sets
of paths in G:

D: set of all paths in G,

DN ′NN ′ : set of all paths in G, whose start and end nodes
are in N ′,

DN ′N̄ ′N ′ : set of all paths in G, whose start and end nodes
are in N ′ with inner nodes in N \N ′. Such paths
are called N ′N ′-paths.

The difference between the sets DN ′NN ′ and DN ′N̄ ′N ′ is
that the inner nodes in the paths in the first set are not restricted
to N \N ′ and can be any nodes from N .

When we reduce a graph to a set N ′ ⊆ N of nodes, each
N ′N ′-path between two nodes in N ′ will be replaced by an
edge. This defines a bijection between N ′N ′-paths in G and
edges in the reduced graph which keeps the start and end
nodes.

Definition 4. Let G = (N,E) be a directed graph and let N ′ ⊆
N be a subset of its nodes. A directed graph G′ = (N ′, E′)
is a reduction of G to N ′ if there a bijective function

δ : DN ′N̄ ′N ′ → E′

from the set of the N ′N ′-paths in G to the set of edges in G′

such that

start(d) = start(δ(d))
end(d) = end(δ(d))

for all N ′N ′-paths d ∈ DN ′N̄ ′N ′ .

All reductions of G to the same subset of nodes N ′ are equal
up to isomorphism. Therefore, we speak of the reduction of
G to N ′.

Since there may be more than one or infinitely many N ′N ′-
paths in G between two nodes n,m ∈ N ′—even if G has no
multiple edges—, multiple edges are necessary to represent
them in the reduced graph. The number of edges in the reduced
graph G′ between two nodes n and m is equal to the number
of different N ′N ′-paths in G that start in n and end in m.

Clearly, the graph G = (N,E) reduced to N is equal to G.
In the control flow graph of the function find there are

infinitely many paths between the entry node and the exit node
described by the regular expression

n1 n2(n3 n4(n5 n6 n9 |n9)n10)
∗ n11 n12 n13 |

n1 n2(n3 n4(n5 n6 n9 |n9)n10)
∗ n3 n4 n5 n6 n7 n8 n13

but, of course no path between the exit node and the entry
node. The graph reduced to the entry node and the exit node
is shown in Fig. 2.

In [14] and [15] we defined the reduction to the D-nodes,
that are entry nodes, exit nodes and such nodes that represent
decisions, that are, nodes with outdegree ≥ 2. This approach
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Fig. 2. The control flow graph of the function find reduced to the entry
node and the exit node
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Fig. 3. Decision graph of the control flow graph of the function find

was introduced by Paige [27] in order to support the analysis
of programs by partitioning the control flow graph.

Definition 5. Let G = (N,E) be a directed graph. A node
n ∈ N is called D-node if it is an entry node or an exit node
or if outdegree(n) ≥ 2. The reduction of G to its D-nodes is
called decision graph of G.

A node that is not a D-node has indegree ≥ 1 and outdegree
exactly 1.

In [14] the N ′N ′-paths where N ′ is the set of D-nodes are
called DD-paths. Since there is no branching possible after
leaving a D-node n until reaching another D-node, all inner
nodes in a DD-path are different [12] and there are at most
outdegree(n) different DD-paths that start in n. The decision
graph of a control flow graph has therefore only finitely many
edges.

The D-nodes in the control flow graph of the function find
(Fig. 1) are the entry and exit nodes n1, n13 and the while-
and if-nodes n3, n4, n6. The paths

(n1, n2)(n2, n3)
(n3, n11)(n11, n12)(n12, n13)
(n3, n4)
(n4, n5)(n5, n6)
(n4, n9)(n9, n10)(n10, n3)
(n6, n9)(n9, n10)(n10, n3)
(n6, n7)(n7, n8)(n8, n13)

between D-nodes are replaced by edges in the decision graph
(when we write an edge as pair of nodes which is possible in
graphs without multiple edges). In Fig. 3 the decision graph
of the control flow graph of the function find is depicted.

To analyze the structure of the loops functions can be
reduced to entry and exit nodes and nodes that represent loops.
Fig. 4 shows the reduction of the control flow graph of the
example find. This graph gives a simplified picture of the
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Fig. 4. The control flow graph of the function find reduced to entry, exit
and loop nodes

control flow, which is in many cases sufficient for the analysis:
The function starts with a while-loop. For each execution of
the loop two possibilities arise (last name found but not the
first name or neither last nor first name found). After the while-
loop there are two different reasons for return (last and first
name found or not found).

Each path d ∈ DN ′NN ′ that starts and ends with a node in
N ′ can be uniquely written as concatenation of N ′N ′-paths by
splitting it at nodes in N ′: d = d1 d2 . . . dm with m ≥ 1. The
function δ can be straightforwardly extended to such paths by
δ(d) = δ(d1) δ(d2) . . . δ(dm).

For example, the path

d = (n1, n2)(n2, n3)(n3, n4)(n4, n5)(n5, n6)(n6, n9)
(n9, n10)(n10, n3)

in the control flow graph of the function find can be split at
the D-nodes n3, n4, n6 into the DD-paths

d1 = (n1, n2)(n2, n3)
d2 = (n3, n4)
d3 = (n4, n5)(n5, n6)
d4 = (n6, n9)(n9, n10)(n10, n3).

Furthermore, we have

δ(d1) = (n1, n3)
δ(d2) = (n3, n4)
δ(d3) = (n4, n6)
δ(d4) = (n6, n3)

and

δ(d) = (n1, n3)(n3, n4)(n4, n6)(n6, n3).

From

end(δ(dj)) = end(dj) = start(dj+1) = start(δ(dj+1))

for j = 1, . . . ,m − 1 it follows that δ(d) is a path in the
reduced graph. Additionally, when we consider the sequence
of nodes in d and project it to N ′ we get

start(d1) start(d2) . . . start(dm) end(dm)

which is equal to the sequence of nodes in δ(d).
In the example, this sequence is

n1 n3 n4 n6 n3.

The extended function δ : DN ′NN ′ → D′ from the set of
paths in G that start and end with a node in N ′ to the set of
paths in G′ is a bijective function. This leads to the following
theorem.

Theorem 1. Let G = (N,E) be a directed graph, let N ′ ⊆
N be a subset of its nodes and let G′ = (N ′, E′) be the
reduction of G to N ′ with the bijection δ : DN ′N̄ ′N ′ → E′.
The extension

δ : DN ′NN ′ → D′

of δ is also bijective. For all paths d ∈ DN ′NN ′ it holds that

nodes(d) |N ′= nodes(δ(d))

where |N ′ is the projection to N ′ and in particular

start(d) = start(δ(d))
end(d) = end(δ(d))

Proof. It remains to show that δ is bijective. Let d and d
be two paths in G that start and end with a node in N ′

where δ(d) = δ(d) = e1 e2 . . . em. This means that both d
and d are the concatenation of m N ′N ′-paths d1 d2 . . . dm,
d1 d2 . . . dm, respectively. From δ(dj) = ej = δ(dj) it
follows that dj = dj (δ is bijective according to Definition
4) and d = d. Let e1 e2 . . . em be a path in G′. Then
d = δ−1(e1) δ

−1(e2) . . . δ
−1(em) is a path in G that starts

and ends with a node in N ′ with δ(d) = e1 e2 . . . em.

This theorem shows that all paths in G that start and end
in a node in N ′ are represented in the reduced graph. In a
previous paper [14] we showed that there might be paths that
start in a node in N ′ but do not end in N ′ and furthermore
even can not be prolonged to a node in N ′. For the reduction
to D-nodes such paths have been called unconditional loops.
One example for this situation is

if (x) label: goto label;

In the control flow graph there is a path starting in the D-node
representing the if-statement leading to the goto-node which
cannot be prolonged to a DD-path.

In a control flow graph an execution of the function that
terminates with a return-statement or at the finishing brace
induces a path that starts in the entry node nin and ends in the
exit node nout. When the control flow graph is reduced to a
subset of its nodes that includes nin and nout, the path and thus
the execution is—according to Theorem 1—also represented
in the reduced graph. For this reason, a reduction of a control
flow graph should always include the entry node nin and the
exit node nout.

So far we defined the
• the reduction to the entry and exit nodes,
• the reduction to the entry, exit and loop nodes and
• the reduction to D-nodes.

Another interesting reduction is
• the reduction to the interface nodes, that are entry nodes,

exit nodes and nodes that represent function calls.
Fig. 5 shows the control flow graph of another example

calcSolution and its reduction to the interface nodes.
This function calculates the solution of a system of N linear
equations with N variables using Cramer’s rule. It gets as
parameters the coefficient matrix A, its determinant and the
vector of constants. The first if-statement checks the determi-
nant of the coefficient matrix. If it is zero the function returns.
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Fig. 5. Control flow graph of calcSolution and its reduction to the
interface nodes
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The following for-statement loops through all columns of the
matrix, copies the matrix to B and replaces the column by the
vector of constants with three more for-loops. Then a function
calcDeterminant is called with parameter B within an if-
statement. If it returns with an error, the for-loop it terminated
by a break-statement and the function returns. Otherwise, the
determinant of B is divided by the determinant of A.

IV. INTERPROCEDURAL CONTROL FLOW GRAPHS

So far, we examined only single functions and their control
flow graphs. If we want to represent groups of functions or
whole programs graphically, we need interprocedural control
flow graphs. A well-known approach, e.g., proposed by Reps,
Horwitz and Sagiv [29] or by Harrold and Rothermel [17],
[18], is to split each node that represents a function call into
two nodes—a call node and a return node. We add an edge
from the call node to the entry node of control flow graph of
the called function and from the corresponding exit node to
the return node. All edges that start in the original node start
then in the return node (Fig. 6).

Definition 6. Let F be a set of functions with control flow
graphs (Nf , Ef ) for f ∈ F where we assume that the sets Nf

and also the sets Ef are pairwise disjoint. The interprocedural
control flow graph of F is defined as follows. In the graph
(
⋃

f∈F Nf ,
⋃

f∈F Ef ), we add for each node n that represents
a function call (call node)

• a return node m,
• an edge (m,n′) for each edge (n, n′) that starts in n, the

edges (n, n′) are then deleted,
• an edge that starts in n and ends in the entry node of the

control flow graph of the called function,
• an edge that starts in the exit node of the control flow

graph of the called function and ends in m.

In interprocedural control flow graphs we label the arcs
between a call node and the entry node of the control flow
graph of the called function with the function name for better
understanding.

The complete example program that calculates the solution
of a system of linear equations mentioned above consists
of seven functions and eight function calls, one of them a
recursive call. The interprocedural control flow graph has 79
nodes. Fourteen of them are entry or exit nodes, 16 are call or
return nodes. The reduction of this graph to its interface nodes,
that are, entry, exit, call and return nodes, has only 30 nodes
and is shown in Fig. 7 where edges between call nodes and
entry nodes and edges between exit nodes and return nodes
are drawn in blue color.  

 

solveSystem 

ω 

2 ω 
2 

calcSolution 
2 

main 

calcDeterminant 

3 

construct 
Submatrix 
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readSystem 

writeSolution 

ω 

ω 

Fig. 7. Reduction of the example program to the interface nodes.

From a practical point of view, it would be helpful if
a software engineer could apply reductions step by step to
decrease the size of the graph and to see different levels of
details. For example, the reduction to the interface nodes could
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Fig. 8. Construction of the bijective function δ

be followed by eliminating the inner nodes of the function
calcDeterminant in a second reduction step. Of course,
the result should be the same if we do both reductions in one
step.

Theorem 2. Let G = (N,E) be a directed graph and let
N ′′ ⊆ N ′ ⊆ N be two subsets of its nodes. Then it holds that

red(G,N ′′) = red(red(G,N ′), N ′′)

where red is the reduction of a graph to a subset of its nodes.
Proof. Let us introduce the following notation:

• G′′ = (N ′′, E′′) is the reduction of G to N ′′ with the
bijection δ′′ : DN ′′N̄ ′′N ′′ → E′′,

• G′ = (N ′, E′) is the reduction of G to N ′ with the
bijection δ′ : DN ′N̄ ′N ′ → E′,

• Ĝ = (N ′′, Ê) is the reduction of G′ to N ′′ with the
bijection δ̂ : D′

N ′′N̄ ′′N ′′ → Ê.

We have to show that G′′ = Ĝ. Both graphs G′′ and Ĝ
have the same set N ′′ of nodes. Now we construct a bijection
δ : E′′ → Ê that preserves the start and the end nodes.

Let e ∈ E′′ be an edge in the reduced graph G′′ (Fig. 8).
Then d = δ′′−1(e) ∈ DN ′′N̄ ′′N ′′ is a path in G.

As shown in Theorem 1, we can extend δ′ from DN ′N̄ ′N ′ →
E′ to DN ′NN ′ → D′. This extension can be restricted
to DN ′′N̄ ′′N ′′ . A path d ∈ DN ′′N̄ ′′N ′′ is then mapped
to a path d′ = δ(d) ∈ D′. From Theorem 1 we know
that nodes(d) |N ′= nodes(d′) and d′ ∈ D′

N ′′N̄ ′′N ′′ . This
function δ′ : DN ′′N̄ ′′N ′′ → D′

N ′′N̄ ′′N ′′ is injective since
δ′ : DN ′NN ′ → D′ is injective. Let d′ be a path in D′

N ′′N̄ ′′N ′′ .
We know that it exists d ∈ DN ′NN ′ with d′ = δ′(d). From
nodes(d) |N ′= nodes(d′) follows that d is in DN ′′N̄ ′′N ′′ .
Together this means that δ′ : DN ′′N̄ ′′N ′′ → D′

N ′′N̄ ′′N ′′ is
also bijective.

If we apply δ̂, we get an edge ê = δ̂(d′) in Ĝ. Thus we
defined a bijective function δ = δ′′−1 ◦ δ′ ◦ δ̂ : E′′ → Ê.

In Fig. 9 the reduction to the interface nodes is followed
by a second reduction. This time we eliminate—with the
exception of entry nodes and exit nodes—all nodes with
only one incoming and one outgoing arc (regardless of the
multiplicity of edges) and get a more compact graph. The
entry and exit nodes are kept to identify the entry and
exit points of the functions. The reduced graph consists of
only 19 nodes. This graph is also sufficient to understand
the control flow in the program. The function main calls
readSystem. In this function infinitely many paths lead

from the entry to the exit because the size of the system
of linear equations is not limited. Then solveSystem is
called. Firstly, it calls calcDeterminant. After the re-
turn solveSystem might return with one of two possible
causes without calculating a solution. Otherwise, it calls
calcSolution. For this function there are two causes of
exceptions that lead to its return immediately after its call. If
no exception occurs, it calls in a loop calcDeterminant.
The reason for infinitely many paths on the loop is the same as
above. At last main calls writeSolution. In the function
calcDeterminant three different exceptions may cause it
to return after being called. It calls constructSubmatrix
and itself recursively in a loop.
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Fig. 9. Second reduction of the example program

Often library functions should not be analyzed and therefore
should not be shown in the control flow graph. To model this,
Definition 6 can be changed such that not all call nodes have to
be split but only those that the user chooses. The control flow
graphs of the corresponding called functions are excluded from
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Fig. 10. Third reduction of the example program without library functions

Fig. 11. Prototype of a control flow analysis tool

the interprocedural control flow graph. In the example, we
exclude the library function calcDeterminant and get the
reduced control flow graph as shown in Fig. 10. The call nodes
of calcDeterminant are considered as interface nodes in
this example.

V. CONCLUSION

In this paper we studied reductions of directed graphs to
subsets of nodes. Paths between these nodes are replaced by
edges. The reductions can be applied to control flow graphs of
single functions or to interprocedural control flow graphs of
sets of functions but are not restricted to control flow graphs.

Executions are preserved and reductions can be done stepwise.
This can help software engineers when they analyze their
programs and the control flow structure.

There are, besides the applications mentioned in the in-
troduction, also other fields where control flow graphs and
reductions can be used, for example, the detection of malware
[7], the analysis of the control flow to find deviations caused
by attacks on the program [1], [33] or the extraction of the
control flow structure from executables [32], [34]. And it
seems promising to apply graph reductions to other domains,
e.g., VHDL [36], workflow modeling [9], [30] or the testing
of graphical user interfaces [6], [25], [26], and exploit their
advantages.

In future work a prototype tool could be implemented to find
a set of reductions that are most helpful to software engineers
in practical applications (Fig. 11).
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