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Abstract—Non linear methods of heart rate variability (HRV) 

analysis are becoming more popular. It has been observed that 
complexity measures quantify the regularity and uncertainty of 
cardiovascular RR-interval time series. In the present work, SampEn 
has been evaluated in healthy normal sinus rhythm (NSR) male and 
female subjects for different data lengths and tolerance level r. It is 
demonstrated that SampEn is small for higher values of tolerance r. 
Also SampEn value of healthy female group is higher than that of 
healthy male group for short data length and with increase in data 
length both groups overlap each other and it is difficult to distinguish 
them. The SampEn gives inaccurate results by assigning higher value 
to female group, because male subject have more complex HRV 
pattern than that of female subjects. Therefore, this traditional 
algorithm exhibits higher complexity for healthy female subjects than 
for healthy male subjects, which is misleading observation. This may 
be due to the fact that SampEn do not account for multiple time 
scales inherent in the physiologic time series and the hidden spatial 
and temporal fluctuations remains unexplored. 
 

Keywords—Heart rate variability, normal sinus rhythm group, 
RR interval time series, sample entropy. 

I. INTRODUCTION 
N recent years, HRV has emerged as a powerful non-
invasive diagnostic tool used to investigate the autonomic 

control on the cardiac activity. HRV is the variation in beat-to-
beat intervals and is one of the most important markers for 
evaluating overall cardiac health. It is a proven fact that HRV 
is usually high in normal and healthy subjects, whereas 
reduced HRV has been observed in certain pathologies such as 
myocardial infarction, ischemic heart disease, congestive heart 
failure and others [1]-[5].  

Time and frequency domains are the linear methods, used to 
access the autonomic nervous system control over cardiac 
rhythm. These Linear methods of HRV analysis assume that 
R-R interval series to be stationary or any variations in it are 
harmonic or sinusoidal in nature. But cardiac rhythm has 
multiple interactions with other physiological systems such as 
respiration and it may also be affected by small disturbances 
such as premature ventricular contraction, atrioventricular 
block etc. so resulting signal is nonlinear, non-stationary and 
chaotic in nature, exhibiting some short range and long range 
correlations [6]. Linear approach is more prone to give 
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inaccurate analysis. Also the sensitivity and specificity of 
these methods was less than expected positive predictive value 
of < 30% [7]-[9]. The highly complex heart rate signals are 
nonlinear and non- stationary, usually chaotic in nature and 
exhibits some short range and long range correlations. 
Analysis of HRV signal using non linear approach is proposed 
to give better results, because here original RR time series is 
analyzed. With the help of these nonlinear methods one can 
analyze the hidden complexity of RR interval series. Also the 
predictive value is expected to be higher than the linear 
methods [10]. Some of the nonlinear dynamics used are the 
poincare plot, correlation dimension, power law slope, largest 
lyupnov exponent, and approximate entropy (ApEn), sample 
entropy (SampEn) and detrended fluctuation analysis.  

Entropy based measures are used to quantify the regularity 
and uncertainty of cardiovascular RR interval time series. 
Pincus [11]-[13] introduced ApEn for measuring complexity 
of a time series. But ApEn statistics gives inconsistent results 
and is biased suggesting less complexity than actually present 
in the signal. Richman and Mooran [14] developed new 
refined complexity measure SampEn, which agree with the 
theory much more closely than ApEn. Tuzcu and Selman [15] 
observed significant decrease in SampEn in children who 
undergone heart transplant, thereby indicating loss of system 
complexity. Al-Angari and Sahakian [16] reported significant 
loss of complexity in patients suffering from obstructive sleep 
apnea syndrome. Loss of complexity has been proposed with 
age [17] and in certain pathological conditions [18]. Goya-
Esteban et al. [18] applied SampEn to distinguish healthy 
subjects from patients with congestive heart failure at fixed 
tolerance level r. Also it has been observed that HRV of male 
subjects is higher in comparison to female subjects [22]-[25].  

In this paper we evaluated SampEn technique on NSR male 
and female subjects to observe the effect of the variation in 
data length N and tolerance level r on the SampEn.  

II. MATERIALS AND METHOD 
The entire dataset is retrieved from the physionet site 

(http://www.physionet.org/) [19], consists of RR time series 
recorded from 10 healthy subjects, 5 male and 5 female 
subjects, each sampled at 128 samples per second (from MIT-
BIH NSR Database) All the database of RR interval time 
series is filtered to remove outliers [20]. Table I presents the 
record numbers of these subjects.  
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TABLE I 
RECORD NUMBERS OF SUBJECTS OF NSR MALE AND FEMALE SUBJECTS 

Group Record Number 
NSR male 16265,16773, 16483,19090,19093 
NSR female 16272, 16420, 16786, 17453, 19140 

NSR-normal sinus rhythm 
 

In the present work SampEn technique is used, which is the 
negative natural logarithm of the conditional probability that 
two sequences similar for m points remain similar i.e. within 
the tolerance level r for one more point. Here self-matches are 
excluded while calculating probabilities. Lesser the SampEn 
more regular is the time series. The differences between 
SampEn and ApEn are: firstly SampEn exclude self-matches; 
secondly SampEn does not use template-wise approach when 
estimating conditional probabilities. Following is the 
algorithm used to calculate SampEn [14]: 

For a time series of N data points, define a vector u(j): 
 

                 Njju ≤≤1:)(                          (1) 
 

Fix the value of m and r. Here m is the length of sequences 
to be compared and r is the filtering level or tolerance for 
accepting matches. Tolerance is set at r = r*SD. The SD 
(standard deviation) of data set has been set at SD = 1, by 
standardizing the time series. This series form (N-M+1) 
number of xm(i) vectors within vector. Where

11:)( +−≤≤ mNiix m , having data length of m points 

defined as [ ]10:)( −≤≤+ mkkiu  from u(i) to u(i+m-1). 
The distance between two such vectors is calculated as: 

 
[ ] { }10:)()(max)(),( −≤≤+−+= mkkjukiujxixd   (2) 

 
This is maximum distance between scalar components of 

these vectors. Now calculate )(rBm , which is the probability 

that the two sequences will match for m points, using the 
formula 
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Similarly calculate )(rAm , which is the probability that the 

two sequences are similar for m+1 points, using the formula 
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Calculate SampEn as 
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Here B is the total number of template matches of length m 

and A is the total number of forward matches of length m+1. 
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Here A/B is the conditional probability that two sequences 

similar for m points remain similar for one more next point, 
i.e. both within tolerance limit r.  

III. RESULTS & DISCUSSION 
SampEn is applied on RR interval time series derived from 

NSR male and female subjects. Before applying the SampEn 
technique it is necessary to remove all the outlier points. The 
filtered RR-interval series is standardized to give SD of 1. 
This standardized series is used for determining SampEn for 
template lengths of m = 2, template matching tolerance r = 
0.10, 0.15, 0.20, 0.25, 0.3 of SD of data series and data length 
N = 1000 to 20000. Table II and Fig. 1 present SampEn 
analysis of the NSR male and female subjects. Here we can 
observe that SampEn value of NSR female subjects is higher 
than that of NSR male subjects for the data length varying 
from 1000 to 5000. Afterwards with increase in data length, N 
= 10000 and 20000, both groups overlap each other and it is 
difficult to distinguish them. Hence it is concluded that 
SampEn sometimes gives inaccurate results by assigning 
higher value to female subjects, because RR time series of 
healthy male subject have more complex pattern than that of 
female subjects i.e. HRV of healthy male subject is more than 
that of female subjects. Also as we go on increasing data 
length both groups overlap, so difficult to distinguish between 
both groups, which is in agreement with M. Costa [21] results 
that traditional entropy measures sometimes gives misleading 
results as entropy is measured on single scale, hence ignoring 
the complex spatio-temporal fluctuations inherent in HRV 
signal.  
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TABLE II 
SAMPEN (MEAN ± STD) OF NORMAL SINUS RHYTHM (NSR) MALE AND FEMALE SUBJECTS 

r value r = 0.1   r = 0.15   r = 0.2   r = 0.25   r = 0.3 
Groups Samples mean ± std mean ± std mean ± std mean ± std mean ± std 
NSR Male 1000 1.380±0.379 1.097±0.379 0.830±0.281 0.648±0.228 0.541±0.161 
NSR Male 2000 1.488±0.486 1.250±0.266 0.990±0.309 0.779±0.150 0.667±0.217 
NSR Male 3000 1.806±0.249 1.436±0.366 0.973±0.179 0.810±0.128 0.697±0.120 
NSR Male 4000 1.679±0.185 1.310±0.290 1.039±0.124 0.798±0.095 0.744±0.066 
NSR Male 5000 1.701±0.191 1.268±0.179 1.063±0.110 0.818±0.086 0.764±0.077 
NSR Male 10000 1.797±0.331 1.377±0.169 1.048±0.124 0.792±0.099 0.793±0.099 
NSR Male 20000 1.766±0.256 1.411±0.172 1.077±0.129 0.847±0.078 0.821±0.114 
NSR Female 1000 1.802±0.468 1.303±0.228 1.035±0.259 0.909±0.355 0.768±0.186 
NSR Female 2000 1.841±0.472 1.336±0.247 1.056±0.263 0.991±0.302 0.818±0.207 
NSR Female 3000 2.075±0.403 1.365±0.224 1.233±0.242 0.919±0.115 0.883±0.187 
NSR Female 4000 1.996±1.997 1.402±1.402 1.192±1.192 0.913±0.913 0.889±0.889 
NSR Female 5000 1.954±0.284 1.402±0.172 1.193±0.240 0.913±0.116 0.830±0.173 
NSR Female 10000 1.744±0.482 1.267±0.213 1.114±0.336 0.839±0.189 0.800±0.218 
NSR Female 20000 1.663±0.326 1.208±0.119 0.984±0.118 0.755±0.101 0.677±0.094 

r-tolerance level; NSR - normal sinus rhythm ; std- standard deviation 
 

 
(a)                                                                                               (b) 

 

 
(c)                                                                                             (d) 
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IV. CONCLUSION 
In this present study, SampEn was evaluated for NSR male 

and female groups. The SampEn for female subjects was 
observed higher than NSR male subjects for the data length 
varying from 1000-to-5000. For higher data lengths of N = 
10,000 and 20000, both groups overlap each other and it is 
difficult to distinguish them. Thus the SampEn sometimes 
gives misleading results by assigning higher value to female 
subjects, because heart rate variability of male subject is 
considered more than female subjects [22]-[25]. The recently 
proposed method of multiscale entropy has the potential to 
overcome these shortcomings.  
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