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Gorenstein Projective, Injective and Flat Modules
Relative to Semidualizing Modules

Abstract—In this paper we study some properties of
GC -projective, injective and flat modules, where C is a semidualizing
module and we discuss some connections between GC -projective,
injective and flat modules , and we consider these properties under
change of rings such that completions of rings, Morita equivalences
and the localizations.

GC

I. INTRODUCTION

UNLESS stated otherwise, throughout this paper all
rings are associative with identity and all modules

are unitary modules. Let R be a ring, we denote
by R-Mod(Mod-R)the category of left(right) R-modules
respectively. For any R-module M , we denote by pdR(M),
idR(M) and fdR(M) the projective dimension, injective
dimension and flat dimension of M respectively, and denote
by M+ =HomZ(M,Q/Z) the characteristic module of M .For
unexplained concepts and notations, we refer the reader to [2,
3, 8].

When R is two-sided Noetherian, Auslander and Bridger [1]
introduced the G-dimension, G-dimR(M) for every finitely
generated R-module M . Several decades later, Enochs and
Jenda [6,7] extended the ideas of Auslander and Bridger
and introduced the Gorenstein projective, injective and flat
dimensions. The homological properties of the Gorenstein
projective dimension and some generalized versions of such a
dimension have been studied by many authors,see [4,5, 6, 7,
9, 10, 11]. Foxby [9] and Golod [10] independently initiated
the study of semidualizing modules (under different names).
Examples include the rank 1 free module and a dualizing
(canonical) module, when one exists. Golod [10] used these
to define GC-dimension, a refinement of projective dimension,
for finitely generated modules. The GC-dimension of a finitely
generated R-module M is the length of the shortest resolution
of M by so-called totally C-reflexive modules.

White introduced in [20] the GC-projective modules
and gave a functorial descriptions of the GC-projective
dimension of modules with respect to a semidualizing module
over a commutative ring; and in particular, many classical
results about the Gorenstein projectivity of modules were
generalized in [20]. Over a commutative Noetherian ring, the
GC-projective modules and the GC -projective dimension were
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called C-Gorenstein projective modules and the C-Gorenstein
projective dimension in [12], respectively. Note that the
non-commutative versions of almost all the results in [20] also
hold true.

In this paper, based on the results mentioned above,we
further investigate the properties of the GC-projective,
injective and flat modules over general rings. and investigate
the relation among them. At last, we study these properties
under change of rings such that completions of rings, Morita
equivalences and the localizations.

This paper is organized as follows.
In Section II, we give some definitions and and basic

properties of GC-projective, injective and flat modules such
that semidualizing module , C-projective,injective and flat
module .

In Section III, we study the relation and the properties
among GC-projective, injective and flat modules.

In Section IV, we consider the properties under change of
rings. Specially, we consider the completions of rings, Morita
equivalences and the localizations.

II. PRELIMINARY NOTES

In this section we give some definitions of GC-projective,
injective flat modules, and some known results about them. At
first we introduce the semidualizing module and C-projective
, injective and flat modules which are defined as follows:

Definition 1 [13]Let R,S be rings, an (S,R)-bimodule
C =S CR is semidualizing if the following conditions are
satisfied.

(a1) SC admits a degreewise finite S-projective resolution.
(a2) CR admits a degreewise finite Rop-projective

resolution.
(b1) The homothety map SSS −→ HomRop(C,C) is an

isomorphism.
(b2) The homothety map RRR −→ HomS(C,C) is an

isomorphism.
(c1) ExtiS(C,C) = 0 for any i ≥ 1.
(c2) ExtiR(C,C) = 0 for any i ≥ 1.
Unless otherwise stated, when R = S is commutative,

all semidualizing bimodules in this paper are symmetric in
the sense that the two R-actions on C agree. In this case
we will use the terminology ”C is semidualizing over R”.
Note that when R = S is commutative and noetherian,
Definition 1 agrees with the established terminology; that is a
finitely generated R-module C is semidualizing if the natural
homothety map R −→ HomR(C,C) is an isomorphism and
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ExtiR(C,C) = 0 for any i ≥ 1. Two examples are the free
module of rank 1, and over a Cohen-Macaulay local ring, the
dualizing (canonical) module, when it exists. It is easy to see
that a semidualizing module is finitely generated and even
finitely presented.

Definition 2[13] Let R be a ring, RCR be a semidualizing
bimodule, a module in R-Mod is called C-projective if it has
the form C ⊗R P for some projective module P ∈R-Mod.
A module in R-Mod is called C-injective if it has the form
HomR(C, I) for some injective module I ∈ R-Mod . A
module in R-Mod is called C-flat if it has the form C ⊗R F
for some flat module F ∈ R-Mod . Set
PC(R) = {C ⊗R P |RP is projective},
IC(R) = {HomR(C, I)|RI is injective} and
FC(R) = {C ⊗R F |RF is flat}
Let M ∈ R-Mod. We denote AddRM (resp. ProdRM ) the

subclass of R-Mod consisting of all modules isomorphic to
direct summands of direct sums(resp. direct products)of copies
of M . The following result was proved in [15, Proposition
2.4.].

Lemma 1[15]

(1) PC(R) =AddRC;
(2)IC(R) =ProdRC

+, where C+ =HomR(C,E) with RE
a injective cogenerator for Mod-R.

The following notions were introduced by Holm in [12] and
White in [20] for commutative rings. The non-commutative
versions of them were given in [15]. Now we give the
commutative versions of them.

Definition 3[15]
(1) A complete PPC-resolution is a HomR(−,AddRC)

exact exact sequence:

X = · · · −→ P0 −→ C ⊗R P 0 −→ C ⊗R P 1 −→ · · · (1)

in R-Mod with all P i and Pi projective. A module M ∈
R-Mod is called GC-projective if there exists a complete PPC

- resolution as in (1) with M =coker(P1 −→ P0). Set

GPC(R) = the class of GC −projective modules in R-Mod.

(2) A complete ICI-resolution is a HomR(Prod C+, - )
exact exact sequence:

Y = · · · −→ I1 −→ I0 −→ I0 −→ I1 −→ · · · (2)

in Mod-R with all Ii injective and Ii ∈ ProdRC+. A module
M ∈ Mod-R is called GC-injective if there exists a complete
ICI - resolution as in (2) with M =Im(I0 −→ I0). Set

GIC(R) = the class of GC− injective modules in Mod−R.

(3) A complete FFC-resolution is a IC(R)⊗− exact exact
sequence:

X = · · · −→ F0 −→ C ⊗R F 0 −→ C ⊗R F 1 −→ · · · (3)

in R-Mod with all F i and Fi flat. A module M ∈ R-Mod is
called GC-flat if there exists a complete FFC-resolution as
in (3) with M =coker(F1 −→ P0). Set

GFC(R) = the class of GC − flat modules in R− Mod.

It is trivial that in case RCR =R RR ,the GC−projective
( injective and flat ) modules are just the usual Gorenstein
projective ( injective and flat ) modules, respectively.

Using the definitions, we immediately get the following
results.

Proposition 1
(1)If (Mi)i∈I is a family of GC-projective modules, then

⊕Mi is GC-projective.
2)If (Fi)i∈I is a family of GC-flat modules, then ⊕Fi is

GC-flat.

III. THE GC PROPERTY

In this section we always assume that R is a commutative
ring without special instruction and C is a semidualizing
R-bimodule, then we study the properties and relationship
among GC-projective, injective and flat modules.

Lemma 2 Let R be a commutative left coherent ring. Then
(1) M is an C-flat left R-module if and only if M+ is an

C-injective right R-module.
(2) M is an C-injective R-module if and only if M+ is an

C-flat right R-module.
Proof By virtue of the conclusion in Lemma 4.1 of [19].
Now we give the relation of GC-flat modules and

GC-injective modules. The first conclusion is the Lemma 5.2
in [19].

Proposition 2[19] Let C be a semidualizing R-module. If
M is an R-module, then M is in GFC(R) if and only if its
characteristic module M+ is in GIC(R).

Proposition 3 Let R be a commutative artinian ring , if
M is a GC− injective left R-module, then M+ is a GC−flat
right R-module.

Proof There exists an complete ICI-exact sequence

· · · → HomR(C, I1) → HomR(C, I0) → I0 → I1 → · · ·
with Ii, I

i injective for i ≥ 0 and

M = coker(HomR(C, I1) −→ HomR(C, I0))

. Let J be any injective left R- module. Then J = ⊕ΛJα
, where Jα is an injective envelope of some simple left
R-module for any α ∈ Λ by [14, Theorem 6.6.4], and hence
Tor R

1 (M
+, C ⊗ J) = ⊕ΛTor R

1 (M
+, C ⊗ Jα) = ⊕Λ Ext

1
R(C ⊗ Jα,M) = 0 by [8, Theorem 3.2.13] for all i ≥ 1 .
Therefore M+ is a GC-flat right R-module.

Proposition 4 Let R be a commutative ring and Q a
projective R-module. If M is an GC-projective left R- module,
then M ⊗R Q is a GC-projective left R-module.

Proof There is an exact sequence

· · · → P1 → P0 → C ⊗R P 0 → C ⊗R P 1 → · · ·
with Pi, P

i projective and M =coker (P1 → P0). Then the
sequence

· · · → P1⊗Q → P0⊗Q → C⊗RP
0⊗Q → C⊗RP

1⊗Q → · · ·
is exact with Pi ⊗ Q,P i ⊗ Q projective by [18, Ch. 2, 1
Theorem 3]. Let Q′ be any projective left R-module. Then
Ext1R(M ⊗R Q,C ⊗ Q′) = Hom R(Q,Ext1R(M,C ⊗ Q′)) =
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0 by[17, p. 258, 9.20] for all i ≥ 1. Hence M ⊗R Q is a
GC-projective R-module .

Proposition 5 Let R be a commutative ring and F a flat left
R-module. If M is an GC-flat left R- module, then M ⊗R F
is a GC -flat left R-module.

Proof There is an exact sequence

· · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · ·
with Fi, F

i flat and M =coker (F1 → F0). Then the sequence

· · · → F1⊗F → F0⊗F → C⊗RF
0⊗F → C⊗RF

1⊗F → · · ·
is exact with Fi⊗F, F i⊗F flat by [18, Ch. 2, 1 Theorem 3].
Let I be any injective R-module and F be a flat resolution of
Hom(C, I) . Then

TorR1 (M ⊗R F,Hom(C, I))
= Hi((M ⊗R F )⊗F) � Hi(M ⊗R (F ⊗F))

� TorR1 (M,F ⊗R Hom(C, I)) = 0

by[17, p. 258, 9.20] for all i ≥ 1, since F ⊗R Hom(C, I)) �
Hom(C,F ⊗R I) is a C-injective module by [8, Theorem
3.2.16] and [13, Lemma 1.12]. Hence M ⊗R F is a GC-flat
R-module.

Theorem 1 If R is commutative right coherent and C is
faithfully semidualizing R-bimodule, then the class GFC(R)
of GC-flat R- modules is projectively resolving and closed
under direct summands.

Furthermore, if M0 −→ M1 −→ M2 −→ · · · is a sequence
of GC-flat R- modules, then the direct limit lim−→ Mn is again
GC-flat.

Proof Using the dual of Theorem 2.8 in [20] and together
with the Proposition 2 above, we see that GFC(R) is
projectively resolving. Now, comparing Proposition 2.5 with
Proposition 1.4 in [11], we get that GFC(R) is closed under
direct summands.

Concerning the last statement, we know that if R is
coherent and C is faithfully semidualizing, then the class
FC(R) is preenveloping on the category of R-modules by [13.
Proposition 5.10.]. So we pick for each n a co-proper right
FC-resolution Fn of Mn, as illustrated in the next diagram.

F0 : 0 → M0 → C ⊗ F 0
0 → C ⊗ F 1

0 → · · ·
... ↓ ↓ ↓
F1 : 0 → M1 → C ⊗ F 0

1 → C ⊗ F 1
1 → · · ·

... ↓ ↓ ↓

...
...

...
...

By Proposition 1.8 in [11], each map Mn −→ Mn+1 can be
lifted to a chain map Fn −→ Fn+1 of complexes. Since we are
dealing with sequences (and not arbitrary direct systems), each
column above is again a direct system. Thus it makes sense to
apply the exact functor lim−→ to the upon exact sequences, and
doing so, we obtain an exact complex,

F = lim→ Fn = 0 → lim−→ Mn → C ⊗ lim−→ F 0
n → · · ·

where each module C ⊗ F k = C ⊗ lim−→ F k
n , k =

0, 1, 2, · · · is C-flat. When I is injective right R-module, then
HomR(C, I)⊗R Fn is exact since

C ⊗ F = C ⊗ HomZ(I,Q/Z) � HomZ(HomR(C, I), Q/Z)

is a C-flat (left) R-module ,while the first isomorphism comes
from that R is coherent and the the second isomorphisms holds
by [13, Lemma 1.14], we get exactness of HomR(Fn, C ⊗
F ) = HomR(Fn,HomZ(HomR(C, I), Q/Z)) =
HomZ(HomR(C, I) ⊗ Fn, Q/Z) and hence of
HomR(C, I) ⊗R Fn, since Q/Z is a faithfully
injective Z-module. Since lim−→ commutes with
the homology functor, we also get exactness of
HomR(C, I) ⊗R F = lim−→(HomR(C, I) ⊗R Fn) Thus
we have constructed the ”right half”, F , of a complete FCF-
resolution for lim Mn.

Since Mn is GC-flat , we also have

TorRi (HomR(C, I), lim−→ M) � lim−→ TorRi (HomR(C, I),M) = 0

for i > 0 , and all injective right modules I . Thus lim−→ Mn is
GC-flat.

Proposition 6 Let R be commutative artinian and C is
semidualizing R-module. Then the class GFC(R) of all GC−
flat right R-modules is closed under arbitrary direct products.

Proof Let M = Πi∈IMi , and Mi ∈ GFC(R) for all i ≥ 1.
There exists an exact sequence

0 → Mi → C ⊗ F 0
i → C ⊗ F 1

i → C ⊗ F 2
i → · · ·

for i ≥ 1 and F j
i flat for j ≥ 0. Then

0 → Πi∈IMi → Πi∈IC ⊗ F 0
i → Πi∈IC ⊗ F 1

i → · · ·
is exact , where Πi∈IFi is a flat right R-modules and Πi∈IC⊗
F j
i � C ⊗ Πi∈IF

j
i , since C is finitely presented and R is

left artinian . Let E be any injective left R-module. Then
E = ⊕ΛEα , where Eα is an injective envelope of some
simple left R-module for any α ∈ Λ by [18, Theorem 6.6.4].
Thus

TorRn (Πi∈IMi,HomR(C,E))

= ⊕ΛTorRn (Πi∈IMi,HomR(C,Eα))

= ⊕ΛΠi∈ITorRn (Mi,HomR(C,Eα)) = 0

by [8, Theorem 3.2.26] for all n ≥ 1. Therefore M is an
GC-flat right R-module.

IV. CHANGE OF RINGS

Let (R,m) be a commutative local noetherian ring with
residue field k and let E(k) be the injective envelope of k.
R̂and M̂ will denote the m-adic completion of a ring R and
an R- module M , and Mv will denote the Matlis dual Hom
R(M,E(k)).

Lemma 3[13] Let Q −→ R be a flat ring homomorphism
between commutative rings. If E is semidualizing over Q, then
E ⊗Q R is semidualizing over R.

Corollary 1 (1) Let R be a commutative ring and S a
multiplicatively closed set of R, If C is a semidualizing R
module,then C[x] is a semidualizing R[x]-module and S−1C
is a semidualizing S−1R-module.
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(2)Let R be a commutative noetherian ring , If C is a
finitely generated semidualizing R-module, then Ĉ is a finitely
generated semidualizing R̂-module.

Proof By Lemma 3 and [8, Theorem 2.5.14].
Proposition 7 Let (R,m) be a commutative local

noetherian ring and C be a semidualizing R-module, and M
a finitely generated R-module. Then

(1)If M ∈ GPC(R) , then M̂ ∈ GPĈ(R̂).
(2) If R̂ is a projective R-module and M̂ ∈ GPĈ(R̂), then

M̂ ∈ GPC(R).
Proof (1) There is an exact sequence 0 → M → C ⊗

F 0 → C ⊗ F 1 → · · · in R-Mod with F i is free by [20,
Observation2.3.]. Then 0 → M̂ → ̂C ⊗ F 0 → ̂C ⊗ F 1 → · · ·
is exact in R̂-Mod by [8, Theorem 2.5.11]. Since ̂C ⊗ F i �
Ĉ⊗ F̂ i by [8, P.67,Exercise 7] for all i ≥ 0, we have the exact
sequence 0 → M̂ → Ĉ ⊗ F̂ 0 → Ĉ ⊗ F̂ 1 → · · · in R̂-Mod
, where Ĉ is a finitely generated semidualizing R̂-module by
Corollary 1 and F̂ i is a free R̂-Mod. Then Ext1(M̂, Ĉ⊗R̂) �
Ext1(M̂, ̂C ⊗R) �Ext1(M ⊗ R̂, C ⊗R⊗ R̂) �Ext1(M,C ⊗
R) ⊗ R̂ = 0 by [8, Theorem 3.2.5] for all i ≥ 1, we have
M̂ ∈ GPĈ(R̂) by [20, Observation2.3.].

(2) There is an exact sequence 0 → M̂ → Ĉ ⊗ F̄ 0 →
Ĉ ⊗ F̄ 1 → · · · in R̂-Mod with F̄ i is free . Then F̄ i is a free
R-module since F̄ i is isomorphic to R̂(X) for some set X and
R̂(X) is a projective R-module. It is easy to see that Ĉ⊗F̄ i �
C ⊗R R̂R̂ ⊗ F̄ i � C ⊗R F̄ i. Since 0 = Ext1

R̂
(M̂, Ĉ ⊗ R̂) �

Ext1
R̂
(M ⊗ R̂, C ⊗ R̂) � Ext1R(M,C) ⊗ R̂ by [8,Theorem

3.2.5], we have Ext1R(M,C ⊗ R) = 0 for all i ≥ 1, since R̂
is a faithfully flat R-module, and thus Ext1R(M̂, C ⊗ F ) �
Ext1R(R̂ ⊗R M,C ⊗ R) � HomR(R̂, Ext1R(M,C ⊗ R)) = 0
by [17, p.258, 9.20] for all i ≥ 1. Hence M̂ ∈ GPC(R) by
[20, Observation2.3.].

Proposition 8 Let (R,m) be a commutative local
Noetherian ring and C is a semidualizing R-module, and M
a finitely generated R-module. Then

(1)If M ∈ GIC(R) , then M̂ ∈ GIĈ(R̂).
(2) If HomR(R̂,M) ∈ GIĈ(R̂), then HomR(R̂,M) ∈

GIC(R).
Proof (1) There is an exact sequence · · · → Hom(C, I1) →

Hom(C, I0) → M → 0 in R-Mod with Ii is injective.
Then · · · → ̂Hom(C, I1) → ̂Hom(C, I0) → M̂ → 0 in
R̂-Mod is exact by [8, Theorem 2.5.11]. Since ̂Hom(C, Ii) �
Hom(Ĉ, Îi) by [8, Theorem 3.2.5] for all i ≥ 0, we have the
exact sequence · · · → Hom(Ĉ, Î1) → Hom(Ĉ, Î0) → M̂ → 0
in R̂-Mod , where Ĉ is a finitely generated semidualizing
R̂-module by Corollary 1 and Îi is an injective R̂-Mod by
the proof of Proposition 3.2. in [21]. Then

Exti
R̂
(M̂,Hom(Ĉ, Ī)) � Exti

R̂
(M ⊗ R̂,HomR(C, Ī))

� ExtiR(M,HomR̂(R̂,Hom(C, Ī)) � ExtiR(M,Hom(C, Ī)) = 0

by [8, Theorem 3.2.5] for all injective R̂-module Ī and all
i ≥ 1, we have M̂ ∈ GIĈ(R̂) by [20, Observation2.3.].

(2) There is an exact sequence

· · · → Hom(Ĉ, Ī1) −→ Hom(Ĉ, Ī0) → HomR(R̂,M) → 0

in R̂-Mod with Īi is injective. Then Īi is an injective
R-module by the proof of Proposition 3.2 in [21]. we also have
HomR̂(Ĉ, Īi) � HomR(C, Īi) by [17, p.258, 9.21 ]. Let I be
any injective R-module. Then I is isomorphic to a summand
of E(k)X for some set X , and hence Î � I⊗RR̂ is isomorphic
to a summand of E(k)X ⊗R R̂ � ER̂(R̂/m̂)X ⊗R R̂ by [8,
Theorem 3.4.1]. It follows that Î is an injective R̂-module by
[8, Theorem 3.2.16]. Hence

ExtiR(Hom(C, I),HomR(R̂,M))

� Exti
R̂
(Hom(C, I),HomR̂(R̂,HomR(R̂,M)))

� Exti
R̂
(Hom(C, I)⊗ R̂,HomR(R̂,M))

� Exti
R̂
(Hom(Ĉ, Î),HomR(R̂,M)) = 0

by [17, p.258, 9.21 ] for all i ≥ 1. So HomR(R̂,M) ∈
GIC(R).

Proposition 9 Let R and S be equivalent rings via
equivalences F : R-Mod−→ S-Mod and G : S-Mod −→
R-Mod.Then

(1) M ∈ GPC(R) if and only if F (M) ∈ GPC(S) for all
M ∈ R-Mod;

(2) M ∈ GIC(R) if and only if F (M) ∈ GIC(S) for all
M ∈ R-Mod;

(3) M ∈ GFC(R) if and only if F (M) ∈ GFC(S) for all
M ∈ R-Mod.

Proof (1)(⇒) There is a complete PPC-resolution of the
form P = · · · → P1 −→ P0 −→ C ⊗R P 0 −→ C ⊗R

P 1 −→ · · · in R-Mod with all P i and Pi projective such that
M =coker(P1 −→ P0). Then F (P) = · · · → F (P1) −→
F (P0) −→ F (C) ⊗S F (P 0) −→ F (C) ⊗S F (P 1) −→ · · ·
in S-Mod with all F (P i) and F (Pi) projective such that
F (M) =coker(F (P1) −→ F (P0)). It is easy to see that
F (C) is a semidualizing S-module. Let Q be any projective
S-module. Then HomS(F (P), C⊗S Q) � HomR(P, G(C)⊗
G(Q)) is exact such that G(C) is a semidualizing R-module.
Hence F (M) ∈ GPC(S).

(⇐) By GF (M) � M.

(2)and(3) By analogy with the proof of (1).
Corollary 2[21] Let R and S be equivalent rings via

equivalences F : R-Mod−→ S-Mod and G : S-Mod −→
R-Mod.Then

(1) For all M ∈ R-Mod, RM is G-projective if and only if
SF (M) is G-projective;

(2) For all M ∈ R-Mod, RM is G-injective if and only if
SF (M) is G-injective;

(3) For all M ∈ R-Mod, RM is G-flat if and only if SF (M)
is G-flat.

Proof Easy.
Let R be a commutative ring and S a multiplicatively closed

set of R. Then S−1R = (R × S)/ ∼= [a/s|a ∈ R, s ∈ S] is
a ring and S−1M = (M × S)/ ∼= [x/s|x ∈ M, s ∈ S] is
a S−1R-module. If P is prime ideal of R and S = R − P .
Then we will denote S−1M,S−1R by MP , RP ,respectively.

At first, we give two Lemmas which is used in the following
section.

Lemma 4[17] Let A be an commutative noetherian with
subset S,and A,B be R-modules with A finitely generated.
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There are isomorphisms, for all n ≥ 0,

ExtnS−1R(S
−1A,S−1B) ∼= S−1ExtnR(A,B)

Lemma 5[21] Let R be a commutative ring and S a
multiplicatively closed set of R. If S−1R is a projective
R-module, then Ā is a projective R-module if and only if
Ā is a projective S−1R -module for any Ā ∈ S−1R-Mod.

For convenience, nextly we note the
GS−1C-projective(injective,flat) S−1R-module by the
GC-projective(injective,flat) S−1R-module .

Proposition 10 Let R be a commutative ring and S a
multiplicatively closed set of R, then

(1)If S−1R is a projective R-module and A is a finitely
generated GC-projective R-module , then S−1A is an
GC-projective S−1R-module ;

(2)If S−1R is a faithfully flat R-module and B is a
finitely generated GC-projective R-module if and only if B
is an finitely generated GC-projective S−1R-module for any
B ∈ S−1R-mod.

Proof (1) There exists an complete PPC-exact sequence
· · · −→ P1 −→ P0 −→ C ⊗ P 0 −→ C ⊗
P 1 −→ · · · with Pi, P

i projective for i ≥ 0 and
M =coker(P1 −→ P0) . Then there exists an complete
PPC exact sequence · · · −→ S−1P1 −→ S−1P0 −→
S−1C ⊗S−1P 0 −→ S−1C ⊗S−1P 1 −→ · · · in S−1R-Mod,
with S−1A =coker(S−1P1 −→ S−1P0) and S−1Pi, S

−1P i

are projective S−1R-module for i ≥ 0. Let Q be any projective
S−1R-module, then Q is projective R-module by Lemma
5. Since A is an GC-projective , we have ExtiR(A,C ⊗
Q) = 0 for all i ≥ 1. So ExtiS−1R(S

−1A,S−1C ⊗ Q) �
ExtiS−1R(S

−1A,S−1C⊗S−1Q) � S−1 ExtiR(A,C⊗Q) = 0
by Lemma 4 for all i ≥ 1 . Hence S−1A is an GC-projective
S−1R-module .

(2) (=⇒) By (1), Since B � S−1B by [16.Prop.5.17].
(⇐=) There exists an complete PPC -exact sequence

· · · −→ P̄1 −→ P̄0 −→ S−1C ⊗ P̄ 0 −→ S−1C ⊗ P̄ 1 −→
· · · in S−1R-Mod with P̄i, P̄ i projective for i ≥ 0 and
B̄ =coker(P̄1 −→ P̄0) then P̄i, P̄ i are projective R-module
by Lemma 5. Let Q be any projective R-module, then S−1Q
is a projective S−1R-module. So S−1ExtiR(B̄, C ⊗ Q) �
ExtiS−1R(B̄, S−1C ⊗S−1Q)) = 0, then ExtiR(B̄, C ⊗Q) = 0
since S−1R is faithfully flat R-module. Therefore B̄ is an
GC-projective R-module.

Lemma 6 Let R be a commutative ring and S a
multiplicatively closed set of R and S−1R be a finitely
generated projective R-module , If I is a injective
R-module, then HomR(S

−1R,Hom(C, I)) is a C-injective
S−1R-module.

Proof Since S−1R be a finitely generated projective
R-module, then

HomR(S
−1R,Hom(C, I))

� S−1HomR(S
−1R,HomR(C, I))

� HomS−1R(S
−1R,S−1HomR(C, I))

� HomS−1R(S
−1R,HomS−1R(S

−1C, S−1I))
� HomS−1R(S

−1C, S−1I)).

Since S−1I is injective S−1R-modules , hence
HomR(S

−1R,Hom(C, I)) is a C-injective S−1R-module.

Proposition 11 Let R be a commutative ring and S a
multiplicatively closed set of R . If S−1R is a finitely
generated projective R-module and C is a finitely generated
semidualizing R-module , then

(1) If A is an GC-injective R-module, then
HomR(S

−1R,A) is an GC-injective S−1R-module;
(2) For any B ∈ R-Mod, HomR(S

−1R,B) is an
GC-injective R-module if and only if HomR(S

−1R,B) is an
GC-injective S−1R-module.

Proof(1) There exists an complete ICI- exact sequence
· · · → Hom(C, I1) → Hom(C, I0) → I0 → I1 → · · · with
Ii, I

i injective for i ≥ 0 and

A = coker(Hom(C, I1) → Hom(C, I0)).

Then there exists an complete ICI- exact sequence

· · · → HomR(S
−1R,Hom(C, I1)) → HomR(S

−1R,Hom(C, I0))

→ HomR(S
−1R, I0) → HomR(S

−1R, I0) → · · ·
in S−1R-Mod, with

HomR(S
−1R,A) = coker(HomR(S

−1R,Hom(C, I1))

→ HomR(S
−1R,Hom(C, I0)))

and HomR(S
−1R, Ii) is an injective S−1R-module for i ≥

0 by [8.Theorem 3.2.9] and HomR(S
−1R,Hom(C, Ii)) is an

C-injective S−1R-module by Lemma 6. Let Ī be any injective
S−1R-module , then Ī is an injective R-module by [4. Lemma
1.2]. So

ExtiS−1R(HomS−1R(S
−1C, Ī),HomR(S

−1R,A))
� ExtiR(HomS−1R(S

−1C, Ī), A))
� ExtiR(HomR(C,HomR(S

−1R, Ī)), A) = 0

by [14.P.258.9.21] for all i ≥ 1, and Hence HomR(S
−1R,A)

is an GC-injective S−1R-module.
(2)(=⇒) is obvious.
(⇐= ) There is an exact sequence

0 → HomS−1R(S
−1C, Ī1) → HomS−1R(S

−1C, Ī0)

→ Ī0 → Ī1 → · · ·
in S−1R-Mod with Īi and Īi injective for alli ≥ 0 and
HomR(S

−1R,B) =ker(Ī0 → Ī1) . Then Īi and Īi are
injective R-module. But we have

HomS−1R(S
−1C, Īi) � HomR(C,HomS−1R(S

−1R, Īi))

� HomR(C, Īi)

Hence HomS−1R(S
−1C, Īi) is a C-injective R-module.

Let I be any injective R-module, then S−1I is an injective
S−1R-module. So

ExtiR(HomR(C, I),HomR(S
−1R,B))

� ExtiR(HomR(C, I),HomS−1R(S
−1R,HomR(S

−1R,B))
� ExtiS−1R(S

−1HomR(C, I),HomR(S
−1R,B))

� ExtiS−1R(HomS−1R(S
−1C, S−1I),HomR(S

−1R,B)) = 0

by [17.P.107. Theorem 3.84] and [14.P.258.9.21] for all i ≥ 1.
Hence Hom R(S

−1R,B) is an GC-injective R-module .
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Proposition 12 Let R be a commutative ring and S a
multiplicatively closed set of R .If C be a semidualizing
R-module and S−1R is a finitely generated projective
R-module, then

(1) If A is a GC-flat R-module, then S−1A is a GC-flat
R-module;

(2) If A is an GC-flat R-module, then S−1A is an GC-flat
S−1R-module;

(3) For any B̄ ∈ S−1R−Mod, B̄ is an GC-flat R-module
if and only if B̄ is an GC-flat S−1R-module.

Proof (1)There is an exact sequence · · · → F1 −→ F0 −→
C ⊗R F 0 −→ C ⊗R F 1 −→ · · · in R-Mod where Fiand
F i are flat for i ≥ 0 and A =coker(F1 −→ F0). Then
· · · → S−1F1 −→ S−1F0 −→ S−1C ⊗R S−1F 0 −→
S−1C⊗R S−1F 1 −→ · · · is exact and S−1Fi and S−1F i are
flat S−1R-module for all i ≥ 0. Hence S−1Fi and S−1F i

are flat R-module for all i ≥ 0. Since S−1R is a finitely
generated projective R-module, S−1R⊕ P � R(n), where P
is projective. So (S−1C ⊗R S−1F i)⊕ (P ⊗C ⊗R S−1F i) �
(S−1R ⊗ C ⊗R S−1F i) ⊕ (P ⊗ C ⊗R S−1F i) �
R(n) ⊗ C ⊗R S−1F i � C ⊗R (S−1F i)(n), hence
S−1C ⊗R S−1F i is C-flat R-module for all i ≥ 0 by
[13, Proposition5.5.]. Let I be any injective R-module. Then
TorRi (HomR(C, I), S

−1A) �TorRi (S
−1HomR(C, I), A) = 0

by [16.Prop.5.17] , since S−1HomR(C, I) �
HomS−1R(S

−1C, S−1I) � HomR(C, S
−1I) by [13 , Lemma

1.2] and so S−1HomR(C, I) is C-injective R-module. Hence
S−1A is an GC -flat R-module.

(2)There is an exact sequence · · · → F1 −→ F0 −→ C ⊗R

F 0 −→ C ⊗R F 1 −→ · · · in R-Mod where Fiand F i are flat
for i ≥ 0 and A =coker(F1 −→ F0). Then · · · → S−1F1 −→
S−1F0 −→ S−1C ⊗R S−1F 0 −→ S−1C ⊗R S−1F 1 −→ · · ·
is exact and S−1Fi and S−1F i are flat S−1R-module for all
i ≥ 0. Let Ī be any injective S−1R-module. Then Ī be any
injective R-module by [3.Lemma 1.2]. So

TorS
−1R

i (Hom(S−1C, Ī), S−1A)

� TorS
−1R

i (S−1Hom(C, Ī), S−1A)
� S−1TorRi (Hom(C, Ī), A) = 0

for all i ≥ 1. Hence S−1A is an GC-flat S−1R-module.
(3)(=⇒) by (2)
⇐= There is an exact sequence · · · → F̄1 −→ F̄0 −→

S−1C⊗R F̄ 0 −→ S−1C⊗R F̄ 1 −→ · · · in S−1R-Mod where
F̄i and F̄ i are flat for i ≥ 0 and B̄ =coker(F̄1 −→ F̄0).
Then F̄i and F̄ i are flat R-module and S−1C ⊗R F̄ 1 is a
C-flat R-module by the proof of (1). Let I be any injective
R-module. Then

S−1TorRi (Hom(C, I), B̄)

� TorS
−1R

i (S−1Hom(C, I), B̄)

� TorS
−1R

i (Hom(S−1C, S−1I), B̄) = 0

.

So B̄ is an GC-flat R-module.
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