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Abstract—With short production development times, there is an 

increased need to demonstrate product reliability relatively quickly 
with minimal testing. In such cases there may be few if any observed 
failures. Thus it may be difficult to assess reliability using the 
traditional reliability test plans that measure only time (or cycles) to 
failure. For many components, degradation measures will contain 
important information about performance and reliability. These 
measures can be used to design a minimal test plan, in terms of 
number of units placed on test and duration of the test, necessary to 
demonstrate a reliability goal. In this work we present a case study 
involving an electronic component subject to degradation. The data, 
consisting of 42 degradation paths of cycles to failure, are first used 
to estimate a reliability function. Bootstrapping techniques are then 
used to perform power studies and develop a minimal reliability test 
plan for future production of this component.  
 

Keywords—Degradation Measure, Time to Failure Distribution, 
Bootstrap.  

I. INTRODUCTION 
FTEN it is difficult to assess component reliability using 
traditional methods due to a lack of observed failures. For 

many such components, degradation measures, recorded over 
time, will contain important information about performance 
and reliability. These measures can be used to predict 
remaining time to failure and to estimate the overall reliability 
distribution for that component. Degradation measures are 
inherent in situations where failure occurs due to a process of 
accumulation of damage. In mechanical systems, the failure 
(breakage of some part) may be caused by the impact of a 
peak load. The amount of accumulated wear or fatigue 
damage plays the role of the degradation measure. There are 
also failures in electronic parts (such as a short circuit, 
dielectric breakdown, breaking of a circuit, etc.) which are 
speeded up by some gradual process of deterioration, e.g. 
corrosion, mechanical deformation, chemical reactions and so 
on. Metrics on these processes all serve as degradation 
measures. References [1]-[3] all discuss important aspects of 
degradation data and reliability estimation using degradation 
data.  

The purpose of this paper is to present a case study in which 
we design a reliability test plan that relies on a degradation 
measure rather than time to failure data. We will use methods 
developed in [1] to estimate a reliability distribution using 
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degradation measures. The methods will be applied to 
estimating the reliability of an electrical component using 
historical degradation data. Bootstrapping simulation 
techniques will then be used to investigate minimum sample 
size requirements and test duration necessary to demonstrate a 
reliability goal. It will be shown that test plans designed using 
this approach may require far less testing than traditional life 
test plans. The test plans developed can be used to 
demonstrate the reliability of future production lots of this 
component. 

II. DEGRADATION MEASURES 

A. Assumptions  
Several assumptions are usually made regarding a 

degradation measure: 
1. The state (health) of the component can be characterized 

by a randomly changing time-dependent variable that we 
will denote ty .  

2. A failure of the component is defined as a certain 
catastrophic event (“hard” failure) whose probability of 
occurrence depends on the value of the variable ty , or is 
defined as the variable ty  entering some critical region 
(“soft” failure).  

3. The variable ty  is accessible for either continuous or 
discrete observations, i.e. a degradation “path” is 
obtainable.  

4. The probabilistic laws governing the changes in the 
degradation measure ty  are known (physical model) or 
can be approximated (empirical model).  

Under these assumptions ty  is called a degradation 
measure. Component tests in which degradation data are 
collected provide, for each unit tested, data consisting of an 
observed path of degradation measurements (either discrete or 
continuous) over time. The observed degradation path is a 
unit’s actual degradation path, a monotonic function of time, 
plus some measurement error. Note also that “time” could be 
in units of real time or other units such as number of cycles or 
amount of usage. The path may be censored if the unit is taken 
off test before failure occurs or it may include the entire 
degradation path to the point of failure. 

An accurate degradation model can be used to show that 
failure probability is small when the degradation variable is far 
from the critical region. With censored data, reliability can 
then be measured in terms of the distance of the degradation 
measure from the critical region. This is especially important 
with high reliability products, because high reliability goals 
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can then be demonstrated with less testing than would be 
required using just time to failure (including censoring times) 
data. This advantage of degradation data will be exploited in 
designing a minimal reliability test plan in which no failures 
may be observed. 

B. Estimating Reliability with a Degradation Measure 
The procedure that we will use to estimate reliability using 

a degradation measure follows that given in [1] and [2]. The 
steps are: 
1. Fit a general path model to each of the n sample 

degradation paths. Least squares estimation can be used to 
estimate the parameters for each path. 

2. Determine the statistical distribution (using the estimates 
from the n sample paths) of each of the random 
parameters from the general path model. 

3. Use the resulting distributions to solve for the time to 
failure distribution FT(t) if a close form expression exists. 

4. If no closed form expression for FT(t) exists, use the 
parameter distributions from (2) to simulate a large 
number N of random degradation paths. 

5. To estimate FT(t), compute the proportion of random 
paths generated in (3) that cross a pre-determined critical 
level (which defines failure) before time t. That 
proportion is the estimate of FT(t). 

To quantify the uncertainty associated with the estimate of 
FT(t) we used a slightly different method than in [1]. The 
proposed procedure that we investigated is: 
1. Choose a bootstrap sample (sampling with replacement) 

of n degradation paths from the original n sample paths. 
2. Repeat steps 1-4 from the estimation procedure above to 

obtain an estimate of FT(t). 
3. Repeat steps 1 and 2 here many times (say 1000) to obtain 

a distribution of values for FT(t). The central (100- α )% 
of this distribution defines a (100- α )% confidence 
interval for FT(t). 

4. This interval becomes the uncertainty interval for FT(t). 
Sensitivity to sample size was determined by varying the 

size n of the bootstrap sample in (1). Sensitivity to the length 
of the test (amount of degradation path observed) was 
determined by truncating the original sample paths at various 
points and performing the estimation and uncertainty analyses 
above using the truncated paths. 

III. COMPONENT EXAMPLE 

A. Data 
The data used in this case study come from the degradation 

of an electrical component used to close a high-energy circuit. 
A low energy pulse causes the component to fire, forming 
plasma at the probe, closing the high-energy circuit. The 
resulting plasma causes a carbon residue to be deposited 
around the probe. The degradation mechanism is the carbon 
buildup, and the degradation measure is probe resistance. As 
the carbon residue builds up due to repeated firings, the probe 
resistance gradually decreases until a misfire (failure) occurs. 

The raw probe resistance data for the components are given in 
Fig. 1.  

 

 
Fig. 1 Sample Degradation Paths 

 
The data consist of 42 sample degradation paths of probe 

resistance from first pulse of the component until failure 
(misfire). This plot shows that an appropriate critical 
degradation level is approximately 0.06 k Ω , the level we will 
use to define “failure” of the component. Because the paths 
appear to decay exponentially, a logarithmic transformation 
was applied to the data (see Fig. 2). On the log scale the 
critical degradation level is approximately -2.8. 
 

 
Fig. 2 Sample Degradation Paths on Logarithmic Scale 

 
This plot suggests that a simple linear model should fit the 

data well, although a constant intercept model will not be 
appropriate. 

B. Hypothesized Path Model for the Component 
Based on Figs. 1 and 2, a plausible path model for the 

component data is 
 

 ijjii t ε+β+β= 10ij)ln(y ,    i = 1, 2, …, 42,               (1)

 ),0(~...' 2
εσε Ndiisij ,     j = 1, 2, …, # Pulses for ith tube,  
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where ijy  is the jth measured probe resistance of path i, tj = 

number of pulses at the jth measurement, ijε = jth 

measurement error of path i. Both slope and intercept for this 
model are assumed to be random. The parameter i0β  is the ith 

unit random intercept and i1β is the ith unit random slope. 
This model was fit to each of the 42 sample paths, resulting in 
an empirical distribution of si '0β  and si '1β . The bivariate 
plot of the si '1β  vs. the si '0β in Fig. 3 suggests that these 
parameters are independent and both approximately Normal. 
 

  
Fig. 3 Empirical Bivariate Distribution of the si '0β  and si '1β  

 
Formal tests of independence and normality showed these 

assumptions to be reasonable. If we assume 

),(~ 2
0

00 ββ σμβ N  and ),(~ 2
1 11 ββ σμβ N , it is straightforward 

to derive a closed form expression for the failure distribution 
using degradation data. 

C. Failure Distribution Using Degradation Data 
The actual degradation of a particular component after t 

pulses is thus modeled by ttD 10)( β+β= , where 0β  is the 

random initial probe resistance and 1β  is the random slope. 
Both parameters vary from unit to unit according to a Normal 
distribution. We assume that the probe resistance degrades 
monotonically and D(t) is a decreasing function, so 

1)0Pr( 1 =<β . Given a critical level Df , we can express the 
distribution function of T, the random pulses to failure, as 
 

FT(t) = ( ) tTPr ≤  = ( )f10  DPr ≤β+β t  
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where )(⋅Φ  is the standard normal distribution function. Fig. 4 
shows the estimated cumulative distribution function (CDF) 
for pulses to failure based on degradation data, along with a 
90% confidence interval about the estimated function. 
 

 
Fig. 4 CDF for Pulses to Failure 

 
The estimate of the CDF in Fig. 4 was based upon 

evaluation of (2). The usual sample averages and variances, 
based on n=42 fits of model (1), were used to estimate 

2
00

, βσμ
β

, 2
11

, βσμ
β

and . Confidence intervals were 

constructed using the bootstrap percentile method discussed in 
[4]. The approach used here was to randomly choose 1000 
bootstrap samples of size n=42 from the original 42 sample 
paths. Those samples were then used with (2) to develop a 
bootstrap distribution at each evaluation point of the CDF. A 
(100-2 α )% confidence interval is then defined by the α th 
and (100- α )th percentiles of the resulting bootstrap 
distribution. 

IV. DESIGNING A RELIABILITY TEST PLAN 

A. Component Example 
The initial objective of the testing was to demonstrate that 

this component design can be pulsed 100 times without 
failure. A reliability goal of 0.995 (0.005 unreliability) at 100 
pulses was established for this component, meaning that the 
desired probability of surviving at least 100 pulses is 0.995 or 
greater. Fig. 5 shows that this goal can be easily demonstrated 
(at a 95% confidence level) based on the test of 42 
components pulsed to failure. 
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Fig. 5 CDF of Pulses to Failure with 90% Confidence Interval 

 
Fig. 5 shows the CDF for pulses to failure around 100 

pulses, the region of greatest interest. At 100 pulses, a 95% 
upper confidence bound on unreliability is approximately 
0.002, so that a 95% lower confidence bound on reliability is 
approximately 0.998. Thus the reliability goal of 0.995 is 
demonstrated.   

The major cost associated with this test is the cost of the 
components, which are destroyed by testing to failure. 
Individual components may be expensive to manufacture, so 
any reduction of sample size results in significant savings. 
Additional costs are associated with the manpower and 
equipment required to pulse the components, so reducing the 
duration (number of pulses) of the test would also result in 
savings. To demonstrate the reliability goal of the component 
in future production lots, it is thus of interest to reduce both 
the number of components tested and the duration of the test. 
Reducing the number of pulses in this test corresponds to 
reducing “time on test” in the traditional component reliability 
study, an important consideration in product development. 

For the purpose of designing a more efficient reliability test 
plan for components, we next address the issues of test 
duration (number of pulses per component) and sample size 
(number of components) necessary to demonstrate the desired 
reliability goal with high confidence. In particular, we will 
show how to identify the minimum test duration and minimum 
sample size requirements to demonstrate the reliability goal 
using degradation data. 

B. Minimum Test Plan Requirements 
To design a minimum reliability test plan we generated, 

using the same approach as above, reliability functions for the 
cases in which the test duration was 100, 150, or 200 pulses, 
or to the point of failure. We also investigated the relative 
power of samples of size 10, 20, 30, and 42 by analyzing 
results for bootstrap sub-samples of size 10, 20, 30, and 42 
from the original 42 sample paths.  

Fig. 6 shows what the outcome of the test would have been 
if the test had been truncated after 100 pulses of each 
component.  

 
Fig. 6 Sample Degradation Paths Truncated at 100 Pulses 

 
This figure illustrates why there may be great value in 

recording the probe resistance rather than simply counting the 
number of pulses. After only 100 pulses we can see from the 
degradation data that some components are much better than 
others, based on the different intercepts and slopes of the 
truncated sample paths. By computing the intercepts and 
slopes of the truncated paths we can extrapolate to a number 
of pulses at failure. Without this data, we have no way to 
extrapolate and important information is lost. 

Using the same approach as above, with various numbers of 
sample paths and various degrees of truncation, we 
constructed reliability functions and confidence intervals to 
determine if the goal would have been demonstrated with 
much less testing. These results provide guidelines for future 
test recommendations. 

Fig. 7 shows the reliability functions in the region of 
interest for 10, 20, 30, and 42 sample paths truncated at 100 
pulses.  

 

 
Fig. 7 CDFs Based on Degradation Paths Truncated at 100 Pulses 

 
These functions were constructed as described above, with 

estimates of the si '0β  and si '1β  based on the truncated paths 
rather than the complete paths. The confidence intervals were 
again constructed using the bootstrap percentile method, 
choosing 1000 sub-samples of size 10, 20, 30, and 42 from the 
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original 42 sample paths. The wider confidence intervals in 
Fig. 7 are associated with the smaller sample sizes. The 
confidence interval constructed for sample size 10 is roughly 
twice as wide as the confidence interval constructed for 
sample size 42, suggesting an approximate n1/2 relationship 
between interval width and sample size.  

It should be noted that truncation in this case introduces a 
slight bias, since the complete sample paths had slight 
curvature near their failure points that is not present in the 
truncated paths (see Fig. 2). Because the bias introduced is in 
the conservative direction (predicted pulses to failure are 
biased low), the reliability demonstrated with truncated paths 
will be somewhat less than could be demonstrated with the 
complete sample paths. Examination of Fig. 7 shows that even 
with 42 sample paths, a reliability of 0.995 at 100 pulses 
cannot be demonstrated with sample paths truncated at 100 
pulses. The 95% upper bound on unreliability is 
approximately 0.008, slightly too high. 

Using degradation data and the analysis in Fig. 7, we can 
demonstrate a reliability of 0.992 with 42 components and test 
duration 100 pulses. We can also demonstrate a reliability of 
0.980 with just 10 components (see outer confidence interval 
in Fig. 7) and test duration 100 pulses. By comparison, if we 
ignored the degradation data and used binomial calculations to 
compute 95% upper confidence bounds on reliability, we 
could demonstrate a reliability of only 0.93 with 42 
components tested to 100 pulses without failure. We could 
also demonstrate a reliability of only 0.74 with 10 components 
tested to 100 pulses without failure. Thus much is gained in 
terms of reliability demonstration by using the degradation 
data. 

The next step in the investigation was to consider sample 
paths truncated after 150 pulses. Fig. 8 shows what the 
outcome of the test would have been if the test had been 
truncated after 150 pulses of each component.  
 

 
Fig. 8 Sample Degradation Paths Truncated at 150 Pulses 

 
Using the same approach as above with 10, 20, 30 and 42 

sample paths, we constructed reliability functions and 
confidence intervals to determine if the goal could have been 
demonstrated with a test truncated after 150 pulses. Fig. 9 

shows the reliability functions in the region of interest for 10, 
20, 30, and 42 sample paths truncated at 150 pulses.  
 

 
Fig. 9 CDFs Based on Degradation Paths Truncated at 150 Pulses 

 
Using degradation data and the analysis in Fig. 9, we can 

demonstrate a reliability of 0.994 with 42 components and test 
duration 150 pulses (with a 95% upper confidence limit). We 
can also demonstrate a reliability of 0.985 with just 10 
components (see outer confidence interval in Fig. 9) and test 
duration 150 pulses. By comparison, if we ignored the 
degradation data and used binomial calculations to compute 
95% upper confidence bounds on reliability, we could again 
demonstrate a reliability of only 0.931 with 42 components 
and a reliability of only 0.741 with 10 components tested 150 
pulses without failure. Note that increasing the duration of the 
test to 150 pulses does not change the reliability estimates 
when the degradation data is not used. 

The next step in the investigation was to consider sample 
paths truncated after 200 pulses. Fig. 10 shows what the 
outcome of the test would have been if the test had been 
truncated after 200 pulses of each component. 
 

 
Fig. 10 Sample Degradation Paths Truncated at 200 Pulses 

 
Using the same approach as above with 10, 20, 30 and 42 

sample paths, we constructed reliability functions and 
confidence intervals to determine if the goal could have been 
demonstrated with a test truncated after 200 pulses. Fig. 11 
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shows the reliability functions in the region of interest for 10, 
20, 30, and 42 sample paths truncated at 200 pulses.  
 

 
Fig. 11 CDFs Based on Degradation Paths Truncated at 200 Pulses 

 
Using degradation data and the analysis in Fig. 11 we can 

demonstrate a reliability of 0.996 with 42 components and test 
duration 200 pulses (with 95% confidence). It also appears 
that the reliability goal of 0.995 could have been demonstrated 
with approximately 25 components and test duration 200 
pulses. In Fig. 12 this is confirmed by examining results for 
the special case of 25 sample paths with test duration of 200 
pulses.  
 

 
Fig. 12 CDFs Based on 25 Degradation Paths Truncated at 200 

Pulses 
 

This analysis indicated that the original test plan consisting 
of 42 components tested to failure was a much larger test than 
needed to demonstrate the reliability goal. A test plan 
consisting of 25 components tested to 200 pulses would have 
been adequate to demonstrate the reliability goal with the use 
of the degradation measure. By comparison, to demonstrate 
0.995 reliability with 95% confidence using only 
success/failure data and binomial calculations, approximately 
600 components tested to 100 pulses without failure would be 
required. This example illustrates that tremendous savings can 
be achieved by using degradation data to demonstrate 
reliability. The reduction in number of components tested 
corresponds to savings in cost of product destructively tested, 

while the reduction in number of pulses corresponds to 
reduction in time on test. Reducing time on test could be 
extremely important in terms of reducing product development 
time. 

V. SUMMARY AND CONCLUSIONS 
We have demonstrated, with a case study involving the 

reliability of an electrical component, an important advantage 
to using degradation data and analysis. This approach can be 
used to develop minimal reliability test plans for 
demonstrating specific reliability goals. Degradation analysis 
will often provide considerably more reliability information 
than traditional failure-time analysis, especially when there are 
few if any failures over the duration of the test. When data are 
heavily censored, the degradation approach provides a way of 
reasonable extrapolation beyond a censored time. In the 
component example, this ability to extrapolate provided huge 
savings in number of units tested and test duration required 
demonstrating the reliability goal. In general, with heavily 
censored data, degradation analysis will provide a much 
tighter confidence bound on the failure distribution in the 
lower tail of the distribution, important in reliability studies 
such as presented here. This is because the degradation rates 
observed early in the test provide much more information 
about the component’s health than simply knowing that a 
component has survived a given amount of testing. 

In practice, it may be that little or no degradation data is 
initially available. If physical models of degradation can be 
developed using first principles, then simulation techniques 
along with bootstrapping can be used to design minimal 
reliability test plans for actual product as described above. If 
the model of failure is well understood, it may also be possible 
in the design stage to reduce the degradation rate or make the 
component more robust to degradation. In the component 
example, probe resistance decreased due to a buildup of 
carbon residue around the probe. This observation could lead 
to a re-design of the probe, or a change in materials used, so 
that residue buildup is lessened or does not greatly affect 
component performance. 

Understanding the degradation process can also aid in the 
establishment of “condition-based” preventive maintenance or 
replacement plans. Knowing what degradation variable to 
monitor and having an appropriate degradation model 
provides a way of determining when a component should be 
replaced. Degradation measures should be identified during 
the design and development phases so that methods for 
accurately measuring the degradation can be built into the 
product. Downstream analysis of product reliability may result 
in degradation measures that require destructive inspection or 
disruptive measurement. Attention to this detail in the design 
stage will greatly improve the ability to optimize preventive 
maintenance schemes. Reference [5] discusses using 
degradation measures to establish preventive maintenance 
plans.  

Although there are many advantages to using degradation 
measures, some cautions must also be stated. In particular, the 
degradation measure may not in reality be closely related to 
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failure. There should be a physical explanation for the use of 
the measure. In the component example the physical 
explanation for a decrease in probe resistance was the buildup 
of carbon residue after each pulse of the component. Another 
potential problem is that the model relating the value of the 
degradation measure to remaining time to failure may be hard 
to identify, and over-simplified models could introduce bias. 
In the component example a simple empirical model was 
developed for probe resistance. A simple linear model with 
random intercept and random slope fit the data rather well, 
although a slight bias was introduced by truncating the sample 
paths. Because the bias introduced was in the conservative 
direction (the predicted pulses to failure were biased on the 
low side), the reliability goals could still be demonstrated with 
truncated paths. Another caution is that degradation 
measurements may be contaminated by measurement error, 
although [6] shows that the measurement error must be severe 
for the standard failure time analysis with censored data to be 
superior.   
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