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Abstract—In this work, the main problem considered is the 

detection and the isolation of the actuator fault. A new formulation of 
the linear system is generated to obtain the conditions of the actuator 
fault diagnosis. The proposed method is based on the representation 
of the actuator as a subsystem connected with the process system in 
cascade manner. The designed formulation is generated to obtain the 
conditions of the actuator fault detection and isolation. Detectability 
conditions are expressed in terms of the invertibility notions. An 
example and a comparative analysis with the classic formulation 
illustrate the performances of such approach for simple actuator fault 
diagnosis by using the linear model of nuclear reactor. 
 

Keywords—Actuator fault, Fault detection, left invertibility, 
nuclear reactor, observability, parameter intervals, system inversion. 

I. INTRODUCTION 
AULT Detection and Isolation [1], [2], abbreviated as FDI 
in the literature, plays a vital role in providing information 

about faults in the system to enable appropriate 
reconfiguration to take place. The main function of FDI is to 
detect a fault and to find its location so that corrective action 
can be made to eliminate or minimize the effect on the overall 
system performance. Our objective of this work is to provide 
actuator fault detection and isolation i.e. determination of the 
fault present in the actuator, the time of detection and the 
place where it occurs. A great deal of attention has formerly 
been devoted to actuator fault detection and isolation for linear 
systems [3]–[5].  

However, the existent results consider the actuators as the 
constants in the input coefficient matrix of the process system 
and consider actuator faults as the changes of the input 
coefficient matrix elements, or the unknown additive terms of 
the process system control variable vectors. But, usually this is 
not the reality. 

In this work, firstly, we formulate actuator fault detection 
problems for a class of linear systems. In a practical 
engineering control system, an actuator is a device with its 
interior structure and dynamic characteristic. In most cases, it 
cannot be simply approximated as constant coefficients. We 
think that this kind of actuator formulation is not effective to 
describe the nature of actuator faults. Different from this kind 
of formulation, we consider actuator as a subsystem connected 
with the process subsystem in cascade manner. Using this 
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system formulation, actuator fault can be modeled as the 
parameter changes of the actuator subsystem. In this manner, 
the dynamic behavior of the faults can be perfectly described 
and logically explained. The objective is to obtain the 
condition of actuator fault detection and that is based on the 
invertibility concept. Moreover, the basic concept of that field, 
the fault detectability is defined in terms of the invertibility 
notions. 

This work is organized as follows: Section II defines the 
problem settings and recalls the conventional description of 
the method used for actuator fault detection and isolation. 
Section III gives our new system formulation to obtain the 
condition of the actuator fault detection. In Section IV some 
notions about the concepts of invertibility and system 
inversion are studied. Actuator fault detectability conditions 
are investigated in Section V. The Section VI deals with the 
actuator fault isolation. A presentation of the nuclear reactor is 
given in Section VII. In Section VIII, simulation results and a 
brief comparison are provided to demonstrate the effectiveness 
of this new proposed approach. Conclusions and perspectives 
on the future works are given in the last section. 

II. ACTUATOR FAULT DETECTION FOR LINEAR SYSTEMS 
Different approaches for fault detection using mathematical 

models have been developed in the last 20 years, see for 
example [6]-[8], [11]-[14]. The task consists of the detection of 
faults in the processes, actuators or sensors by comparing the 
measurable outputs with the system's available mathematical 
model. Fig. 1 shows the general structure of the model based 
FDI. 

A. General Linear System Structure 
Consider the following linear system given by:  
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where: nX)t(x ℜ⊂∈ is the dynamic system state vector, 
nnA ×ℜ∈ is a constant state matrix of the dynamic system, 

lY)t(y ℜ⊂∈ is the dynamic system output vector, 
nlC ×ℜ∈ is a constant output coefficient matrix of the dynamic 

system, mnB ×ℜ∈ is the control input coefficient matrix of the 
dynamic system, mU)t(u ℜ⊂∈ is the dynamic system input 
vector. 

We assume that an actuator fault can occur and it is defined 
as a deviation or a change of B  matrix parameters. 
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Fig. 1 General structure of the FDI based model 

B. Fault Representation and Observer Structure 
A fault is defined as an unpermitted deviation of at least one 

characteristic property of the system from an acceptable 
behavior. Therefore, the fault is a state that may lead to a 
malfunction or failure of the system. We assume that only 
actuator fault can occur, that is, j

f
j )t(u θ= for ftt ≥  and 

0)t(ulim jjt
≠−

∞⎯→⎯
θ , where jθ  is a constant and f

ju  is the 

actual output of the thj  actuator when it is faulty, 
m , 2, ,1j ∈  while )t(u j is the expected output when it is 

healthy.  
Considering )b , ,b(B m1 …= , if the thl  actuator is faulty, the 

corresponding faulty [3] model is given by the state space 
model: 
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We desire construct an observer to detect the faulty actuator, 
so by using adaptation technique, the observers [3] for all 
possible faults are described below: 
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where H  is a Hurwitz matrix that it can be chosen freely, γ is 
a scalar and P  is a positive definite matrix. The two matrixes 
P  and H  are calculated by using the following Lyapunov 
equation: 
                                 

                              QPHPH T −=+                               (4) 
 

where Q  is any positive definite matrix that also can be chosen 
freely.  

The basic idea is to estimate the output iy  and compare it 
to that generated via the model. The advantage of this 
proposed method, residual-based FDI, is that it can detect 
single fault actuator rapidly by using the FDI scheme. The 
residual ir  is given by: 

                                yy)t(r ii −=                                (5) 
 

Then, when we applied a constant fault in the one of these 
actuators, the correspondent residual reach zero after a short 
time. On the other hand the others residuals take a new 
constant value and remain there.  

III. SYSTEM STRUCTURE WITH RESPECT TO THE ACTUATOR 
SUBSYSTEM 

In a practical engineering control system, an actuator is a 
device with its interior structure and dynamic characteristic. In 
most cases, it cannot be simply approximated as constant 
coefficients. We think that this kind of actuator formulation is 
not effective to describe the nature of actuator faults. Different 
from this kind of formulation, we consider actuator as a 
subsystem connected with the process system by cascade 
manner. Using this system formulation, actuator faults can be 
modeled as the interior parameter changes of the actuator 
subsystem. The dynamic temperaments of the faults can be 
perfectly described and logically explained. On the contrary, 
in the conventional formulation the dynamic temperaments of 
the faults cannot be well formulated. They are usually brutally 
supposed as some time functions, and even constants. 

B. Problem Formulation 
Considering the system given by Fig. 2, it consists of two 

subsystems, i.e. the process subsystem and the actuator 
subsystem. 
 
 
 
 
 
 

Fig. 2 System structure 
 
We assume that the process subsystem is described by the 

same system (1), where m)t(u ℜ∈ is the process subsystem 
input vector, also it is the output vector of actuator subsystem. 
The actuator subsystem is given by: 
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where: an

a )t(x ℜ∈ is the state vector of the actuator 

subsystem. anan
aA ×ℜ∈ is a constant state matrix of the 

actuator subsystem, aman
aB ×ℜ∈ is a constant input coefficient 

matrix of the actuator subsystem, am)t(v ℜ∈ is the control 
input variable vector of the actuator subsystem, it is the output 
variable vector of the controller, anal

aC ×ℜ∈  is a constant 
output coefficient matrix of the actuator subsystem. As )t(u is 
the process subsystem input vector and the output vector of 
actuator subsystem, we assume mla = . 
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In this new formulation, our objective is the fault detection 
in the actuator subsystem. We consider the fault in actuator 
subsystem as the changes of the actuator parameters, that is to 
say the changes of the elements of the matrix aA , aB  and aC . 

We assume that the actuator output )t(u  cannot be 
measured, so we get information of actuator fault only by the 
output variable )t(y  of the process system. This 
consideration comes from the practice application in process 
control systems. Usually, the actuators are far from the central 
control room, we cannot set measuring cable from the central 
control room to each actuator to measure the actuator output 
signal because, on one hand, it is not necessary for the control, 
and on the other hand, it will increase the cost of the system. 
From the point of view of academic research, if we can get the 
measurement data of the output )t(u  of the actuator 
subsystem, the fault diagnosis problem of the actuator 
subsystem is degenerated as the general fault diagnosis 
problem when the actuator subsystem is considered as a 
dynamic system. 

C. Faulty Actuator System Structure 
In order to study the actuator fault detection problem, the 

actuator subsystem (6) is rewritten as: 
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where, ∑
=

k

1i
ii )t(L Δ  represents k  possible faults caused by the 

parameter changes of the matrix aA  or the matrix aB , i.e. the 
changes of the elements of the matrix aA  or the matrix aB . 

The arbitrary function im

iFi U)t( ΔΔ ℜ⊂∈ is the unknown 

fault mode. The matrix iL  represents the mapping 

aiLi XU:L → , it is assumed monic, 
iLU  and aX  are the sets 

of )t(iΔ  and of )t(xa  respectively. When the fault )t(L iiΔ  
does not occur, )t(iΔ  is identically zero. Similarly 

∑
=

s

1j
jj )t(l δ  represents s  possible faults caused by the 

parameter changes of the matrix aC . The arbitrary function 

j

j

m
fi U)t( δδ ℜ⊂∈  is the unknown fault mode. The matrix 

jl  represents the mapping UU:l
jfj → , it is assumed monic, 

jfU and U are the sets of )t(jδ  and of )t(u  respectively. 

When the fault )t(l jjδ  does not occur, )t(jδ  is identically 
zero. 

 

 
Fig. 3 System structure with respect to fault detection 

 
We indicated that )t(L iiΔ  can represent the fault of the 

matrix aA  or of the matrix aB , and )t(l jjδ can represent the 

fault of the matrix aC , this is the problem of fault modeling, 
we can see [7] and [9] for the detail of this problem. With (4), 
the system structure with respect to actuator fault detection is 
given in Fig. 3.  

The effects of actuator faults may be propagated with the 
control variable )t(u . As )t(u  is inaccessible, we diagnose 
the faults using the data of the process subsystem output )t(y . 
In other words we observe )t(u  using )t(y , then observe the 
faults using )t(u , what is related to the concept of system 
invertibility. In simple terms, an invertible system is the 
system in which different input produces different output. We 
will see later, if the actuator subsystem is invertible with 
respect to a fault, and if the process subsystem is invertible 

with respect to u , then this actuator fault can be detected using 
)t(y .  

IV.  INVERTIBILITY OF DYNAMIC SYSTEM 

A.  Notion of Invertibility 
An inverse function is a function that undoes another 

function: If an input x  into the function f produces an output 
y , then putting y  into the inverse function g  produces the 

output x , and vice versa. i.e., y)x(f = , and x)y(g = . A 
function f that has an inverse is called invertible (Fig. 4). The 
inverse function is then uniquely determined by f and is 

denoted by 1f − . 
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Fig. 4 Invertible function f  and its inverse 1f −  
 

Definition 1. The function f  with domain X  and range Y  
is invertible if there exists a function g  with domain Y  and 
range X , such that: 

 
                 y)x(f =        if and only if    x)y(g =                (8) 
 

Not all functions have an inverse. For this rule to be 
applicable, each element Yy ∈   must correspond to no more 
than one Xx ∈   ; a function f with this property is called 
injective. 

From the view of set theory, let X  and Y  are two linear 
inner product spaces, σ and τ are two linear mappings. 

Definition 2. Considering a linear mapping YX: →σ , for 
any two points X, ∈βα and βα ≠ , if: 

 
                                         )()( βσασ ≠                                (9) 
 
it is said that the linear mapping σ  is injective. If for any 

Y∈γ , we have X∈α , such that: 
 
                                              γασ =)(                                (10) 
 

It is said that σ is surjective, or a full mapping from X  to 
Y  . 

Lemma 1. A linear mapping YX: →σ is invertible, if and 
only if σ  is injective and surjective. That is to say: 
σ is invertible  is injective  and surjective. 

Proof:  
1) ”=>”. σ is invertible, therefore 1−σ exists. For any two 

points X, ∈βα , if )()( βσασ = , then: 
 

ββσσ

βσσασσασσα

==

===
−

−−−

))((      

))(())(())((
1

111
 

 
Therefore σ  is injective. For Y∈∀ς , let )(1 ςσα −= , then 

X∈α , and ςςσσςσσασ === −− )())(()( 11 , therefore σ  
is surjective. 
2) ”<=”, if σ  is injective and surjective, therefore each point 

in Y corresponds an unique point in X, therefore the 
inverse mapping τ of σ exists. It is obvious that the 
inverse mapping τ of σ is also a linear mapping 

XY: →τ , and E== τσστ , where, E  is unite 
mapping, therefore σ  is invertible, and 1−= στ .                                  

                                                                                                  ♠ 
It is well known that a mapping can be represented by a 

corresponding matrix, the study of mapping is usually 
transformed to the study of the corresponding matrix, we give 
following matrix version statements about invertibility to 
subdivided it as left invertibility and right invertibility [15]. 

Definition 3.  For matrix mnP ×ℜ∈ , if there exists a matrix 
nmLP ×ℜ∈ such that m

L IPP = , it is said that P  is left 
invertible, while P  is right invertible if there exists a matrix 

nmRP ×ℜ∈ such that n
R IPP = . 

Lemma 2. Let mnP ×ℜ∈ , then, the following statements 
are equivalent : 
1) P  is left invertible 
2) P  is injective 
3) m)P(rank =  
4) P  has full column rank 

The following statements are also equivalent: 
1) P  is right invertible 
2) P  is surjective 
3) n)P(rank =  
4) P  has full row rank 

Lemma 3. Let nnP ×ℜ∈ then, the following statements are 
equivalent: 
1) P  is nonsingular 
2) P  has a unique left inverse 
3) P  has a unique right inverse 
4) P  has a unique inverse 
5) P  is injective 
6) P  is surjective 
7) P  is left invertible 
8) P  is right invertible 
9) P  is invertible 
10) n)P(rank =  

Corollary 1: Let ςσ ,  two linear left invertible mapping, 
mnP ×ℜ∈ , nsQ ×ℜ∈ be corresponding matrices, then the 

mapping )(ςσ  is left invertible. 

Proof: Let ςσ ,  are left invertible, it implies that mnP ×ℜ∈  

and nsQ ×ℜ∈  are left invertible, therefore there exist two 

matrices nmLP ×ℜ∈  and snLQ ×ℜ∈  such that: 

m
L

n
LLLLL I)PP()PIP()QPQP()QP)(QP( ====  

According to Definition 3, )QP( is left invertible, 

consequently )(ςσ  is left invertible.                                       ♠ 

B.  Invertibility and Input Observability of Linear System 
 We consider the linear dynamic system given as follows: 
 

                  
⎩
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where, mUu ℜ⊂∈ and wmWw ℜ⊂∈ are the input variable 
vectors, nXx ℜ⊂∈ is the state variable vector, and 

lYy ℜ⊂∈  is output variable vector, mU ℜ⊂ , nX ℜ⊂ , 
lY ℜ⊂  and wmW ℜ⊂  are linear vector spaces. A , B  , C  

and D  are the matrices with appropriate dimensions.  
For the faults affecting on the system (11), after appropriate 

modeling, can be considered as the additive terms in the input 
and output of the system equations, that is to say from the 
view of fault diagnosis can be considered as the system’s 
inputs )t(u . We concern such a question that can we get the 
information of the faults by the measured data of the system 
output )t(y ? If no, it implies that we cannot implement fault 
diagnosis procedure. This property of the system is related to 
the concept of invertibility [16]. 

The needed system invertibility in our study is essentially 
the “left invertibility”, or “input observability”. In [18], the 
input observability is defined as the naturally dual property of 
output controllability. Output controllability is a pointwise 
property, i.e. it is concerned with the existence of an input 
function that drives the output to a specified point in output 
space at a specified time. The concept of functional 
reproducibility, or output functional controllability, is a 
functional property concerned with the existence of an input 
which produces a specified output function. It is obvious that 
left invertibility is a functional property naturally dual to 
output functional controllability. The term input functional 
observability is thus an appropriate alternative to left 
invertibility. Left invertibility or input observability is shown 
as Fig. 5, from the right side of the system equation, i.e. the 
input )t(u , the information propagates along with left 
direction until output )t(y , then at the left side, the measured 
data )t(y  is used to reconstruct the input )t(u . 

 

 
Fig. 5 Left invertible system 

 
As the considered system is a linear system, it follows the 

superposition principle, therefore we can study the 
invertibility of YU →  and of YW → respectively. 

Firstly, we consider the invertibility of YU →  and we 
define linear mapping: YU:T y,u → ,  and write for the state at 

1tt = , when at time 0t , the system is in the zero state, 
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1 d)(Bue)t(x τττ                       (12) 

 
and the system output, 
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The exponential may be represented in terms of its Taylor 

series; doing this we find, 
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We see that the terminal output variable is in the linear 

subspace spanned by the column vectors of the infinite 
sequence of matrices  B,CA B,CA , B,CA CAB, ,CB 1nn2 + . 

According to Cayley-Hamilton theorem, for a n  order 
matrix A , any order power of n  can be expressed by the sum 
of its lower order powers with order )1n(,,1,0 −  

respectively. So each term with type as ni  B,CAi >  can be 

expressed by the sum of BCA , B,CA CAB, ,CB 1-n2 . 
Consequently output variable )t(y 1  is in the linear subspace 
spanned by the column vectors of 

BCA , B,CA CAB, ,CB 1-n2 . That is to say the output space Y  
is spanned by these column vectors. The number of linear 
independent column vectors of BCA , B,CA CAB, ,CB 1-n2 is 
the dimension of the spanned subspace. Recall that 

YU:T y,u →  denotes the mapping from U  to Y , obviously, 

the rank of the mapping YU:T y,u → is decided by this 

number, therefore: 
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If we denote by y,uP the corresponding matrix of the 

mapping YU:T y,u → , then, 
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According to Lemma 2, if y,uP has full column rank, i.e. 

m)P(rank y,u = , the matrix y,uP is left invertible, the input 

and output of the mapping is injective, the system is left 

)t(u)t(u  )t(y  
System 

 

 
Inverse system 
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invertible. Therefore the condition of the dynamic system 
being left invertible is: 
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Now, let’s consider the invertibility of YW → . 
1) )t(u)t(w = . In this case, we get the output )t(y 1 as: 
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Along with the way above, we can get the condition of the 

dynamic system being left invertible is: 
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This is the result in [1]. 

2) )t(u)t(w ≠ In this case, the output caused by )t(w is: 
 

                           )t(Dw)t(y 11 =                             (20) 
 

Similar to the previous cases, the condition of the dynamic 
system being left invertible is: 
 

                              wm)D(rank =                            (21) 
 

That is to say the number of linear independent column 
vectors of D  is wm . 

V.   ACTUATOR FAULT DETECTABILITY 
The fault detectability is the property which indicates if the 

fault in the system can be detected or in other word can be 
observed by using the system output data. Using the results of 
previous sections, it is easy to discuss the fault detectability of 
the system (7). 

A. Actuator Subsystem Fault Detectability 
  Consider the fault )t(L iiΔ  in the system (7), let iL  as the 
matrix B  in the system (11), according to (17) the condition 
of fault detectable for the fault )t(L iiΔ is obtained: 
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where 

i
mΔ  is the dimension of )t(iΔ .  

Similarly, for the fault )t(l jjδ in the system (7), according 

to (21) the condition of fault detectable is: 
 

                               
j

m)l(rank j δ=                          (23) 

 
where 

j
mδ is the dimension of )t(jδ . 

B. Process Subsystem Invertibility 
The invertibility of the process subsystem in our fault 

detection frame is the dynamic property which indicates 
whether all the information of )t(u  can pass through the 
process subsystem, therefore the fault information carried by 

)t(u  can completely pass through the process subsystem. 
From previous discussion it can be known that if the process 
subsystem is left invertible, then the information in the input 
of this subsystem can be “injective” mapped to its output. 
Therefore the fault information carried by )t(u can completely 
passed through the process subsystem. 

Comparing the system (1) and the system (11), and 
according to (17), the left invertible condition for the process 
subsystem is obtained as: 
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where m  is the dimension of the vector u . 

C.   Fault Detectability of the System 
The fault detectability of the system in Fig. 2 represents the 

system property that if the faults in the actuator subsystem can 
be detected? According to Corollary 1, if the actuator 
subsystem is left invertible for the specified fault, and the 
process subsystem is left invertible, then the entire system is 
left invertible for this fault, which therefore can be detected. 
Consequently we get the conditions of fault detectable as 
follows: 

Theorem 1. Consider the system in Fig. 2 which consists of 
the process subsystem (1) and the actuator subsystem (7), then 
the conditions of faults detectable are: 
 1) For the fault )t(L iiΔ : 
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and, 
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2) For the fault )t(l jjδ : 
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and, 
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VI. ACTUATOR FAULT ISOLABILITY 
We defined the actuator fault isolability term as the 

property of the system indicating the possibility to locate the 
fault in the system, more precisely, to isolate the actuator 
causing the error.  

A. Generality of the Fault Isolation 
Fault isolation has been investigated using many techniques 

such as the adaptive observer approach [3], the geometric 
approach [9], and the interval based approach [10]. The choice 
of a method depends basically on the given situation such as 
the kind and the number of faults to be detected, the demands 
for the fault isolation, the robustness and the available 
measurements. 

In our considered system, the actuator fault can be isolated. 
Of course, the fault information should be well transferred to 
the system output. Therefore the two subsystems should be 
left invertible and they verify the theorem 1 as mentioned in 
the previous section.  

In this work, we will use the interval based approach in 
which a partition notion of each actuator parameter and the 
technique of monotonicity are used in order to locate and to 
determine the values of the faulty parameters in the actuator 
subsystem. The proposed method proves to be effective in the 
actuator fault isolation. 

B. Actuator Fault Isolability in Parameter Intervals Based 
Approach 

In parameter intervals based fault isolation approach, the 
isolation principle is not based on fault decoupling on space 

direction, while it based on the consistency test of the dynamic 
model function. That is to say, even with a same mapping 
matrix iL , two faults )t(L j,iiΔ and )t(L k,iiΔ can be separated 

each other if the fault mode )t(j,iΔ  and )t(k,iΔ  are different 

functions of the time. If the information of these two faults can 
be “injective” transferred through the process subsystem to the 
output )t(y of the system, so that it can be separated. As we 
have studied that if the process subsystem is left invertibility, 
the information of these two faults can be “injective” 
transferred to the process subsystem output. 
We recall quickly the main points of the parameter interval 
based fault isolation method, for more details, the reader is 
refereed to [10]. 

In the parameter interval based method, the domain of each 
parameter θ is partitioned into a certain number of intervals 
and a parameter filter is built for each interval. The parameter 
filter consists of two isolation observers which correspond to 
two bounds of the interval ]  [ jj

βα θθ of the thj  parameter. 

After the fault occurrence, the faulty parameter value must 
be in one of the parameter intervals. 
Considering the model represented by: 
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where Aθ , Bθ and Cθ are the parameter vectors used to study 
the faults caused by the changes of the elements of the 
matrices aA  , aB or aC  respectively. 

We consider, for example, the case of the dynamic fault in 
the actuator subsystem i.e. the fault caused by the changes of 
the elements of the matrix aA . 

For (29) the parameter filter with respect to the dynamic 
fault can be built with the two correspondent isolation 
observers that constitute the actuator parameter filter for thi  
interval of thj  actuator parameter: 
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where )ij(ob
A

αθ and )ij(ob
A

βθ are the parameters vectors of the 

observers corresponding the parameter vector Aθ . We also 
assume that the fault is caused by the change of a single 
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parameter in the vector Aθ , so the parameters vectors Bθ  and 

Cθ maintain their nominal values when the fault occurs. 
)ij(αε and )ij(βε  are the estimation errors of the observers. 

We assume that before ft , the observer states )t(x̂ )ij(
a
α  and 

)t(x̂ )ij(
a
β  converge on the actuator subsystem state )t(xa and:  
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                      (32)                                        

 
At ftt =  when the fault occurs, the ths  parameter changes 

and the thj  parameter of the observer changes in order to 
isolate the fault: 
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where )ij(

jA )( αθ  and )ij(
jA )( βθ  are the bounds of the thi  

interval of the thj parameter of Aθ . The isolation index is:  
 

              ))t(sgn())t(sgn()t(v )ij()ij(ij βα εε=               (38) 
 
It is assumed that the cascade observers which are built by 

using the actuator input v  and the fault parameter as input 
data and, using process subsystem output y  as output data, 
satisfy following assumption 1 and assumption 2. 

Assumption 1  
At any point v) ,x( a , the linear function 

v)(Bx)(Af BaaAa θθ +=  in (29) satisfies that any 
component if , { }n ..., ,1i ∈  which is an explicit function of the 
considered parameters jA )(θ  or jB )(θ  is a monotonous 

function of these two parameters. 

Assumption 2  
If the change of the actuator subsystem and the change of 

the observer are not at the same parameter i.e., js ≠ , whatever 

the value of the change of the isolation observer parameter is, 
the dynamic difference between the isolation observer and the 
faulty actuator subsystem is great.  

Using Assumption 1, it can be shown that for the case 
where js = , the estimation error )t()ij(αε  of the observer is a 
monotonous function of the parameter difference:  

 
                        f
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jA )()()( θθθδ αα −=                   (39) 
 
and )t()ij(βε is a monotonous function of: 
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and no matter js = or not, the difference of the estimation 
error: 
 
                           )t()t()t( )ij()ij()ij( αββα εεε −=                 (41) 
 
is a monotonous function of parameter difference 

)ij(
jA

)ij(
jA )()( αβ θθ −  between the two interval bounds.  

Using Assumption 2, the monotonicities of )t()ij(αε , of 

)t()ij(βε  and of )t()ij(βαε , we can obtain the rule of the  
interval verification as follows: 

Rule1 After the fault occurrence, if the ith interval of the jth 
parameter contains the faulty parameter value, then we have: 

t   ,-1 )t(vij ∀= . Otherwise 1 )t(vij = , then it can be concluded 
that this interval does not contain the faulty parameter value.  
If all the intervals of a parameter, after the fault occurrence, 
are excluded from containing the faulty parameter value, the 
fault is excluded from this parameter. If all the parameters 
except one are excluded from the fault, the fault is isolated. 
The parameter which is not excluded corresponds to the fault.  

So we can prove that for the case where the interval 
contains the faulty parameter value, when 

])(  )[()( )ij(
jA

)ij(
jA

f
jA

βα θθθ ∈ , it will be:   
 
                         f

ij tt         -1  )t(v >∀=                          (42)                   
 
And for the case where the interval does not contain the 

faulty value, it exists fe tt ≥ that:  
 

                                                                1  )t(vij =                               (43) 

VII. NUCLEAR REACTOR 
To show the isolation ability of the parameter intervals 

approach in the new formulation, this method was applied to a 
one group reactor model and many simulations were carried 
out. 
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A. Reactor Model 
As seen in Fig. 6 the closed-loop control action in a vertical 

tank-type moderator level control reactor is based on variation 
of the level of the heavy water in the reactor vessel by altering 
the outflow  (by varying the port openings of a set of control 
valves), while maintaining the inflow constant (fixed pumping 
rate). The core reactivity is dependent on the moderator level 
(reactivity change is proportional to moderator level change). 

 

 
Fig. 6 Schematic of closed-loop control action in vertical tank-type 

reactor 
 

The Reactor dynamics can be approximated by the point 
kinetic equations [17]: 
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where, )t(n is the density of the neutrons, ρ  is the reactivity, 

β is the effective delayed neutron fraction. iβ  is the effective 
fractional yield of the group of delayed neutrons, l  is the 
prompt neutron lifetime, iλ  is the decay constant of the thi   

precursor group, )t(Ci  is the concentration of the thi   
precursor group. 

The linearization of the point kinetics equations around an 
equilibrium operation level using of the one-group 
approximation permits the model to be expressed in matrix 
form as: 
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We assume that s10l 4−= and the effective decay constant 

is 0768.0e =λ . We use the delayed neutron a constant and we 
normalize the neutron and precursor density based on the 

initial neutron density 8
0 10n = . The process subsystem 

matrices are: 
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B. Actuator Model for the Nuclear Reactor 
We consider the transfer function [17] given by, that is 

present the relationship between the reactivity and the valve 
opening: 
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By differentiating the above equation, we obtain: 
 

                 ]
dt
dX

X
Q

dt
d

H
Q[

dt
dd oo

2

2

∂
∂

+
∂
∂

−=
δρδρ                (48)                 

 
where d is the diaphragm area of the tank, oQ is the 
outflow, X  is the valve opening and H  is the moderator level. 

Therefore the state representation is given by: 
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where 
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We assume that 12
d
q1 =  and 1.0

d
q2 =   . The actuator 

subsystem matrices are: 
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VIII. SIMULATION RESULTS 

A. Classic Formulation of Actuator Fault 
To show in detail the actuator fault isolation algorithm in 

the first formulation, we have chosen the example where the 

faulty actuator parameter is 4f
1

f
1

f0 102b)
l

n
( ⋅=== θ .   

We have applied a fault at time days 20t f =  in the first 

actuator parameter 1b . In Fig. 7, we presented the two 
residuals ir  associated to the two observers. We can see that 
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residuals leave zero at days 20t =  but after a very short 
period, )t(r1  that corresponds to the 1st input return to its 
initial value. While we observe that the 2nd residual take new 
values for a many time and then converges to zero. 

 

 
Fig. 7 Two residuals )t(r1  and )t(r2  

 
Consequently, we have isolated the fault actuator correctly, 

and it is in the 1st actuator. In this case, the isolation time is 
days 11.0tiso = , because the fault appears at days 20t f =  

and it has been isolated at days 11.20tI = . 

B. New Formulation of Actuator Fault 

We use 0
A

1
1 1

)(
d
q

θθ =−=  and 0
B

2
2 2

)(
d
q

θθ =−=  the 

nominal parameter values of the actuator subsystem to 
simulate the actuator subsystem fault. Their possible domain 
are assumed as [ ]1012)( 1A −−∈θ  and 

[ ]1.03.0)( 2B −−∈θ .  
The domain of each parameter 1θ and 2θ  is partitioned into 

4 intervals (Tables I and II): 
 

TABLE I 
VALUES OF PARAMETER FILTERS OF 1θ  

N 1 2 3 4 
αθ
1

 -12 -11.5 -11 -10.5 

βθ
1

 -11.5 -11 -10.5 -10 

 
It is assumed that the fault is caused at days20t f = by the 

variation of 1θ , its value changes from 12−  to 25.10− , while 
the parameter 2θ maintains its nominal value 1.0− . We also 
note that this actuator subsystem fault has the same effect on 
the output of the process subsystem that affects the control 
variable in the first case. 

 
 
 

TABLE II 
VALUES OF PARAMETER FILTERS OF 2θ  

N 1 2 3 4 
αθ
2

 -0.30 -0.25 -0.20 -0.15 

βθ
2

 -0.25 -0.20 -0.15 -0.1 

 
Fig. 8 shows the result of the st1 parameter filter of 1θ , that 

is the case where js = . After days20t f =  these two 

observers estimation errors have the same sign, so this interval 
does not contain the faulty parameter value. 

 

 

Fig. 8 st1 parameter filter of 1θ  
 
Fig. 9 shows the result of the tht4 parameter filter of 1θ , that 

is also the case where js =  . After days20t f = the sign of 

these two observers estimation errors is always different, so 
this interval contain the faulty parameter value and the 
parameter 1θ  cannot be excluded from the fault 

 

 

Fig. 9 tht4 parameter filter of 1θ  
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Fig. 10 shows the result of the rd3 parameter filter of 2θ , 
this is the case where js ≠  . After days20t f = the signals of 

these two observers’ estimation errors are the same, it means 
that this interval does not contain the faulty parameter value 
and that all the intervals of the parameter 2θ cannot contain 
the faulty parameter value. 

 

 

Fig. 10 rd3 parameter filter of 2θ , 

C. A Comparative Analysis  
Simulation runs have been used to compare the actuator 

fault isolation using observers based method and which use 
parameter intervals based method. In [10] it is shown that the 
2nd proposed method is faster than the 1st one, so will apply 
our new formulation with using the parameter intervals based. 

Fig. 11 shows the isolation time of the actuator fault in 
these two previous different approaches.  

We can conclude that these experimental results using the 
new formulation and based on parameter intervals are more 
realistic and faster than those based on classical adaptive 
observers. 

 

 

 

Fig. 11 rd3 parameter filter 

Though it is not so accurate as the detection and isolation 
results based on the nd2  method, but it requires less 
computation and it is effective for linear systems diagnosis. 

The use of an interval notion contributes to the fault 
detection speed in a positive way and it is also fits large kind 
of linear dynamics systems. The only required conditions for 
the type of the linear system are that the dynamic of the 
system is a monotonous function [10] with respect to the 
considered parameter.  

This method does not need any parameter identification 
procedure. It is proven that if the parameter intervals are small 
enough the isolation speed will be fast enough. 

IX. CONCLUSION 
In this paper, a new system formulation with respect to 

actuator fault detection is built. The new formulation is closer 
to practical system, can more clearly describe actuator faults. 
The new formulation is very useful for the further study of 
actuator fault diagnosis. The actuator fault detectability and 
isolability based on the new system formulation are studied, 
and the obtained conditions can be used to verify if the 
actuator faults can be detected and isolated. A comparative 
analysis of classical formulation of the actuator fault diagnosis 
and our contribution using two model based methods is given. 

Experimental results show that the two detection and 
isolation methods are both effective and more accurate than 
others methods. 

In the first method using adaptive observers the isolation 
can be carried out, but the isolation speed is not ideal due the 
parameter identification which lasts a long time. However the 
second one which is based on parameter intervals can solve 
this problem. Some simulation results illustrate these 
advantages.  

In our work we only focus on the simple actuator fault, that 
is why one interesting future research direction is to extend 
this new formulation to multiple faults problem for linear 
dynamic systems. 
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