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Abstract—This paper presents the results of an experimental 

study on the effects of elevated temperature on compressive and 
flexural strength of Normal Strength Concrete (NSC), High Strength 
Concrete (HSC) and High Performance Concrete (HPC). In addition, 
the specimen mass and volume were measured before and after 
heating in order to determine the loss of mass and volume during the 
test. In terms of non-destructive measurement, ultrasonic pulse 
velocity test was proposed as a promising initial inspection method 
for fire damaged concrete structure. 100 Cube specimens for three 
grades of concrete were prepared and heated at a rate of 3°C/min up 
to different temperatures (150, 250, 400, 600, and 900°C). The results 
show a loss of compressive and flexural strength for all the concretes 
heated to temperature exceeding 400°C. The results also revealed that 
mass and density of the specimen significantly reduced with an 
increase in temperature.  
 

Keywords—High temperature, Compressive strength, Mass loss, 
Ultrasonic pulse velocity.  

I. INTRODUCTION 
ONCRETE is the most widely used construction material 
in the world. Although concrete engineering is more than 

one hundred years old and concrete is thought to be a well-
understood construction material. In recent years, high 
performance concrete (HPC) is becoming an attractive to 
traditional normal strength concrete (NSC). HPC exhibits 
significantly higher mechanical strengths as well as superior 
performances under severe conditions in comparison with 
normal strength concrete (NSC). The alleged HPC is generally 
defined as high fluidity and high durability concrete, 
moreover, high performance water reducer and superfine 
mineral admixtures are absolutely necessary ingredients. The 
dense microstructure of HPC ensures a high strength and a 
very low permeability, which is essential to obtain good 
durability in severe exposure conditions where there are 
aggressive agents. However, the dense microstructure of HPC 
seems to be a disadvantage, when compared to NSC, in the 
situation where concrete is exposed to fire. 

Fire represents one of most sever risks to buildings and 
structures. Being a primary construction material, the 
properties of concrete after exposure to high temperatures 
have gained a great deal of attention since the 1940s [1]–[3]. 
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The behavior of NSC under elevated temperatures has been 
clearly understood [4]–[6]. In recent years, there have been 
many research studies to determine the thermal behavioral 
differences between HSC and NSC [7]–[16]. 

The mechanical properties of concrete at high temperature 
degrade mainly because of two relevant mechanisms: 
mechanical and physic-chemical damage [17]–[23]. In the 
case of elevated heating conditions, the dehydration of CSH 
gel, the thermal incompatibility between the aggregate and 
cement paste and the pore pressure within the cement paste are 
the main detrimental factors. To investigate the effect of high 
temperature and to obtain necessary information for evaluating 
the structural safety and establishing reparation methods, the 
residual strength and properties of concrete that has been 
exposed to high temperatures should be determined. 

In this experimental investigation, the effect of elevated 
temperatures on the physical and mechanical properties of 
concrete mixtures produced by different water/cement (w/c) 
ratios and different types of aggregates were extensively 
examined. In the tests, temperatures of 20, 150, 250, 400, 600 
and 900°C were chosen for ease of observation of the test 
results. 

II. EXPERIMENTAL STUDY 
The cement used in this study was Portland cement (CPJ 

CEM II/A 42.5). Its chemical composition is presented in 
Table I. Natural siliceous river sand with a maximum grain 
size of 5mm was used as a fine aggregate (fineness modulus of 
2.65). Coarse aggregate was crushed calcareous (diameter 
ranging from 5mm to 20mm). The specific gravity of the 
aggregate was 2600 kg/m3. 

 
TABLE I 

CHEMICAL, PHYSICAL AND MECHANICAL PROPERTIES OF CEMENT USED 
Chemical composition (%) Physical properties 

CaO 
Al2O3 
SiO2 
Fe2O3 
MgO 
Na2O 
K2O 
Cl- 
SO3 

60.41 
5.19 

21.91 
2.94 
1.60 
0.16 
0.54 
0.02 
2.19 

Specific gravity (kg/m3) 
Initial setting (h:mn) 
Final setting (h:mn) 

3000 
2 h : 06’ 
3 h : 03’ 

Compressive strength (MPa) 

2  days 
7  days 
28 days 

19.03 
44.93 
53.41 

 
100mm cube specimens were prepared for three grades of 

concrete named NSC, HSC and HPC, respectively. The mix 
proportions of each concrete are given in Table II. The 
concretes specimens were cast in the moulds for 24h at room 
temperature of (20±2)°C. After demolding, specimens were 
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