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Abstract—In this paper, a numerical algorithm using a coupled 

Galerkin-Differential Quadrature (DQ) method is proposed for the 

solution of dam-reservoir interaction problem. The governing 

differential equation of motion of the dam structure is discretized by 

the Galerkin method and the DQM is used to discretize the fluid 

domain. The resulting systems of ordinary differential equations are 

then solved by the Newmark time integration scheme. The mixed 

scheme combines the simplicity of the Galerkin method and high 

accuracy and efficiency of the DQ method. Its accuracy and 

efficiency are demonstrated by comparing the calculated results with 

those of the existing literature. It is shown that highly accurate results 

can be obtained using a small number of Galerkin terms and DQM 

sampling points. The technique presented in this investigation is 

general and can be used to solve various fluid-structure interaction 

problems. 

 

Keywords—Dam-reservoir system, Differential quadrature 

method, Fluid-structure interaction, Galerkin method, Integral 

quadrature method. 

I. INTRODUCTION 

HE dynamic response of dam-reservoir systems subjected 

to earthquake excitation has long been an interesting topic 

in the field of civil engineering. In early studies, an added 

mass approach was used where the water incompressibility 

and rigid structure were assumed [1]-[4]. This is the simplest 

form of treating the dam-reservoir problem. Some simplified 

approaches are also available in which fluid-structure 

interaction is studied in a decoupled manner. In these 

approaches, the fluid response is first obtained assuming the 

structure to be rigid and the resulting pressure field is imposed 

on the structure to obtain the structural response. However, 

when coupled modes are excited, these approaches may lead 

to inaccurate results [5]. Thus it is necessary to study the fluid-

structure interaction in a coupled manner considering the 

flexibility of the structure. 
Two kinds of methods, i.e., analytical and numerical 

methods, have been widely used to tackle the problem. As 

analytical methods are often limited to simple dam-reservoir 

problems, many researchers have resorted to various 

numerical methods [6]-[24]. Among them, the Finite Element 

Method (FEM) is one of the most popular numerical methods 

used by many researchers to handle the problem. 

Conventionally, the structure and the fluid domain are treated 

as two separate systems and discretized by the FEM. The 

resulting systems of ordinary differential equations are then 
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solved separately or simultaneously using various time 

integration schemes. Although the FEM is especially powerful 

due to its versatility in the spatial discretization, the number of 

unknowns involved and the amount of input data are very 

large in the FEM. On the other hand, in the finite element 

analysis of such problems, difficulties arise mainly because of 

the large extent of the fluid domain where fluid is practically 

unbounded. To solve this problem, the unbounded domain 

should be truncated at a certain distance away from the 

structure. Clearly, when a low-order FEM (say h-version 

FEM) is used for the solution of such fluid-structure 

interaction problems, many calculations should be done to 

accurately predict the location of the truncated boundary. 

Therefore, to accurately predict the location of the truncated 

boundary and to reduce the computational time, higher-order 

numerical methods should be used to model the fluid-structure 

interaction problems. To tackle this limitation, one may use 

the FEM with higher-order polynomials (i.e., the p-version 

FEM). The p-version FEM employs a fixed mesh, and the 

convergence is sought by increasing the degrees of the 

elements. It is well-known that the convergence of the p-

version FEM is more rapid than that of the h-version FEM by 

using the same number of degrees of freedom (DOF). 

However, the calculation of the stiffness and mass matrices is 

expensive in the p-version FEM, and the cost will increase 

dramatically when using a large number of DOFs. 

To overcome the difficulties of the FEM in modeling such 

types of problems, one may use the boundary element method 

(BEM) or a combination of FEM and BEM to discretize the 

problem domain. When BEM is applied to fluid-structure 

interaction problems with unbounded fluid domains, then no 

artificial or truncated boundaries are introduced because the 

analytic fundamental solutions of BEM satisfy the infinite 

boundary conditions of the problem. However, because of the 

presence of the convolution integrals and singularity of the 

kernels of the formulation, the BEM requires large storage 

space and computational time for the numerical integration of 

the kernels. Besides, the use of BEM requires the solution of 

an unbounded matrix. Therefore, the BEM does not seem to 

possess any significant advantage over the FEM. 

To overcome the above mentioned difficulties, this paper 

presents a simple mixed method in which the number of 

unknowns is substantially reduced. In this method, the 

Galerkin method is applied for the structural part, whereas the 

DQM is used for the fluid domain. The proposed mixed 

method combines the simplicity of the Galerkin method and 

high accuracy and efficiency of the DQM. Its accuracy and 

efficiency are demonstrated by comparing the calculated 
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results with those of the existing literature. 

II. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

Fig. 1 shows a variable thickness dam-structure of height L 

in contact with a fluid of unbounded domain. The dam-

structure is assumed to behave as a cantilever beam of variable 

thickness. The governing differential equation for the 

transverse vibration of the dam-structure is [9] 

 ��
��� �����	 ��
��,�	��� 
 � �����	 ��
��,�	��� � ������	����	 � ��� � 0, �, �	 (1) 

 

where E is elastic modulus, I is the moment inertia of the 

structure, ���, �	 is the displacement of the structure relative 

to the ground in the x-direction,�� is the density of the 

structure, ���	 is the cross-sectional area of the structure, ����	 is the ground acceleration and p is the hydrodynamic 

pressure. The boundary conditions for the structure are as 

follows: 
 ��|��� � ��
�� ���� � ������	 ��
��,�	��� 
��� � � ��� �����	 ��
��,�	��� 
��� � 0 (2) 

 

The hydrodynamic pressure in the fluid domain of the 

structure-reservoir system is assumed to be governed by the 

pressure wave equation [9] 

 !"���, �, �	 � #$� ��%�&,�,�	���                  (3) 

 

where '" � ��
�&� � ��

���, ���, �, �	 is the hydrodynamic pressure 

and C is the velocity of sound in fluid.  

 

 

Fig. 1 Fluid-structure system 

 

The boundary conditions for the fluid are as follows: 

 ��%�&�&�� � ��( �����	 � �) ��, �	
      (4) 

 ��%������ � ��|�� � ��|&*+ � 0      (5) 

 

where�( is the density of the fluid. It is noted that the dam-

reservoir interaction problem is defined on an unbounded 

domain (0 , � , ∞, 0 , � , .) and the position of the far 

boundary (� � �+) is not known a priori. Thus, the location of 

the far boundary must also be determined as a part of 

solutions.  

Assuming that the dam and reservoir are initially at rest, the 

initial conditions are: 

 ��|��� � ��
�� ���� � ��|��� � ��%������ � 0      (6) 

 

The problem at hand in to determine the transient responses 

of the structure and the fluid subjected to ground motion and 

boundary conditions (2), (4), and(5). In this paper a mixed 

Galerkin-DQM will be presented to solve the problem. The 

Galerkin method and the DQM will be separately applied to 

(1) and (3). The resulting coupled ordinary differential 

equations will then be solved using the Newmark time 

integration scheme. The details will be given in next sections. 

III. DIFFERENTIAL QUADRATURE METHOD 

Let /��, �, �	 be a solution of a partial differential equation, �#, �", … , �1 be a set of sampling points in the z-direction and �#, �", … , �2 be that in the x-direction. According to the 

DQM, the first-order derivative /,� at a sample point ��, �3 , �	 

can be expressed by the quadrature rules as [25] 
 /,���, �3 , �	 � ∑ �35�#	/6�, �5 , �715�#       (7) 

 

where �35�#	
 are the first-order z-derivative weighting 

coefficients associated with the � � �3 point. Equation (7) can 

also be written for all values of �3 (8 � 1,2, … , ;  ) in matrix 

notation as 

   </,�= � >��#	?@/A        (8) 

 

where 

 </,�= � B/,���, �#, �	 /,���, �", �	 … /,���, �1, �	CD (9) 

 @/A � B/��, �#, �	 /��, �", �	 … /��, �1 , �	CD (10) 
 

Now, using the quadrature rule, the first-order derivative of 

the vector @/A with respect to the variable x at a sample point � � �3  can be expressed as [26]-[31]: 

                  </,&��3 , �	= � ∑ E35�#	</6�5 , �7=25�#  ,       F � 1,2, … , G   (11) 

 

whereE35�#	
 are the first-order x-derivative weighting 

coefficients associated with the � � �3 point, and 

 </,&��3 , �	= � B/,&��3 , �# , �	 /,&��3 , �", �	 … /,&��3 , �1, �	CD(12) 

 @/��3 , �	A � B/��3 , �#, �	 /��3 , �" , �	 … /��3 , �1 , �	CD(13) 
 �35�#	

andE35�#	
 are given by [25]: 

 

�35�#	 � H I�J	��K	��KL�M	I�J	��M	 8 N F, 8, F � 1,2, … , ;
� ∑ �3O�#	1O�#,OP3 8 � F, 8 � 1,2, … , ; �              (14) 
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E35�#	 � H I�J	�&K	�&KL&M	I�J	�&M	 8 N F, 8, F � 1,2, … , G
� ∑ E3O�#	2O�#,OP3 8 � F, 8 � 1,2, … , G �            (15) 

 

whereQ�#	��	 and Q�#	��	 are defined as 

 Q�#	��3	 � ∏ 6�3 � �5715�#,5P3 ,   Q�#	��3	 � ∏ 6�3 � �5725�#,5P3 (16) 

 

The weighting coefficients of the second-order derivatives 

may be obtained through the following relationships [32] 

 

�35�"	 � H2�35�#	 S�33�#	 � #��KL�M	T 8 N F, 8, F � 1,2, … , ;
� ∑ �3O�"	1O�#,OP3 8 � F, 8 � 1,2, … , ; �  (17) 

 

E35�"	 � H2E35�#	 SE33�#	 � #�&KL&M	T 8 N F, 8, F � 1,2, … , G
� ∑ E3O�"	2O�#,OP3 8 � F, 8 � 1,2, … , G � (18) 

 

In this study, the sampling points are taken nonuniformly 

spaced and are given by the following equations 

 �# � 0, �" � U V . �3 � . 2⁄ X1 � cos ��3L"	\1L] 
^ ,     8 � 3,4, … , ; � 2 (19) �1L# � �1 � U	 V ., �1 � . 

 �# � 0, �" � U V �+ �3 � �+ 2⁄ X1 � cos ��3L"	\2L] 
^ ,        8 � 3,4, … , G � 2  (20) �2L# � �1 � U	 V �+, �2 � �+ 

 

whereU is a parameter that shows the closeness between 

adjacent boundary points and the boundary points. Moreover, . and �+ are problem boundaries in z- and x-directions, 

respectively. It should be pointed out that the U-technique as 

proposed in [25] is not used in this paper (i.e., the above 

sampling points are only used to construct the weighting 

coefficients). In all computation presented in this paper, U � 10L] is taken. 

IV. DISCRETIZATION OF SPATIAL PARTIAL DERIVATIVES 

A. Fluid Domain 

In this section the DQM will be used to discretize the fluid 

domain. A simple technique will also be presented to exactly 

implement the boundary conditions of the fluid domain.  

Satisfying (3) at any sample point � � �3, one has 
 �,&&��, �3 , �	 � �,����, �3 , �	 � #$� �,����, �3 , �	, 8 � 1,2, … , ;(21) 

 

where a subscript comma denotes differentiation. Substituting 

the quadrature rule, given in (7), into (21) and implementing 

the boundary conditions of the fluid domain in z-direction 

gives 

 B��C<�,&&= � B�bC�"	@�A � #$� B��C<�,��=     (22) 

where 

B��C �
cdd
dde
0 0 .0 1 0. 0 .

. . 0. . 00 . 0. . 0. . .0 0 .
. 0 00 . 0. 0 1ghh

hhi

�1L#	V�1L#	
       (23) 

 

B�bC�"	 �
cd
dd
dd
de �##�#	 �#"�#	 .�"#�"	 �""�"	 .�]#�"	 �]"�"	 .

. . . �#,1L#�#	

. . . �",1L#�"	

. . . �],1L#�"	. . .. . ..�1L#,#�"	 .�1L#,"�"	 ..
. . . .. . . ... .. .. .�1L#,1L#�"	 gh

hh
hh
hi

�1L#	V�1L#	

(24)  

 <�,&&= � B�,&&��, �# , �	 �,&&��, �", �	 … �,&&��, �1L#, �	CD(25) 

 @�A � B���, �#, �	 ���, �", �	 … ���, �1L#, �	CD (26) 

 <�,��= � B�,����, �#, �	 �,����, �", �	 … �,����, �1L#, �	CD(27) 

 

Now, Satisfying (22) at any sample point � � �3 , one has 

 B��C<�,&&��3 , �	= � B�bC�"	@���3 , �	A � #$� B��C<�,����3 , �	=, 8 � 1,2, … , G(28) 

 

Substituting the quadrature rule, given in (11), into (28) 

gives 

 B��C ∑ E35�"	<�6�5 , �7=25�# � B�bC�"	@���3 , �	A � #$� B��C<�,����3 , �	=, 8 � 1,2, … , G(29) 

 

Equation (29) can be written in compact form as 
 Bj(C@�kA � BQ(C@�kA)          (30) 

 

where the �; � 1	 V �; � 1	 sub-matrices >j35(? and >Q35( ? 
(8, F � 1,2, … , G) are given by 

 >j35(? � E35�"	B��C � �35& B�bC�"	        (31) 

 >Q35( ? � #$� �35& B��C          (32) 

 

and @�kA � B@���#, �	AD @���", �	AD … @���2 , �	ADCD(33) 

 @�kA) � l�
l�� @�kA        (34) 

 

wherein�35&  are the elements of the G V G identity matrix. 

Furthermore,Bj(C and BQ(C represent the stiffness and mass 

matrices of the fluid, respectively.  

At this stage, the boundary conditions of the fluid in x-

direction should be applied to (30). Using (4), (5) and (11) the 

quadrature analog of boundary conditions are obtained as 
 <�,&��#, �	= � ∑ E#5�#	<�6�5 , �7=25�# �� ��(6<����	= � @�) ��	A7(35) @���2 , �	A � @0A�1L#	V#         (36) 

 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:1, 2014

170

 

 

where@0A�1L#	V# is the zero vector of size �; � 1	 V 1 and 

 <����	= � ����	B1 1 … 1CD    (37) 

 @�) ��	A � B�) ��#, �	 �) ��", �	 … �) ��1L#, �	CD  (38) 
 

Now substituting the above quadrature analogs into (30) 

yields: 

 Bjm(C@�bA � BQm(C@�bA) � @n�A � @n
A    (39) 
 

where 

Bjm(C �
cd
dd
dd
de E##�#	B� b�C E#"�#	B� b�C .>j"#( ? >j""( ? .>j]#( ? >j]"( ? .

. . . E#,2L#�#	 B� b�C. . . >j",2L#( ?. . . >j],2L#( ?. . .. . ..>j2L#,#( ? .>j2L#,"( ? ..
. . . .. . . ... .. .. .>j2L#,2L#( ?gh

hh
hh
hi
   (40) 

 

BQm (C �
cd
dd
dd
eB0C B0C .B0C >Q""( ? B0C. B0C .

. . B0C. . B0CB0C . B0C. . B0C. . .B0C B0C .
. B0C B0CB0C . B0C. B0C >Q2L#,2L#( ?gh

hh
hh
i
   (41) 

 @�bA � B@���#, �	AD @���", �	AD … @���2L#, �	ADCD (42) 

 @�bA) � l�
l�� @�bA              (43) 

 @n�A � >��(<����	=D @0AD @0AD … @0AD?D
         (44)  

 @n
A � >��(@�) ��	AD @0AD @0AD … @0AD?D
   (45) 

 

whereB� b�C and B0C are the identity and zero matrices of size �; � 1	 V �; � 1	, respectively, and @0A is the is the zero 

vector of size �; � 1	 V 1. Note that the size of matrices Bjm(C 
and BQm(C is �; � 1	�G � 1	 V �; � 1	�G � 1	 while the 

vectors @�bA and @�bA)  are of order �; � 1	�G � 1	 V 1. 

Moreover, @n�A is the force vector due to the ground motion 

and @n
A is that due to the structure motion. 

B. Structural Domain 

The governing differential equation for the motion of the 

structure is given in (1). In the Galerkin method, we seek an 

approximate solution to (1) in the form of a finite series 

 ���, �	 � o#��	 � o"��	� � o]��	�" � p � oqr#��	�q � ∑ o5��	�5L#qr#5�# (46) 

 

whereo5��	 (F � 1,2, … , s � 1) are unknown coefficients (that 

are functions of time) and N is the order of approximate 

functions. It is seen that the displacement of the structure is 

expressed in a general series form and it does not satisfy the 

geometric boundary conditions of the structure. To overcome 

this, we consider a number of grid points in the z-direction on 

the structure domain and assume each grid point has two 

degrees of freedom (displacement and slope). Let 

t3��	 � ut6��3r#	 "⁄ , �7 8 � 1,3,5, …t,�6�3 "⁄ , �7 8 � 2,4,6, …�     (47) 

 

wheret3��	 (8 � 1,3,5, …) are nodal displacements and t3��	 

(8 � 2,4,6, …) are nodal slopes. Substituting (47) in (46) gives 

 t6��3r#	 "⁄ , �7 � ∑ o5��	��3r#	 "⁄5L#qr#5�#  ,  8 � 1,3,5, …      (48)   

        t,�6�3 "⁄ , �7 � ∑ �F � 1	o5��	�3 "⁄5L"qr#5�# , 8 � 2,4,6, … (49)   

 

From (48) and (49) one can express o5��	 (F � 1,2, … , s �1) in terms of nodal variables t3��	 (8 � 1,2, … , s � 1). By 

doing so and substituting the result into (46), one obtains 

 ���, �	 � ∑ t5��	x5��	qr#5�#         (50) 

 

where x5��	 are the interpolation functions of degree N. Note 

that since each node on the structure domain has only two 

degrees of freedom, the order of interpolation functions (i.e., 

N) must be an odd number (i.e., s � 3,5,7, …).   

Now, substituting (50) into (1), multiplying both sides of 

resulting equations by x3��	 and performing the integration 

over the length of the structure ( 0 , � , .), we obtain 
 BQ�C@tA) � Bj �C@tA � @/�A � @/%A    (51) 

 

where (8, F � 1,2, … , s � 1) 

 Q35� � z �����	x3x5o� �         (52) 

 

j35� � { x36����	x5,��7,��o� � Xx36����	x5,��7,�^�
  

� � >x3,�6����	x5,��7?� � { ����	x3,��x5,��o� 
�  

(53) 

 /3� � �������	 z ���	x3o� �            (54)  

 /3% � � z ��� � 0, �, �	x3o� �        (55) 

 @tA � Bt# t" … tqr#CD      (56) 

 <t) = � l�
l�� @tA        (57) 

 

where BQ�C and Bj�C are structural mass and stiffness 

matrices, @/�A and  @/%A are load vectors due to ground 

motion and hydrodynamic pressure of the fluid, respectively, @tA and @tA)  are the displacement and acceleration vectors of 

the nodal values. 

At this step of the analysis, the geometric boundary 

conditions of the structure should be imposed to (51). This can 

be done simply by deleting the first and second columns and 

rows of the stiffness and mass matrices and by eliminating the 

first and second rows of the force vectors. Thus, after 

implementing the geometric boundary conditions, the size of 

mass and stiffness matrices is �s � 1	 V �s � 1	 while the 

displacement and force vectors are of order�s � 1	 V 1. 
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V. SOLUTION OF RESULTING SYSTEMS OF ORDINARY 

DIFFERENTIAL EQUATIONS 

It can be seen from (39) and (51) that the equations of 

motions of the fluid and the structures are coupled with each 

other through the force vectors @n
Aand @/%A. Therefore, it is 

necessary to describe @n
A in terms of nodal variables and @/%A in terms of pressure values at sampling points. 

Using the integral quadrature rule, the force vector @/%A 

can be expressed as 
 @/%A � �B CB|C@�}A         (58) 

 

where 

 

B C �
cd
dd
e x]��#	 x]��"	x~��#	 x~��"	 . .. . . x]��1L#	. x~��1L#	. .. . . .. . . .. .. .xqr#��#	 xqr#��"	 . .. . . .. xqr#��1L#	gh

hh
i

�qL#	V�1L#	
(59) 

 

B|C �
cd
dd
de|# 00 |"

. .0 . .  0.  0. 0. . . 00 . . 00 0. .0 0 . 00 0 . 00 |1L#gh
hh
hi

�1L#	V�1L#	
           (60) 

 

 @�}A � B��0, �#, �	 ��0, �", �	 … ��0, �1L# , �	CD � @���# , �	A      (61) 

 

where|3 (8 � 1,2, … , ; � 1) are weights for the integral 

quadrature rule and the vector @�}A � @���#, �	A is the 

interface hydrodynamic pressure. 

It can also be easily verified that: 

 

@���	A �
���
�
���

���#, �	���", �	���], �	...���1L#, �	���
�
��� � B CD@tA        (62) 

 

and 

@�) ��	A �
���
�
���

�) ��#, �	�) ��", �	�) ��], �	...�) ��1L#, �	���
�
��� � B CD<t) =        (63) 

 

where the vectors @tA and @tA)  are nodal displacements and 

accelerations.Therefore, the governing equations for the 

motion of the structure and fluid can be rewritten as: 

 BQ�C@tA) � Bj �C@tA � @/�A � B CB|C@�}A    (64) 

 

Bjm(C@�bA � BQm(C@�bA) � @n�A � �(
���
�
���

B CD<t) =@0A�1L#	V#@0A�1L#	V#...@0A�1L#	V#���
�
���

         (65) 

 

Combining (64) with (65), one has 

 

S�BQm(C1k2�V1k2� BQ�C1k2� Vq�B0Cq�V1k2� BQ�Cq�Vq� T u@�bA) 1k2� V#@tA) q�V# � � SBjm(C1k2� V1k2� B0C1k2� Vq�Bj�Cq�V1k2� Bj�Cq�Vq�T �@�bA1k2� V#@tAq�V# � � �@n�A1k2�V#@/�Aq�V# �
   (66) 

 

where ;k � ; � 1,  G� � G � 1, and s� � s � 1. Furthermore, 

 

BQ�C �
cd
dd
dd
e �(B CDB0C1kVq�B0C1kVq�...B0C1kVq�gh

hh
hh
i

1k2� Vq�

         (67) 

 Bj�C � BB CB|C B0Cq�V1k B0Cq�V1k . . . B0Cq�V1kCq�V1k2� (68) 

 

Equation (66) can be solved using various time integration 

schemes. In this study, the Newmark method is used to solve 

the system (66).                

VI. NUMERICAL RESULTS 

A. Validation of the Proposed Algorithm 

To validate the proposed formulation and its 

implementation, application is made to a numerical example 

given by Lee and Tsai [9]. The parameters used in this 

numerical example are as follows: 

 �� � 9.8437 V 10#"Kgm", ��� � 3.6 V 10~ Kg m⁄ , . � 180 G, �( � 1000 Kg m]⁄ ,  � � 1438.656 m s⁄  

 

Lee and Tsai [9] found an analytical solution for the present 

problem. Thus, we are able to verify the accuracy of the 

proposed mixed methodology by comparing the calculated 

results with those of analytical solutions. 

First, we assume that the dam-reservoir system is subjected 

to ramp acceleration defined as [9]: 
 ����	 � �50���, 0 , � , 0.02�� , � � 0.02 �    (69) 

 

where�� is a constant. 

The dynamic responses of the fluid-structure system 

subjected to ramp acceleration are evaluated for different 

values of N( order of interpolation functions), n (number of 

DQM sampling points in z-direction), m (number of DQM 

sampling points in x-direction) and �+ (location of truncated 

or far boundary). The Newmark time integration with � � 0.25 and U � 0.5 is used to solve the resulting system of 

coupled ordinary differential equations [33]. In all 
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computation, time step ∆� � 0.02 � is taken. 

Fig. 2 presents the convergence of solutions with respect to 

the order of interpolation functions (N) for the displacements 

at top of the structure for empty and full reservoirs. It can be 

seen that the converging trend of solutions is excellent. It can 

also be seen that the results converge to their final values 

using s � 5. The solution convergence behavior according to 

the number of DQM sampling points (n and m) is shown in 

Fig. 3. A very good convergence behavior is observed. It is 

also observed that a reasonable converged results are obtained 

by the proposed methodology when ; � 9and G � 65. The 

effects of location of truncated boundary on accuracy and 

convergence of results are investigated in Fig. 4. It can be seen 

that the accuracy and convergence of the solutions are mainly 

dictated by the choice of location of truncated boundary. Note 

that, when the truncated boundary is not located far enough, 

inaccurate and oscillatory results can be obtained for the 

responses of the fluid. In Fig. 5, the results of present mixed 

methodology are compared with the exact solution results of 

Lee and Tsai [9]. An excellent agreement can be seen. 

Next, we evaluated the responses of the fluid-structure 

system subjected to 1940 EI Centro earthquake (Fig. 6). The 

results are shown in Fig. 7. The exact solution results of Lee 

and Tsai [9] are also shown for comparison purposes. It can be 

seen that the results generated by the proposed method agree 

well with those of [9]. 

B. Response of Variable Thickness Dam-Structures of Equal 

Weight Subjected to Ground Motion 

In this study we are interested to analyze the dynamic 

behavior of variable thickness dam-structures of equal weight 

subjected to ground motion. Fig. 8 shows some linearly 

varying thickness dam-structures with equal weight. For these 

cases, the thickness of the dam varies in the z-direction in the 

following linear fashion 
 ���	 � �� �"�D�L#	�D�r#	 � � "�D�r#	
       (70) 

 

where�� is the thickness of a uniform cross-section dam (see 

Fig. 8) and �� is the thickness ratio defined as: 

 �� � ���� 	�����	 ,       0 , �� , 1     (71) 

 

Note that, in dam-structures, the thickness of the dam at � � . is always equal or smaller than that at � � 0. For this 

reason, the thickness ratio (��) is always smaller or equal to 

unity (i.e., �� , 1). It can also be easily verified that, for every 

thickness ratio, the volume of dams that their thickness obey 

(70) is equal to |� � ��. � ���. (where b is the width of the 

dam cross-section and assumed here to be unity). 

To study the effect of the thickness ratio on the dynamic 

behavior of the fluid-structure system, the dimensions and 

material properties of the fluid and structure are considered as 

follows. Depth of the fluid domain . � 100 G, acoustic wave 

speed in water � � 1438.656 m s⁄ , mass density of the water 

�( � 1000 Kg m]⁄ , modulus of elasticity of the structure � � 3 V 10#� N m"⁄ , mass density of the structure �� �2320 Kg m]⁄ , thickness of the uniform cross-section structure �� � 10 m and width of the structure � � 1 m.   

Fig. 9 shows the variation of natural frequencies (�3 , 8 �1,2,3,4,5) of variable thickness dams versus thickness ratio 

(��). It can be seen from Fig. 9 that the lower order natural 

frequencies decrease as the thickness ratio increases. This 

means when the system is subjected to low frequency 

excitation, the use of variable thickness structures (say tapered 

structure) can improve the dynamical behavior of the system 

significantly. However, the higher order natural frequencies do 

not show the same trend. It is seen that there is a range for the 

thickness ratio where the higher order natural frequencies 

increase as the thickness ratio increases (here, this range is 

approximately 0 , �� , 0.4 as it can be seen from Fig. 9). 

This means, when the structure is subjected to high frequency 

excitation and the thickness ratio is in the range 0 , �� , 0.4, 

the response of the structure may not be highly influenced by 

the variation in thickness ratio. For this case, it is also 

possiblethat the response of the variable thickness structure 

decreases as the thickness ratio increases. 
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Fig. 2 Convergence of solutions with respect to the order of interpolation functions (N) for the case of ramp acceleration: (a) displacement at 

top of structure in empty reservoir case, (b) displacement at top of structure in full reservoir case, (c) hydrodynamic pressure at bottom of 

reservoir, and (d) hydrodynamic pressure at middle of reservoir 

 

 

Fig. 3 Convergence of hydrodynamic pressure at bottom of reservoir in the case of ramp acceleration with N = 5: (a) convergence with respect 

to the number of DQM sampling points in the z-direction, n, and (b)convergence with respect to the number of DQM sampling points in the x-

direction, m 
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Fig. 4 Effect of location of truncated boundary on responses of fluid subjected to ramp acceleration: (a) hydrodynamic pressure at bottom of 

reservoir, and (b) hydrodynamic pressure at middle of reservoir 

 

 

 

Fig. 5 Comparison of results of present method with exact solution results of [9] for responses of dam-reservoir system subjected to ramp 

acceleration: (a) displacement at top of structure in empty reservoir case, (b) displacement at top of structure in full reservoir case, (c) 

hydrodynamic pressure at bottom of reservoir, and (d) hydrodynamic pressure at middle of reservoir 
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Fig. 6 Ground acceleration due to EI Centro earthquake 1940 

 

 

Fig. 7 Comparison of Results of present method with exact solution results of [9] for responses of dam-reservoir system subjected to 1940 EI 

Centro ground motion: (a) displacement at top of structure in empty reservoir case, (b) displacement at top of structure in full reservoir case, 

and (c) hydrodynamic pressure at bottom of reservoir 

 

0 10 20 30 40 50 60
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time (s)

A
c
c
e
le
ra
ti
o
n
 (
g
)

0 1 2 3 4 5 6
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

w
 (
L
, 
t)
 /
 A

g

 

 

 Present

 Ref. [9]

Empty Reservoir
(a)

0 1 2 3 4 5 6
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time (s)

w
 (
L
, 
t)
 /
 A

g

 

 

 Present

 Ref. [9]

Full Reservoir
(b)

0 1 2 3 4 5 6
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (s)

p
 (
0
, 
0
, 
t)
/ 
(ρ

f 
A
g
 L
)

 

 

 Present

 Ref. [9]
(c)



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:1, 2014

176

 

 

 

(a)               (b)                (c) 

Fig. 8 Variable thickness dam-structures of equal weight with different thickness ratios: (a) Tr= 1, (b) Tr= 1/3, (c)Tr= 0 

 

 

Fig. 9 Variation of natural frequencies of variable thickness dams versus thickness ratio 

 

In Fig. 10 the convergence of solutions for the response of 

variable thickness dam is investigated for different values of 

N. Comparing these results with those of Section VI A one 

may conclude that larger values of N should be used in the 

algorithm for the case of variable thickness dams. In Figs. 11 

and 12 the effect of thickness ratio on the dynamic response of 

variable thickness dams subjected to ramp acceleration and 

1940 EI Centro earthquake is investigated. It can be seen that 

in the case of ramp acceleration the response of the structure is 

highly influenced by the variation of the thickness ratio. The 

reason for this is that the ramp acceleration may be viewed as 

a low-frequency excitation. Thus, the response of the structure 

decreases considerably as the thickness ratio decreases. 

However, in the case of 1940 EI Centro earthquake, the 

response of the structure is not highly influenced by the 

variation of thickness ratio. This is a reasonable result, 

because the 1940 EI Centro earthquake may be viewed as a 

high frequency excitation. Thus, the response of the structure 

may increase or decrease by decreasing the thickness ratio. 

Note that, in all cases, the response of the variable thickness 

dam is smaller than that of the uniform dam. 

VII. CONCLUSION 

A simple and accurate mixed Galerkin-DQ formulation is 

proposed for the transient analysis of the dam-reservoir 

interaction. The Galerkin method is applied for the structural 

part, whereas the DQM is used for the fluid domain. The 

proposed mixed method combines the simplicity of the 

Galerkin method and high accuracy and efficiency of the 

DQM. Its reliability, accuracy and efficiency are demonstrated 

by comparing the calculated results with those available in the 

literature. It is shown that highly accurate results can be 

obtained using a small number of Galerkin terms and DQM 

sampling points. The technique presented in this investigation 

is general and can be used to solve various fluid-structure 

interaction problems. 
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Fig. 10 Convergence of response of the variable thickness structure subjected to ramp acceleration with respect to the order of interpolation 

functions N for �� � 0: (a) displacement at top of structure in empty reservoir case, (b) displacement at top of structure in full reservoir case 

 

 

Fig. 11 Effect of thickness ratio on the responses of the dam-reservoir system subjected to ramp acceleration: (a) displacement at top of 

structure in full reservoir case, and (b) hydrodynamic pressure at middle of reservoir 

 

 

Fig. 12 Effect of thickness ratio on the responses of the dam-reservoir system subjected to1940 EI Centro ground motion: (a) displacement at 

top of structure in full reservoir case, and (b) hydrodynamic pressure at middle of reservoir 
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