
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

148

Abstract—Pioneer networked systems assume that connections

are reliable, and a faulty operation will be considered in case of
losing a connection. Transient connections are typical of mobile
devices. Areas of application of data sharing system such as these,
lead to the conclusion that network connections may not always be
reliable, and that the conventional approaches can be improved.
Nigerian commercial banking industry is a critical system whose
operation is increasingly becoming dependent on information
technology (IT) driven information system. The proposed solution to
this problem makes use of a hierarchically clustered network
structure which we selected to reflect (as much as possible) the
typical organizational structure of the Nigerian commercial banks.
Representative transactions such as data updates and replication of
the results of such updates were used to simulate the proposed model
to show its applicability.

Keywords —Dependability, reliability, data redundancy.

I. INTRODUCTION
HE type, quantity and quality of information kept by an
organization and, how the information is stored and

exchanged keep changing as new and more efficient methods
of information management evolve. The idea behind the
design of a particular technology dictates how it will be used
to solve problems. The design of the mainframe computers
was meant for business systems in which centralized
computing power matched the mode of operation of the
business. Central method of control, efficiency and economy
are some of the motivational factors for an organization to
adopt a centralized information system [1]. On the other hand,
excessive control, still according to [1], may result in
bureaucratic bottle necks and, the resultant inflexibility of
such systems can also cause operational costs to escalate.
Efficiency and economy of a centralized information system
may be favorable where the business organization is relatively
small.

However, in a multi-branched organization, benefits of
economy of scale and higher throughput outweigh the
suitability of a centralized information system [1]. The idea of
data redundancy which is usually avoided as much as possible
in database parlance [2] is also a reason for keeping data in a
location. On the other hand, the risk of absolute failure of the
system as a result of software or hardware error is high.
Moreover, it is practically not possible to implement all
database normal form rules to the letter [3]. Redundancy and
efficiency of data access has to be balanced.

M. A. Adeboyejo is with the Directorate of Information and
Communication Technology, National Open University of Nigeria, Lagos
State, Nigeria (phone: 08037636445; e-mail: phadamoses@gmail.com).

O. O. Adeosun is with Department of Computer Science and Engineering,
Ladoke Akintola University, Ogbomoso, Osun State, Nigeria (phone:
07038866844; e-mail:hootadeosun@yahoo.com).

II. BASIC CONCEPT

A. Database (DB) Models
Information with relevant attributes for a given situation is

usually fetched from a source that is systematically organized
in line with the overall business objective of the organization
(such as a bank) that owns the collection of information [4].
Hence, a database (DB) is a collection of pieces of information
that is organized so that it can easily be accessed, managed,
and updated [5]. It follows that a DB is an organized
collection of specific related and integrated data representing
some aspect of the real world with the purpose of meeting a
set of specific information needs.

The ability of a system to make required pieces of
information available as at when needed with little or no need
for further modification is one of the main objectives of a
database management system (DBMS). Though there are
several models (networked, hierarchical, relational model etc.)
by which data can be organized and maintained to meet the
requirements of a particular organization or an individual [2],
[6], [3] yet, some of the models are more commonly used than
others. One of the approaches to database modeling is to
simulate real live objects as the basic data elements in a
database. Here, the object of interest on which data is being
stored is the main focus. This is the object oriented database
model (OODM) and according to [3], it is a model in which
information is represented in the form of objects as used in
object oriented programming. However, we observed that the
most natural way for humans to begin to study objects is to
initially group them according to some criteria of interest. This
natural tendency is what informed the hierarchical and
relational database model with the relational model being the
commoner of the two. The relational database (RDB) model
enables the classification and mapping of the attributes of one
or more object of interest into the model of the RDB using its
semantics. The adopted model is usually incorporated into a
much larger DBMS.

In the RDB approach, data elements are organized into a
collection of stacked horizontal sets of attributes, each of
which represents an entity (e.g. bank account) in the
collection. This in physical terms effectively forms a tabulated
set of data elements. Reference [7] formally defines a relation
R as R (A1, A2, A3, A4,..., An) where R is defined over attributes
(A1, A2, A3, A4,..., An) and Ai is the ith attribute in R for all
integer i א {2 ,1, ..., n}. Each corresponding attribute of the
entities belongs to a domain D of a set of atomic values which
are indivisible as far as the RDB model is concerned [2]. The
nth attribute A belongs to a domain defined as dom(Ai) which
refers to the collection of properties or conditions that must be
satisfied by whatever value Ai will hold [3].

M. A. Adeboyejo, O. O. Adeosun

Fault Tolerance in Distributed Database Systems

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

149

B. Distributed DB Management System (DDBMS)
Architecture

A DBMS comprises of integrated and interdependent
components that interacts in an organized and coordinated
way with the aim of achieving a central objective. Reference
[8] describes a DBMS as being made up of the DB, the DB
engine, the application program and the user. A single DBMS
is one in which all these components are located closely
together or in a single hardware unit. For the various system
components to work together towards achieving global system
objectives, relevant data and/or information need to be
exchanged. When this coordination is to be done amongst
remotely located components, then activities have to be
synchronized and coordinated properly via well established
communication network of suitable coverage (local-, wide-,
and/or metropolitan-area network etc.) and topology (ring,
star, mesh, tree etc.). The extent of similarity and/or
dissimilarity of these components across the network define
the degree of heterogeneity and/or homogeneity of the DBMS
[9].

The major components of the architecture of a distributed
DBMS (DDBMS) are the underlying network of the
distribution and the structure of the DBMS. The relationship
of interaction (service request and rendition) between the
components on the network irrespective of the type and
topology could refer to client-to-server and/or peer-to-peer
architecture [10]. When DBMS architecture refers to the
distribution of application logic (presentation, processing and
storage) on the network, there can be one-, two- or three-tier
architecture, depending on how many major hardware units
are used to host which portion of the application logic.

C. Distributed Data Storage (DDS)
To improve availability and reliability in a DDBMS,

storage analysis typical of single DBMS are extended. This
extension results in concepts such as fragmentation and
replication which can either be combined or implemented
separately. One of the means by which a DDBMS is made to
appear as a single unit to the users is by ensuring that data are
easily accessible across the entire network by either
fragmenting and/or replicating data, that is ensuring single
system image [11]. Data fragmentation can be horizontal,
vertical or mixed. In horizontal partitioning, table of data is
split along the row into two or more fragments. The splitting is
done such that the only difference between the original and
resulting smaller tables is the table size. Every other property
of the parent table is inherited by the fragments [3]. Vertical
partitioning is done along columns while mixed partitioning
combines the two. On the other hand, data replication is the
process of copying and maintaining database objects in
multiple databases that make up a distributed database system
[3].

D. Distributed Data Transaction
The commands issued by the DB users cause the DB engine

to create a new record, update, delete and/or retrieve an
existing record [12]. For a DB engine to execute these

commands, it must break them into logical units of processing
and then execute these as a string of serialized interleaved
(from different transactions) operations [3]. As in the single
DBMS, transaction properties (atomicity, consistency,
isolation and durability) are upheld. These however, are
accomplished via local transaction manager (TM) at every site
in a distributed system. To ensure a single image system, the
TM at a site coordinates with all TMs at other sites. These
interactions according to [3], are synchronized by a transaction
coordinator (TC) whose specific responsibilities according to
[13] are to:
• Start the execution of transactions that originate at the site.
• Distribute sub-transactions at appropriate sites for

execution.
• Coordinate the termination of each transaction that

originates at the site, which may result in the transaction
being committed or aborted at all sites.

E. Transparency in DDBS
System transparency generally refers to the separation of

the higher-level functional details of the system from the
lower-level implementation issues [14]. A transparent
DDBMS is one in which users are able to use the system
without being involved in the intricacies of ensuring
consistency, availability and reliability of the system. This
refers to the degree to which users are unaware of the various
elements of the system. There are various aspects to
transparency. When a DB system is developed independently
of other DB locations, particularly in a distributed system, and
it is not aware of the design decisions and control structures
adopted at other sites, such database is said to have local
autonomy [15]. The following [13] are the criteria for ensuring
local autonomy:
• Every data item must have a system-wide unique name.
• It should be possible to find the location of data items

efficiently.
• It should be possible to change the location of data items

transparently.
• Each site should be able to create new data items

autonomously.
According to [3], replication and fragmentation

transparency ensures that users need not refer to a specific
replica of a data item when issuing queries. Instead, the name
of the relation is all that the users need to know. The system
should determine which replica of the relation mentioned in
the user query to reference. According to [16] location
transparency is a property of a DDBMS that should ensure
that users do not need to be aware of the location of data in a
distributed database. And, that data should be accessible at a
remote site just as easily as it is at a local site.

III. PURPOSE OF STUDY
The Nigerian commercial banking industry is a critical

system whose operation is increasingly becoming dependent
on technology driven information system [17]. Though the
users (banks) use it as a tool to gain marketing advantage yet,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

150

a down time of few minutes caused by this same tool almost
always result in financial and/or physical damages to the
customer and loss of revenue to the bank with a result
wavering customer loyalty [18]. The discomfort through
which customers have to pass makes them to quickly forget
the conveniences afforded by the technology.

The dependence of the commercial banking system (such as
that of Nigerian) on the global inter-network of computers and
related accessories has become a critical factor in determining
the quality of service delivery [19] [17]. Therefore, outages in
customer services of these banks with respect to its underlying
DDBMS need to be minimized as much as possible. One of
the ways of achieving this is building fault tolerance (FT) into
the system [11] via redundancy concepts such as data
replication.

IV. FT IN DDBMS
According to [20], a system is said to be fault-tolerant (FT)

if it can mask the presence of one or more faults in the system
by using redundancy while performance may be degraded.
That is, FT allows a system to continue to behave according to
design objectives. Redundancy implies the presence of parts or
modules of similar configuration to the one that is functioning
but whose purpose is to form error checking quorum and
possibly take over the functions of the active module when it
fails. To achieve a reliable, high-availability system, [21]
suggests two very different approaches which are fault-
avoidance and fault-tolerance. Fault-avoidance is prevention
of fault-occurrences by construction, while fault-tolerance,
according to him is the use of redundancy to avoid failures due
to faults [21]. According to [21], fault-avoidance is difficult,
and close to impossible in large and complex systems.
Therefore, FT is the only realistic alternative for the class of
system (DDBMS) under consideration.

Implementing FT in a DDBMS with respect to the
underlying network may take the form of hardware
redundancy. Thus, it is important that a failing component
(site) stops functioning and transfer its responsibility (via well
established algorithms) to an otherwise redundant and similar
component meant for the same/similar purpose in the system.
To achieve redundancy, modules (sites) can be in duplicate in
the form of duplex module redundancy (fig. 1) in which two
identical copies of a module are connected to a comparator
that checks their respective output. When the output differs, a
fault is detected. Since the fault is detected immediately
(albeit, with a small latency), it is therefore called fail-fast
[21]. In the form of triple module redundancy (TMR) as in fig.
2, the expectation is that outputs from all components should
be similar. If one (or more) is different, a fault signal is sent to
the user and the system continues to function as expected
though the failing component would have been
decommissioned [22].

Fig. 1 Duplex module redundancy

Fig. 2 Triple module redundancy

This is fail-vote setup since it requires a majority vote to

determine the correctness of the outputs of the respective
modules [21].

Unlike software systems meant for small, self-contained DB
systems, it can be extremely difficult to find and diagnose
more unusual bugs in software systems meant for DDBMS.
Approaches to developing software that can tolerate software
design (programming) errors or user fault have made use of
static and dynamic redundancy approaches similar to those
used for hardware faults. Some of these are N-version
programming [23], recovery blocks [22] and N-self checking
programming [24]. Another means by which FT can be built
into a (distributed) system via redundancy is by adding extra
information (meta data) to data, to allow error detection and
correction. These are typically error-detecting codes, error-
correcting codes (ECC), and self-checking circuits [21] [25].

Data replication which is a form of information redundancy
represents a particular simple instance of the more general FT
technique of introducing redundancy. Reference [26] defines
data replication as the making of straightforward copies of
meaningful units of data, processing or communication. The
two main replication techniques are primary backup
replication and active replication. Replication could be
described as active when a primary server (RM) processes the
client’s requests and replies the client immediately (fig. 3). On
the other hand, replication is described as passive when
primary server (RM) processes client’s requests, propagates
updates to other backup replica servers and then responds to
the client’s request (fig. 4).

Whichever technique is adopted in a particular system
dictates the mode of inter component communication within
the system. The modes are group and point to point
communication. Generally FT system architecture is made up
of the client (C), front end (FE) that is, the client interface and
replica manager (RM) which is the service provider [27]. The

Voter

Module
A

Output

Module
C

Module
B

Comparator

Module
A

Output

Module
B

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

151

basic model for managing replicated data as stated by [27] is
described in the following algorithm:
a. Request: Client issue requests to a frond end.
b. Server coordinates: The replica server coordinate (through

the FE) with each other to synchronize the execution of
the operation (ordering of concurrent).

c. Execution: The FE contacts one or more RMs to retrieve
or store the data.

d. Agreement coordination: The RMs interacts to ensure that
data is consistent.

e. Response: Outcome of operation is transmitted back to C.

V. SYSTEM DESIGN
The proposed model is designed with respect to the

fundamental objectives (data consistency, availability and
reliability) of data redundancy towards ensuring a fault
tolerant DDBMS. The model comprises of components (users,
database storage, database engine, application logic, user
interface, communication links, sites or nodes and messaging)
that are typical of a DBMS. Some of these components such
the DB engine, user interface, application logic, users etc. are
implied in the model. While others such as the communication
links, nodes and inter-node relationships are obvious from the
design, considering the fact that being a model, only the
generic features of the design has to be explicitly featured.
This is ensured through guiding protocols in the form of
formats, rules and procedures for performing design functions.
Such activities may include managing (member joining or
leaving a group) the clustering of sites, assumptions and
specifications on which inter node communications are based,
relationship (parent or child node) amongst nodes etc.

A site can only communicate directly with a limited number
of other sites. This, in line with design objectives, ensures
minimal cost (heavy traffic, congestion, component failure) of
data transmission thereby ensuring the availability of data with
minimal delay. With respect to group membership, established
protocols helps to ensure that all sites have the correct global
map of the network of the system. This ensure that there are
no unnecessary data transmission to failed sites and this in
turn speeds up transmission because there is no waiting for
response from a failed sites. Also, the adopted replication
protocols for the proposed design ensure that data remains
globally consistent, reliable and available irrespective of
system condition.

The sites of the proposed model are homogeneous because
the design is with reference to a field of application (banks) in
which installed DBMS, user application and network structure
are the same across sites. The database of the proposed model
design is based on the relational database model. This is
because it is easy to implement and maintain. Moreover, it is
compatible with the data management requirements of the
reference field of application. Database operations are on real
time basis. The proposed model uses temporal data items. That
is, there is emphasis on their timeliness.

Fig. 3 Active replication model

Fig. 4 Passive replication model

A. Architecture of Model
Observations have shown that business organizations are

inherently centralized but with varying degree of
decentralization hence, the adoption of the network structure
in Fig. 5 [33] for the proposed replication model. Objects in
the proposed model interact by passing messages (Table I)
which could be a request for data update or retrieval in either
user or system table(s). In the proposed replication model,
database D is distributed over N nodes. Each database di (for 0
< i ≤ N) is resident at a node N called a site (Fig. 5). Each site
hosts a set of temporal user and system data objects. The site
is called the PS for those data objects. Every site has a front
end (FE) made up of transaction coordinator (TC) and
transaction manager (TM) with which distributed processes
are managed.

The proposed model adopts cluster approach to replication
in which sites are grouped into metropolitan area networks
(MAN), each made up of a primary and one or more
secondary sites. The MANs are hierarchically connected to
form a tree shaped WAN (Fig. 5). This structure agrees with
the usual geographical distribution of the reference field of
application (banks). The structural model is made up of one
headquarters (HQs) site S1, two regional branches (RB) S2 and
S3, four zonal branches (ZB) S4 to S7 and eight branches (B)
S8 to S15. Here, a collection of Bs is headed by a ZB. A
collection of the ZBs is in turn headed by higher level RB. The
hierarchy builds up until it gets to the HQs of the bank. The
ZB-B relationship is that of primary to secondary site (SS).

Primary

Backup

Backup

RM

RM

RM C FE

C FE

RM

RM

RM

FE C FE C

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

152

Fig. 5 Schematic diagram of a clustered networked organization

Similarly, there is a PS to SS relationship between the RBs

and the ZBs and so on. The processing and storage capacity at
a site is directly proportional to its level on the hierarchy so
that S1 has the highest capacity while the branches have the
lowest capacity. For a specific data item, the data copy at the
PS is called primary copy and the copies that are replicated are
called the replicas. The database size is the total size of the
databases at all sites defined as follows:

ܦ ൌ ∑ ݀௜

ே
௜ୀଵ (1)

where N = 15 and i is the ith database at the ith site.

B. Design Assumptions
To ensure that only generic features are considered and that

details of reality do not introduce unnecessary and avoidable
level of design details, assumption about the practical
application of the model and the specifications under which it
can be implemented were considered subject to design
objectives. The assumption and specification guiding the
global state of the network, inter-site mode of communication
and interaction and global system behavior are thus presented:
• Message passing is structured because of the existence of

a physical (and logical) order in the form of a hierarchy
along which communication flows [28].

• The DDBMS is modeled as a set of services implemented
by server (PS) processes and invoked by client (SS) or
local RM processes [29] through message passing.

• No two adjacent PSs within a region should be down at
the same time. This ensures that at no time are PSs of a
given hierarchy level loaded beyond their maximum
capacity.

• Redundancy in connection there are errors due to break in
communication links.

• Replication is symmetrically done on two adjacent sites
within a region and upwardly from SSs to PSs.

• A complete communications sequence includes source
and destination site ID, message sequence number to
avoid unnecessary re-transmission, timer to know if/when
to retransmit, and acknowledgement (ACK) of reception
to the sender. The last three are usually handled at system
level.

• PSs are configured for contingency extra load from
secondary sites of adjacent zone or region.

The Bs are the most accessible to customer thus, there is no
PS to B replication and this keeps the Bs as light as possible in
terms of quantity of data they hold. Hence, model is based on
1-dimensional partial replication [30].

C. Managing Group Membership
For the various sites to interact effectively there has to be

well established communication modes to ensure
synchronization of site activities. Atomic broadcast
(ABCAST) provides atomicity and total order. Reference [29]
illustrates thus: let m and m’ be two messages that are
ABCAST to the same group g of servers (sites). The atomicity
property ensures that if one member of g delivers m, then all
(not crashed) members of g eventually deliver m. The order
property ensures that if two members of g deliver both m and
m’, they deliver them in the same order. On the other hand,
view synchronization broadcast (VCAST) handles
communication issues by treating g as a view and handling
changes in such view as processes join or leave g.

Geographic Region Geographic zone

RB1(S2) RB2(S3)

HQs(S1)

B1(S8) B2(S9)

ZB1(S4)

B3(S10) B4(S11)

ZB2(S5)

B6(S13) B5(S12)

ZB3(S6)

B8(S15) B7(S14)

ZB4(S7)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

153

TABLE I
INTERPRETATION OF INTRA AND INTER SITE COMMUNICATION MESSAGES

Sn Format Message Parameters Intra Site
(I), Inter
Site (E)

1 (CATUPDATE, a, b) CATUPDATE a = failed site, b = what happened to site I
2 (FAIL, a, b, c) FAIL a = sender, b = failed site, c = receiving site E
3 (ELECTREQ, a, b, c) ELECTREQ = Request to be elected a = requesting site, b = failed site, c = receiving site E
4 (CATUPDATE, 4, 2, ELECTREQ) CATUPDATE = update local catalo a = requesting site, b = failed site, c = request I
5 (SELECTED, a, b, c, d) SELECTED = A site has been selected a = sender, b = selected site, c = failed sites, e = receiving

site
E

6 (CATUPDATE, a, b, SELECTED) CATUPDATE = update local catalo a = requesting site, b = failed site, c = a site has been
selected

I

The proposed model ensures that failure of a site before,

during, and after data update does not affect the
communication of the record updates and retrievals to relevant
sites. This is achieved via group (zonal or regional)
membership communication. The group membership process
model is as follows:
• Sites are identified by their hierarchical numbers while

database objects are named to ensure transparency and
local autonomy using aliases. In this way, users can be
unaware of the physical location of a data item.
Furthermore, the user is unaffected if the DB
administrator should decide to move a data item from one
site to another.

• Sites are grouped into multicast groups. A zone is a group
of sites within a region which in turn is a group of sites
within the wan.

• Membership changes are proactively monitored via status
check (gossip) signal [27].

• Only a site that is an SS to the failed site can initiate the
notification process.

• If the failed site is a B, only its peer can initiate the
notification process.

Fig. 6 Proposed replication model

D. Proposed Replication Model
The proposed model adopts a variant of replication

techniques as proposed by [29]. The model begins with a
logical data item x and its physical copy xi on the different
sites. The basic unit of replication is the data item. xi belong to
a tuple ti which in turn belongs to a replica ri. Clients access

the data by submitting transactions. An operation, oi(x), of a
transaction, Ti, can be either a read or a write access to a
logical data item, x in the database. Hence, the two basic
transaction type considered are update and retrieval
transaction. Delete is treated as an update that marks a record
as deleted while addition of a new record is treated as an
update of a record whose fields are empty. With respect to fig.
5, direction of replication is as follows:
• Vertically in both directions, excluding the Bs
• Horizontally between two adjacent ZBs of the same

region
• Horizontally between two adjacent RBs
• Between the ZB and the RB closest to each other

The model (fig. 6) divides client-server interaction into five
phases as explained below:
a. Request (RE): the client submits an operation to one (or

more) replicas.
b. Server coordination (SC): the replica servers coordinate

with each other to synchronize the execution of the
operation (ordering of concurrent operations).

c. Execution (EX): the operation is executed on one or more
replica servers.

d. Agreement coordination (AC): the replica servers agree
on the result of the execution (for example, to guarantee
atomicity, consistency etc.).

e. Response (END): the outcome of the operation is
transmitted back to the client.

E. Adaptation of Model
Two representative transactions are illustrated below which

involve sites using inter- and intra-site messages as interpreted
in Table I.

1. Replication of Local Update to Next Closest PS.
This is typical of a (credit or debit) Ti at a terminal branch Si

for 8 ≥ i ≤ 15 (fig. 5) on account A. The effect of this update
has to be replicated upwards to a PS Sj for 4 ≥ j ≤ 7. Model
(Fig. 6) is adapted as follows for i = 9 and j = 4 (Fig. 7):
a. Request (RE): S9 requests for a global lock over Xi. When

granted, it initiates an update transaction T9 that reduces
credit balance of A because of a withdrawal transaction,
and submit T9 to its local replica manager (RM9)
coordinated.

b. Server coordination (SC): There is no need for this phase
because RM9 is the only RM involve.

Phase 3:
Execution

Phase 4:
Agreement
Coordinati
on

Phase 1:
Client
request

Replica 1

Replica 2

Replica 3

Phase 2:
Server
Coordinati
on

Phase 5:
Client
contact

Client Client

Update
E ti

Update
E ti

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

154

Fig. 7 Propagation of local changes to immediate PS

c. Execution (EX): the operations of T9 are executed on

RM9.
d. Agreement coordination (AC): RM9 and RM4 agree on

the result of the execution (to guarantee atomicity,
consistency etc.) and commit it, while at the same time
ensuring that the other is alive.

e. Response (END): the outcome of the operation is
transmitted back to the client from RM9.

The algorithm for replicating local updates to the next closest
PS is as shown in appendix.

2. Propagation of Changes in Account (A) To Other Sites
Being a clustered network, S4 only has to replicate changes

to S2 and S5 while the lock over Xi is still been maintained.
The steps to accomplish this, illustrated in Fig. 8 follow:
a. Request (RE): There is no need for this step because RM4

is the initiator.
b. Execution (EX): the operation is executed on RM2 and

RM5.
c. Agreement coordination (AC): the RM4, RM2 and RM5

send agreement and acknowledgement (ACK) message
amongst themselves (coordinated by the TC) on the result
of the execution (for example, to guarantee atomicity,
consistency etc.).

d. Response (END): the outcome of the operation is
transmitted back to the RM4.

e. Steps a to d are iterated till it gets to S1 then the pattern is
reversed starting from S3 downwards till it gets to S6 and
S7.

f. Lock over X9 is released.

Fig. 8 Propagation from PS to other sites

The algorithm for replicating updates in account A to other sites

is as shown in the appendix.

F. Performance Evaluation
Performance of the system (model) was measured in terms

of its availability and reliability, subject to the design
objectives. To achieve this, the metrics of the system that were
monitored were used to assess its behavior (performance). In
quantitative assessments, relevant system attributes are most
often qualified probabilistically and modeled to simplify the
process [31]. For example, reliability, R(t) which is the
conditional probability that the system can perform its design
function at time t given that it was operational at time t = 0 is
used. Likewise, availability, A(t) which is defined as the
probability that the system is operational at time t could also
be used. To ensure a system remains reliable and available in
the presence of faults, there has to be timed automatic and/or
manual repairs.

Two of the metrics used to evaluate the performance of the
proposed model are statistical mean time values of the system
failure and repairs times [31]. Mean time to failure (MTTF) is
the expected time of failure of the system while mean time to
repair (MTTR) is the expectation of the time repair a failure.
A combination of these two parameters gives steady state
availability as:

௦௧௘௔ௗ௬ ௦௔௧௘ܣ ൌ ெ்்ி
ெ்்ி ାெ்்ோ

 (2)

A highly available system means that availability is close to

1. This will be if MTTF is relatively large. A smaller MTTF
implies that availability varies significantly with repair time.
Therefore, the performance of the proposed model can be
compared with that of other models (for example, centralized
systems) in terms of MTTF and MTTR. As an illustration, let
x0 be the value of MTTF of the proposed model and let the
model network structure (Fig. 5) be further abstracted to S1,
S2 and S3. The resulting four possible sates of the system with
respect to either healthy or failed state are shown in Fig. 9.

Phase 5:
Reply
RM4,2,3

Phase 4:
Agreement
Coordinatio
n

Phase 1:
Client
contact

RM4,2,3

RM2,1,6

RM5,3,7

Phase 2:
RM
Coordinati
on

Phase 3:
Execution

Apply

Apply

Updat
e

Updat
e

VS
Cast

Unlock
Xi when
iteration
is done

VBCAST

iterate {4,2,5},{2,1,3},{3,6,7}

Phase 2:
RM
Coordinati
on

Phase 1:
Client
contact

RM9

RM4

Client

Phase 3:
Execution

Phase 4:
Agreement
Coordination

Phase 5:
Client
contact

Client

VS
Cast

Apply

Apply Update
Execution

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

155

Fig. 9 Transition diagrams to estimate the MTTF (x) of proposed

model

The more the sites to which data is replicated, the higher the
value of MTTF is (Fig. 9). MTTF initially had a value of x0
with all sites healthy but started reducing as sites failed down
to x3 (x0 > x1 > x2 > x3). System state with only S1 healthy
could be compared to a system in which all data are held in a
location with no copies anywhere else that is, a centralized
system. Therefore, it can be concluded that the replicated
model is more dependable (availability and reliability) than
the non-replicated and centralized system.

Fig. 10 Transition diagrams to estimate rate of change of state of

proposed model

With reference to [32], another model that was used to
assess the performance of the proposed model is the Markov’s
model (named after the mathematician Andrei Markov).
Assuming that each site in the proposed model represents a
component in the system, the probability of the state of one
component at t = t0 gradually changes to the probability of the
state of the same component at t = t1 (Fig. 10) where λ is the
parameter of the rate of transition. If Pj(t) is the probability
of the proposed model being in state j at time t and the site in
question is known to be healthy at some initial time t = 0, then
the initial probabilities of the two states are P0(0) = 1 and
P1(0) = 0. Thereafter the probability of state 0 decreases at a
constant rate (not always the case in reality) λ, which means
that if the system is in state 0 at any given time, the probability
of making the transition to state 1 during the next increment of
time dt is λdt. Therefore, the overall probability that the
transition from state 0 to state 1 will occur during a specific
incremental interval of time dt is given by multiplying the
probability of being in state 0 at the beginning of that interval,
the probability of the transition during an interval dt given that
it was in state 0 at the beginning of that increment. This
represents the incremental change dP0 in probability of state 0
at any given time as modeled below:

݀ ଴ܲ ൌ ሺ ଴ܲሻሺλdtሻ (3)

Dividing both sides by dt gives

ௗ௉బ
ௗ௧

ൌ െλP଴ (4)

This implies that a transition path from a given state to any
other state reduces the probability of the source state at a rate
equal to the transition rate parameter λ multiplied by the
current probability of the state. Now, since the total
probability of both states must equal 1, it follows that the
probability of state 1 of the component must increase at the
same rate that the probability of state 0 is decreasing. The
actual Markov model of the designed system will include a
“full-up” state (that is, the state with all sites operating) and a
set of intermediate states representing partially failed
condition, leading to the fully failed state, that is, the state in
which the system is unable to perform its design function. The
model may include repair transition paths as well as failure
transition paths.

One of the factors that determine the rate of transition (λ)
from healthy to failed state depends on how much redundancy
there is in the system. Given the same conditions, for example,
a DMR takes shorter time to transit (takes two failed
components to disable the system) while a TMR takes longer
time. That is

െ ௗ௉బ

ௗ௧
ଵ ߙ

௫
 (5)

Therefore, again, it can be concluded that the proposed

distributed and replicated DB model will take a longer time to
fail than a non-replicated centralized system.

VI. CONCLUSION
Having studied the application of FT in the deployment of

IT in the Nigerian commercial banking industry, the resultant
proposed design model presents some implications and some
areas of further studies. Site-wide data replication enhances
MTTF thereby reducing frequency of service down time. As a
result, loss of revenue due to leaving of dissatisfied customers
will be minimized. The bank in question will be able to
increase its share of the market continually as more customers
will naturally want to do business with such bank. On the
other hand, there is an initial cost of ensuring an FT system.
However, the effect of such cost is eventually off-set by the
initially mentioned implications.

APPENDIX
1. Algorithm for replicating local update to next closest PS is as
follows:

BEGIN
 LET j = 4; i = 9;
 PROPAGATE (i, j)
 {

While lock request on di.ri.ti.Xi is pending{request lock on
di.ri.ti.Xi;}
While di.ri.ti.Xi is locked {

Si READ Xi FROM di.ri.ti WHERE di.ri.ti.accounID =
‘CustomerId’;

Si SET Ti = di.ri.ti.Xi - withdrawn_amount;
Si submit Ti to TMi;
TMi BEGIN Ti of oi(x);
TMi submit resulti of oi(x) to RMi;

λ State 0:
Healthy

State 1:
Failed

S1
healthy

S1, S2
and S3
healthy

S1, and
S2

healthy

X1/3 X2/2

All sites
failed

X3/1

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

156

IF !passMessage (UPDATE, result, T, i, j) {
PROPAGATE (i, j+1);)}}

IF RMi AND RMi-5 alive AND RMi agrees with RMi-5
on resulti-5 of oi(x) THEN COMMIT Ti of oi(x) at RMi

AND RMi-5;
Release lock on di.ri.Xi.ti;
RMi send resulti to Si;

}

BOOLEAN passMessage (a, b, c, i, j)
{

FOR (timeCount = 0; timeCount ≤ 4; timeCount++) {
 WHILE !timeOut AND no ACK from {
 RMi UNICAST MESSAGE (a, resulti , Ti) to RMj;

IF timeOut THEN BREAK; ELSE
RETURN ACKi;
 }
 timeCount++;
}
RETURN FALSE;

 }
 }
END

2. Algorithm for replicating updates in account A to other sites is as
follows:

BEGIN
 FOR (i = 4; i ≤ 2; i -= 2) {

LET di.ri.ti.Xi = obji
IF i = 4 THEN {

IF RMi is alive THEN {
RMi ABCAST obji to RMi-2 AND

RMi+1;
IF RMi-2 is alive THEN {RMi-2
UPDATE obji-2; RMi-2 ACK RMi;
}
IF RM i+1 is alive THEN {RMi+1
UPDATE obji+1; RMi+1 ACK
RMi;}

} ELSE {
RM i+1 UNICAST obji+1 to RMi-2;

 IF RMi-2 is alive THEN {
RMi-2 UPDATE obji-2;

RMi-2 ACK RMi+1;
 } ELSE {

 RMi+1 UNICAST obji +1to
RMi-1;

 RMi-1 UPDATE obji-1; RMi-1

ACK RMi+1;
}

 }
 }ELSE IF RMi is alive THEN {
 {
 RMi ABCAST obji to RMi-1 and RMi+1;

 IF RMi-1 is alive THEN RMi-1 UPDATE obji-1; RMi-1
ACK RMi;

IF RM i+1 is alive THEN RMi+1 UPDATE
obji+1; RMi+1 RMi;

 }
}

FOR (i = 1; i ≤ 3; i += 2) {

LET di.ri.ti.Xi = obji
IF i == 1 AND RMi is alive THEN {

IF RMi+1 is alive AND obji +1 <> obji THEN
{

RMi UNICAST obji to RMi+1;
RMi+1 UPDATE obji+1; RMi+1

ACK RMi;
}
IF RMi+2 is alive AND obji +2 <> obji THEN

{
RMi UNICAST obji to RMi+2;

RMi+2 UPDATE obji+2; RMi+2
ACK RMi;
}

}ELSE IF i == 3 AND RMi is alive THEN {
IF RMi+3 is alive AND obji +3 <> obji THEN

{
RMi UNICAST obji to RMi+3;
RMi+3 UPDATE obji+3; RMi+1

ACK RMi;
}
IF RMi+4 is alive AND obji +4 <> obji THEN

{
RMi UNICAST obji to RMi+4;
RMi+4 UPDATE obji+4; RMi+4

ACK RMi;
}

 }
}

END

REFERENCES
[1] M. Beck, “Centralized versus Decentralized Information Systems in

Organizations”, Emporia state university, 2010, p. 33.
[2] E, F. Codd, “A relational model for large shared data banks”,

Communications of the ACM. Vol. 13, No. 6, 1970, pp. 377-387.
[3] O. Folorunso, “CIT844 Advanced database management system”,

National Open University of Nigeria, Lagos, Nigeria, 2009, pp. 82 –
103, 207.

[4] K. Jahangir, “Improving organizational best practice with information
systems”. Knowledge Management Review, 2005.

[5] M. K. David and J. A. David, Database concepts, New Jersey, Prentice
Hall, 2008.

[6] H. V. Jagadish, L. V. S. Lakshmanan, and D. Srivastava, “Revisiting the
Hierarchical Data Model”, IEICE Trans. Inf. & Syst.Vol. E82-D, No. 1,
1999, p. 3.

[7] W. Zhang, “CSS5443 Database management syatem – Relational
database”, University of Texas, San Antonio, 2011, p. 5.

[8] S. K. Singh, Database systems. Concept, design and application,
Dorling Kindersly, India, PVT. Ltd., 2011, pp, 20, 441.

[9] C. Ray, C., “Distributed database system”, Pearson Education India,
2009, p 36.

[10] O. J. Oyelade, “CIT853 Advanced database management system”,
National Open University of Nigeria, Lagos, Nigeria. 2013, pp, 12 – 20.

[11] P. Krzyzanowski, “Distributed systems – Fault tolerance – Dealing with
an imperfect world”, 2009.

[12] P. Mancier, “Managing database operations using ADO and C++, Part
1: Introduction to SQL”, 2011.

[13] Silberschatz, Korth, and Sudarshan, “Database system concepts”, 2005,
pp. 16, 60, 69.

[14] J. Gamper, “Distributed databases”, 2009, pp 17, 211
[15] D. Taniar, H. C. Clement, R. W. Leung, and S. Goel, “High-

Performance Parallel Database Processing and Grid Databases”, 2008, p
6.

[16] S. K. Rahim, and F. S. Haug, Distributed database management system,
John Wiley & Sons, Inc., 2010, p. 68.

[17] M. C. Elder, “Fault tolerance in critical information system”, University
of Virginia, 2001, p. 1.

[18] K. Mats, “Distributed systems basics – Handling failure: Fault tolerance
and monitoring”, 2011.

[19] O. T. Ekanem, “Productivity in the Banking Industry in Nigeria”,
Journal of Economics and Social Studies, Vol. 3, No. 7, 2003, p 24.

[20] J. Guo, “Fault tolerant computing”, The University of Michigan-
Dearborn, 2004, p. 7.

[21] K. Nørv°ag, “An introduction to fault-tolerant systems”, IDI Technical
Report, Vol. 6, No. 99, 2000.

[22] B. L. C. Ramos, “Challenging malicious input with fault tolerance
techniques”, Black Hat Europe, 2007, p 3.

[23] A. A. Avizˇienis, “The methodology of N-version programming”,
University of California, 1995, pp. 24-46.

[24] L. L. Pullum, “Software fault tolerance. Technique and
implementation”, Artec House Inc., 2001, pp. 132, 150.

[25] D. P. Siewiorek and R. S. Swarz, Reliable Computer Systems: Design
and Evaluation, Digital Press, 1992.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

157

[26] A. H. Abdelsalam, B. B. Abdelsalam, and B. B. Bharat, Replication
techiques in distributed systems, Kluwer Academic Publishers, 1996, p
108.

[27] M. Aksu, “Fault tolerance in distributed systems”, 2005, p 21, 23.
[28] J. Weijia, Z. Wanlei, Distributed network systems: From concepts to

implementations, Springer, 2006, p. 44.
[29] M. Wiesmann, F. Pedone, A. Schiper, B. Kemme, and G. Alonso,

“Understanding replication in databases and distributed systems”,
Proceedings of the 20th international conference on distributed
computing systems, 2000.

[30] N. Matthias, J. Matthias, “Performance modeling of distributed and
replicated databases”, IEEE Transactions On Knowledge And Data
Engineering, Vol. 12, No. 4, 2000, pp. 645-672.

[31] V. P. Nelson, “Fault tolerance computing. Fundamental concept”, 1990,
p 19.

[32] P. Pukite and J. Pukite, Markov Modelling for Reliability Analysis,
Wiley-IEEE Press, 1998.

[33] M. Kaiser, M. Görner, and C. C. Hilgetag, “Criticality of spreading
dynamics in hierarchical cluster networks without inhibition”, New
Journal of Physics. Vol. 9, 2007.

