
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

125

Abstract—Measuring the reusability of Object-Oriented (OO)

program code is important to ensure a successful and timely
adaptation and integration of the reused code in new software
projects. It has become even more relevant with the availability of
huge amounts of open-source projects. Reuse saves cost, increases
the speed of development and improves software reliability.
Measuring this reusability is not s straight forward process due to the
variety of metrics and qualities linked to software reuse and the lack
of comprehensive empirical studies to support the proposed metrics
or models. In this paper, a conceptual model is proposed to measure
the reusability of OO program code. A comprehensive set of metrics
is used to compute the most significant factors of reusability and an
empirical investigation is conducted to measure the reusability of the
classes of randomly selected open-source Java projects. Additionally,
the impact of using inner and anonymous classes on the reusability of
their enclosing classes is assessed. The results obtained are
thoroughly analyzed to identify the factors behind lack of reusability
in open-source OO program code and the impact of nesting on it.

Keywords—Code reuse, Low Complexity, Empirical Analysis,
Modularity, Software Metrics, Understandability.

I. INTRODUCTION
OFTWARE reuse as a specific area of study in software
engineering was first introduced in the late sixties by

Douglas McIlroy [23] who proposed the usage of reusable
components in industrial software development. However,
since the early days of programming, some forms of
improvised code reuse has been practiced. Software reuse can
be seen in various forms. Code reuse is one of them and is
widely practiced today in the software industry [16]. Reusing
software design skeletons and even the design processes are
also practiced as well. Software reuse saves cost, increases the
speed of development and improves reliability [10], [13].

Structuring program code using modules is a software
quality called modularity, which has a positive impact on
reusability and maintainability. Code reuse involves reusing
modules, which are small and highly-independent programs.
In OO software, a module comprises one or several classes
whose reusability potential determines the reusability of the
module. The concept of package in Java allows organizing
classes and interfaces into namespaces similar to the modules
in other programming languages. However, the classes
belonging to a package do not need to be in a single file.

Dr. Taibi is with UNITAR International University, Petaling Jaya, 47301

Selangor, Malaysia (phone: +603-76277200; fax: +603-76277447; e-mail:
taibi@unitar.my).

Measuring the reusability of individual classes should enable
assessing the reusability of modules or packages in OO
software projects.

Studies [20], [27] have shown a strong correlation between
complexity and software defects. Methods and functions that
have the highest complexity tend to also contain most defects.
Hence, low complexity is an important factor to consider for
code reuse together with modularity. High complexity does
not only hinder reuse but increases the maintenance cost of the
code as well. Many other qualities have been associated with
code reusability. However, there is a lack of precise metrics
that can measure this reusability accurately.

Structuring OO programs is achieved by encapsulating their
features in classes and defining relationships between them. In
a ‘clean’ code [22], classes should be primitive and small in
size. Because classes are primitive they should not contain a
large number of methods. For example, the value 7 has been
proposed as an upper bound for the number of methods in a
class and 150-200 Lines of Code (LOC) for its size. However,
size is not a very significant factor to complexity since very
often a small class may be more complex than a larger one.
Furthermore, code smells [9] provide a different way for
dealing with ‘unclean’ code such as the presence of too many
parameters in a method.

OO classes could be further structured using inner and
anonymous classes [25]. These classes have been found to be
useful in quite a number of cases such as when developing
graphical user interfaces, handling events and encapsulating
functionality. However, classes that contain inner or
anonymous classes tend to look more complex than those that
don’t include them. Additionally, anonymous classes could be
replaced by a method since they will never be used anywhere
else in the software. This raises an important question on the
real impact inner and anonymous classes have on the
reusability of their inclosing classes.

Code reuse is widely practiced today either by people in
academia (especially students) or in software industry. This
was made possible by the availability of huge amounts of
open-source projects over the Internet. A considerable amount
of this code is OO. The overall quality of most of these
projects is unknown. Reusing them blindly can cause my
problems. Students can accumulate bad design and coding
habits as a result of that. Worst, student cannot attain a certain
level of problem solving and critical thinking skills as a result
of excessive reuse of poor quality code. Professional
developers on the other hand may waste valuable time trying

Fathi Taibi

Empirical Analysis of the Reusability of
Object-Oriented Program Code in Open-Source

Software

S

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

126

to reuse code with poor reusability to reach their standard of
quality. Hence it would be very useful if there is a way to
measure the reusability of the classes contained in this
program code accurately in order to discard open-source
projects with poor reusability from being reused, which should
benefit various people who rely on code reuse.

A conceptual model to measure the reusability of OO
classes is proposed in this paper. A set of well-established
metrics is used to compute the most significant factors of
reusability and an empirical investigation is conducted to
measure the reusability of the classes of randomly selected
open-source Java projects. Additionally, the impact of using
inner and anonymous classes on the reusability of their
enclosing classes is assessed. The results obtained are
thoroughly analyzed to identify the factors behind lack of
reusability in open-source OO program code and the impact of
nesting on it.

II. RELATED WORK
Code reusability depends on several factors. Complexity is

one of these factors and has a negative impact on it (i.e. low
complexity is desired). Modularity, on the other hand, has a
positive impact on it. In fact, the latter is considered almost a
pre-requisite for reusability. Many other factors have been
found to enhance the quality of source code and potentially
improve its reusability. One of these factors is
understandability or readability [4]. It is a crucial factor for
code reuse since it is associated with the way the code is
written. Using naming conventions [18], writing useful code
comments and making sure the layout of code makes it
readable are example of techniques that can enhance
understandability and the overall software quality. Using
domain names in code can help understandability. It was
highlighted in [14] that in almost half of several studied open-
source systems, domain names were used in the source code.
Moreover, the usage of naming conventions has been found to
be reliable if the names used are related to the concepts
implemented [2]. Furthermore, in [7] an approach was
proposed to help developers in maintaining consistency
between source code identifiers, comments and high-level
artifacts. The approach included an identifier suggestion
feature, among others.

Reusability of code is also associated with classes that
possess two important qualities namely high cohesion [1] and
low coupling [6]. High cohesion means the elements of a class
have a strong correlation. Low coupling means limiting the
number of dependencies between classes as much as possible.
Lack of Cohesion of Methods (LCOM) and Coupling between
Objects (CBO) [5] are examples of reliable metrics that can
measure cohesion of classes and coupling between them. Even
Cyclomatic Complexity (CC) [21] has a proven relationship
with cohesion and coupling. This was shown in many studies
such as in [26]. Moreover, excessive coupling between classes
was found to be a very reliable predictor of faults in OO
systems as indicated in [12] and [29]. It was found in [12] that
CBO is more reliable than LCOM and several other OO
design metrics in predicting faults. In [8], a strong correlation

between CBO, the Depth of Inheritance Tree (DIT) and fault-
proneness was established. Furthermore, LCOM was found to
have some limitations when most of the methods of a given
class access more the fields and methods of its super class(es)
than the fields defined locally. This was verified empirically in
[19].

Measuring code reusability is not a straight forward process
since it depends on several factors. Most of them are hard to
compute and are not representative when considered alone.
Moreover, some free tools are available (e.g. Sonar [11], C
and C++ Code Counter (CCCC) [30]); they allow measuring a
wide range of software metrics, some of which may be related
to reusability. However, most of these tools simply display the
results without any interpretation of their significance,
especially in case of reusability. Hence, they fail to answer the
basic question in this situation, which is what is the exact
reusability potential of a class or a module.

Assessing code reusability could enable some indirect
discoveries to be made. The detection of software defects is
one of them. For example, during development while
assessing code quality and performing refactoring to make it
reusable, several types of defects can be detected. Defects are
very costly to detect and correct after software is released.
Detecting them at an early stage can lead to huge amounts of
savings. Some estimate these savings to be in the order of tens
of billions of dollars in the United States alone [3], [15].

All OO programming languages allow inheritance while
some of them allow inner classes. Java is an example of a
language that supports both features. Inner classes could be
named, for example a class ‘B’ could be defined inside a class
‘A’. The results of compiling the class ‘A’ is two classes
namely A.class and A$B.class. Moreover, inner classes could
be anonymous. The result of compiling them produces classes
whose names are derived from the outer class with an
additional numerical sequence. For example, A$1.class and
A$2.class are produced when compiling the class ‘A’ if it
contains two anonymous class blocks. Inner and anonymous
classes have been found to be useful in quite a number of
cases such as when developing graphical user interfaces,
handling events and encapsulating functionality. However,
classes that contain inner or anonymous classes tend to look
more complex than those that don’t include them. Moreover,
they could create ambiguity over direct super-classes since
there could be several classes with the same name in the
program, which is made possible through nesting classes. This
was investigated in [17] and a non-deterministic algorithm
was proposed to address this problem. All these problems
associated with inner and anonymous classes make their
associated code less readable and probably more complex.
Hence, it could affect their reusability. Investigating the
impact of inner and anonymous classes on the reusability
potential of their outer classes is worthy. However, this
problem has somehow not been given much attention in the
literature.

In [28], a small-scale empirical investigation was conducted
to measure the reusability of open-source program code. The
projects considered were small in size, they incorporated a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

127

small number of modules and their size in terms of LOC was
small as well. The results obtained showed that the studied
modules have an acceptable overall reusability. However, they
have a relatively poor modularity and understandability.
Excessive coupling and low cohesion was observed in more
than third of the modules. Additionally, the ratio and quality
of code comments was relatively poor and has poor correlation
with program entities and domain names. Only a small
number of metrics were used to measure the degree to which
the factors used to assess the reusability of a module are
satisfied. Using more metrics should enable a better precision
in the calculation. However, this could make reusability
assessment less effective. Hence, it is crucial to identify and
use only the metrics that have the highest impact on the factors
that affect code reusability directly or any other quality that
helps indirectly achieving it.

III. THE PROPOSED MODEL
In order to come out with a model that is as accurate as

possible, several code metrics representing the factors that
have some direct or indirect relationship with code reusability
were investigated. A new metric was proposed to measure the
reusability of a class precisely and effectively. It consists of a
weighted balance among three of the most important factors
that have been proven to have a significant impact on the
reusability of classes. Several attributes are used to assess each
factor since one attribute in isolation cannot guarantee that a
factor is achieved. For example, writing useful code comments
is one of the most significant techniques that can enhance
understandability. However, having a high percentage of
comments alone cannot guarantee understandability unless
they are related to code statements. The calculation uses both
textual and structural information extracted from source code.
The proposed reusability metric (R) is a function of three
factors:

Fig. 1 Elements of the proposed model

- Modularity (M): the degree of modularity is a value

between 0 and 1 that is assessed through measuring the
cohesion and coupling of the classes of a project. LCOM
and CBO are used to perform the assessment of cohesion
and coupling respectively. Since CBO is a good predictor
to fault proneness, the modularity metric contributes in
discarding fault-prone classes from being reused.
Similarly, it eliminates classes with poor maintainability
since poor cohesion lowers maintainability.

- Understandability (U): the degree of understandability of
a class is a value between 0 and 1 that is assessed through

the signification or relevance of names used for its
classes, fields and methods (Relevance Of Identifiers -
ROI), the rate of code comments and their correlation
with the names used (Correlation Identifiers Comments -
CIC).

- Low Complexity (LC): the average CC of the methods of
a class is used as an indicator of complexity; the value 10
is used as threshold. CC alone is very significant.
However, it was recommended in [22] that a class should
have no more than 7 methods or else it becomes gradually
too complex as the number of methods increases. Hence,
the Number of Methods (NM) per class is considered as
well. Furthermore, DIT is also used in the assessment
with the threshold 5 being the upper bound for an
acceptable complexity. The class size in terms of LOC
was not included in the calculation of LC because it is not
very significant to complexity. The metric LC is also a
value between 0 and 1.

Hence, the reusability of a class is calculated as follows:

∑ λ × (1)

where Fi are the factors used to assess reusability,λi represent
tuning parameters and Σλi= 1.

For a given class, M is calculated based on its LCOM and
CBO. A highly cohesive class should have an LCOM equal to
zero. Even though there is no best value for CBO, many tools
such as Sonar assume that an acceptable value is less than or
equal to five. This sounds logical since a class in a module
must have at least some relationships with the other classes, or
else it should be moved out of the module. Moreover, since
many studies have shown that CBO is a reliable metric for
fault-proneness (more reliable than LCOM) as indicated
earlier, in the proposed formula to compute M, CBO is given
more weight than LCOM. Furthermore, the calculation of U is
based on two metrics (ROI and CIC) using the information
extracted from the source code (i.e. names and comments).
ROI is calculated as the ratio of the number of relevant names
used in a class by their total number. Relevance in this case
means that a name is meaningful and is related to domain
information or the requirements. CIC is calculated using a
similarity metric based on N-Grams [24] (N=2 is used in this
study) since the latter is good in situations where there may be
a change of word order. This happens often when comparing
names of program elements and comments. U is calculated as
the average of ROI and CIC. Finally, LC is calculated based
on the NM in a class, its DIT and the average CC of its
methods. The average CC and DIT are given more weight
because of their significance to complexity and fault
proneness. LC is calculated as weighted average of NM, DIT
and CC. The calculation of the factors M and LC is made
using the following formula:

F
∑ α ×

∑ α
 (2)

Wj (j∈[1, m]) are the weights of the metrics used to calculate

Modularity

Understandability Low Complexity

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

128

the factor F and αj (j∈[1, m]) are the tuning parameters. The
weights of the metrics used to calculate the factor M and LC
are shown below.

TABLE I

WEIGHTS OF THE METRICS USED TO CALCULATE THE FACTORS M AND LC
Wj 1 0.75 0.5 0.25 0

C
on

di
tio

n

LCOM=0 0<LCOM<3 3≤LCOM<5 5≤LCOM≤10 LCOM>10
CBO≤5 5<CBO≤7 7<CBO≤9 9<CBO≤10 CBO>10
CC≤10 10<CC≤20 20<CC≤35 35<CC≤50 CC>50
NM≤7 7<NM≤10 10<NM≤13 13<NM≤16 NM>16
DIT≤5 5<DIT≤7 7<DIT≤9 9<DIT≤10 DIT>10

An extensive set of experiments were conducted and a

heuristic method was used to finalize the values of αj as well
as to find the best balance among the tuning parameters (i.e.
λi). The weight of U was found to be slightly less significant
than the weights of LC and M. A large number of the classes
used in the experiments have high scores in LC and M but are
not properly commented and/or the names used for their
elements are not ideal. The best results (i.e. the most
representative of reusability) were obtained for αj=1.5 for
WCC, WDIT and WCBO, αj=1 for WNM and WLCOM (i.e. CC, DIT
and CBO were given more weight than NM and LCOM
respectively), λi=0.3 is used for U and λi=0.35 is used for LC
and M.

IV. EVALUATION
In order to test the proposed model with some OO classes,

22 Java projects were randomly selected from ‘sourceforge’
website [31]. These projects represent various types such as
application, utility, tool, game and animation. They
incorporated a total of 497 files comprising 908 classes with a
total of 80769 LOC. The following table shows the details of
the selected projects.

TABLE II

DETAILS OF THE SELECTED PROJECTS
 Max Min Median Mean Std

#Modules 140 1 19 22.59 37.87
#Classes 303 6 28 41.27 82.49

#Inner Classes 49 0 1 4.55 14.4
#Anonymous

Classes 72 0 5 12.14 22.05

Size (LOC) 16766 234 2098 3671.32 4917.59
%Comments 12.82% 1.16% 5.63% 5.68% 3.59%

Since the projects were randomly selected, there was a large

variation in their size translated into a standard deviation (Std)
that is larger than the mean for the size, the number of
modules, the number of classes and the number of inner and
anonymous classes. One of the projects was considerably
larger than the rest; it included 140 modules and 303 classes.
Another 4 projects incorporated between 41 and 86 classes
while all the other projects had between 6 and 39 classes.

The metrics U, LC and M were computed individually for
each class in the selected projects. In order to achieve that,
NM, LCOM, CBO and DIT were calculated using Chidamber

and Kemerer Java Metrics (CKJM) tool [32] while CC was
calculated using CCCC [30]. CIC was calculated using a
developed prototype tool that extracts the names of classes,
fields and methods from source code and calculates the
similarity between these names and code comments. ROI was
assessed manually by two different developers and the average
value was taken. The results were then thoroughly analyzed.
Fig. 2 shows the reusability of each class in the studied
projects where the results are sorted for a better analysis.

Fig. 2 Reusability of the studied classes

The overall reusability of the classes in each project was

acceptable. Only 129 classes had reusability below 0.7
(14.21%). Moreover, out of these classes, only 44 classes had
a reusability below 0.5, which represents only 4.84% of all the
studied classes. The reusability of all the studied classes was
between 0.35 and 1 with an average of 0.82. Furthermore, the
classes with reusability problems (i.e. score below 0.7) were
further analyzed. They were grouped into two categories; the
first one (Cat1) incorporates those with a reusability below 0.7
but greater or equal to 0.5. The second one (Cat2) included
those with reusability below 0.5. The aim was to find out the
reason (s) why these classes had a lower reusability in
comparison with the other classes in their respective projects.
It was explained earlier that the impact of inner and
anonymous classes on the reusability of their inclosing classes
was an important factor to consider since it could make them
more complex or less modular. Hence, the ratio of classes that
included inner and anonymous classes in Cat1 and Cat2 was
analyzed; the results obtained are shown in Fig. 4. Fig. 3
shows the distribution of the classes in Cat1 and Cat2 across
the studied projects. The projects with no inner or anonymous
classes are not shown for the sake of space.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

129

Fig. 3 Distribution of classes with poor reusability

Fig. 4 Percentage of classes containing inner and anonymous classes

in Cat1 and Cat2

The results showed that the incorporation of inner and

anonymous classes has a negative impact on the reusability of
their inclosing classes. In eight projects, all the classes with
poor reusability had inner or anonymous classes. Moreover, in
another four projects, more than half of the classes with poor
reusability had inner or anonymous classes. Out of the 908
classes studied, 129 classes (i.e. Cat1+Cat2) had poor
reusability. Out of these classes, 60 classes had an inner or
anonymous class, which translates into a rate of 46.51%. This
is a significant indication that these types of classes have a
negative effect on the reusability of their inclosing classes.
This is also shown by the ratio of classes with inner and
anonymous classes in Cat2, which was more than half
(54.55%).

A further investigation was needed to identify the
performance of the classes in respect to the three factors used
to calculate the reusability metric (i.e. M, U and LC). Fig. 5
shows the percentage of classes with poor M, U and LC (i.e.
metric < 0.7) in the studied projects.

Fig. 5 Percentage of classes with poor M, U and LC in each project

The results obtained showed that poor reusability in the

classes of the studied projects was caused by under
performance in regards to the metrics M and U. For the latter
metric (i.e. U), the underperformance was associated with only
six projects whose entire classes had scores below 0.7 (i.e. P1,
P9, P15, P17, P18 and P19). This means that all the classes of
the remaining projects had scored above 0.7. This leaves M as
the only metric where underperformance was quite consistent.
The rate of classes with M below 0.7 was between 3.22% and
100% in the studied projects. Each one of these projects has at
least one class with an M below 0.7 with a maximum of 91
classes. All these indicators show clearly that the main reason
behind poor reusability can be attributed to a consistent poor
modularity across all the studied projects.

In order to further investigate this discovery, the
performance in terms of modularity of the 44 classes in Cat2
(i.e. those with a reusability below 0.5) was analyzed. The
objective was to discover any correlation between a very low
reusability and a lack in modularity; a threshold of 0.5 was
used for M as well. The results obtained were astonishing. All
the 44 classes with poor reusability in the selected projects had
modularity below 0.5 (100% correlation). This confirms the
findings discussed earlier and provides a strong link between
lack of modularity, which is measured through cohesion and
coupling in the proposed model, and poor reusability. Hence,
lack of modularity is the contributing factor behind poor
reusability in most of the classes of the selected projects.

A final analysis was needed to study the correlation
between the average reusability of classes and the online
rating of their associated projects. The number of votes itself
constitutes an important factor because it gives some
indication on the popularity of the project. Project P6 is the
most popular according to this factor since 353 people rated it
with an overall rating of 4.8 out of 5. Project P2 was the least
popular with only 2 people rating it with a perfect score (i.e.
5). In order to perform this final analysis, a relative number of
votes value was calculated by dividing each number of votes
by the maximum number of votes (i.e. the 353 value obtained
for P2). Similarly, the overall rating for each project was pro-
rated to a value between 0 and 1 by dividing each rating by 5.
The results obtained are shown in Fig. 6 where five projects
are omitted since they did not receive any votes.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

130

Fig. 6 Correlation between project reusability and rating

The results obtained showed that the rating given to the

studied projects exceeded their measured reusability in most
cases except in two projects (P15 and P20) where the ratings
were slightly below the average reusability. Moreover, for two
particular projects (P9 and P22), the difference between the
rating given and the measured reusability was quite
significant. This could be an indication of overrating.
However, since the number of votes was below 100 votes in
most projects except in three cases (P6, P10, and P20), no
definitive conclusion could be obtained regarding the
correlation between the reusability and the popularity of a
project.

V. CONCLUSION AND FUTURE WORK
An empirical analysis of the reusability of OO program

code in open-source software projects was conducted in this
paper. Reusability was calculated based on a new proposed
metric that incorporates three factors that have a significant
effect on reusability. These factors are modularity,
understandability and low complexity. A set of well-
established metrics was used to compute the degree to which
these factors are achieved by a class and a heuristic method
was used to identify the best possible weights. Moreover, a set
of randomly selected Java projects were assessed using the
proposed metric. The overall results obtained showed that the
classes of the studied projects have an acceptable reusability.
However, they showed limitations in modularity. Almost a
third of all the studied classes had modularity below 0.7.
Additionally, all the classes with low modularity had also a
poor reusability, which makes lack of modularity the most
significant factor behind poor reusability in the studied
classes. Furthermore, the understandability factor was very
poor in six projects where all their classes had
understandability below 0.7. This was due to a near absence of
code comments in these projects. However, an overall
acceptable adherence to naming conventions was observed in
a large number of projects combined with a manageable
complexity in most of the methods included in these projects.

The impact of inner and anonymous classes on the
reusability of their inclosing classes was found to be negative
and significant. Almost half of the classes with poor
reusability had inner and/or anonymous classes. This
constitutes quite a significant negative relationship between
nesting and poor reusability. Larger empirical studies must be

conducted to confirm this relationship. Finally, additional
factors and metrics need to be considered to strengthen the
proposed model while maintaining efficiency.

REFERENCES
[1] Al-Dallal, J. and Briand, L. C.“A Precise method-method interaction-

based cohesion metric for object-oriented classes,”ACM Transactions on
Software Engineering and Methodology, vol. 21, no. 2, 8:1-8:34, 2012.

[2] Anquetil, N. and Lethbdige, T. “Assessing the Relevance of Identifier
Names in Legacy System,” InProc of the Centre for Advanced Studies
on Collaborative Research Conference, 1998.

[3] Boem, B. and Basili, V. “Software Defect Reduction Top 10 List,”
Software Management, vol. 34, no. 1, pp. 135-137, 2001.

[4] Buse, R. and Weimer, W. “Learning a metric for code readability,” IEEE
Transactions on Software Engineering, vol. 36, no. 4, pp. 546 – 558,
2010.

[5] Chidamber, S. and Kemerer, C. “A Metrics Suite for Object Oriented
Design,” IEEE Transactions on Software Engineering, vol. 20, no. 6, pp.
476-493, 1994.

[6] Darcy, D. and Kemerer, C. “OO Metrics in Practice,”IEEE Software,
vol. 22, no. 6, pp. 17-19, 2005.

[7] De-Lucia, A., Di Penta, M. and Oliveto, R. “Improving Source Code
Lexicon via Traceability and Information Retrieval,” IEEE Transactions
on Software Engineering, vol. 37, no. 2, pp. 205-227, 2011.

[8] El-Emam, K., Melo, W. L. and Machado. J. C. “The Prediction of Faulty
Classes using Object-Oriented Design Metrics,” Journal of Systems and
Software, vol. 56, no. 1, pp. 63–75, 2001.

[9] Fowler, M., Beck, K., Brant, J., Opdyke, W. and Roberts, D.
Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999.

[10] Frakes, W. and Kang, K. “Software Reuse Research: Status and Future,”
IEEE Transactions on Software Engineering, vol. 31, no. 7, pp. 529-536,
2005.

[11] Gaudin, O. and Mallet, F. “Sonar,” Methods and Tools, vol. 18, no. 1,
pp. 40-46, 2010.

[12] Gyimothy, T., Ferenc, R., and Siket, I. “Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction,” IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897-910,
2005.

[13] Haefliger, S., Von-Krogh, G. and Spaeth, S. “Code Reuse in Open
Source Software,” Management Science, vol. 54, no. 1, pp. 180-193,
2008.

[14] Haiduc, S. and Marcus, A. “On the Use of Domain Terms in Source
Code,” InProc of the 16th IEEE International Conference on Program
Comprehension, pp. 113-122, 2008.

[15] Jalbert, N. and Weimer, W. “Automated Duplicate Detection for Bug
Tracking Systems,” InProc of the International Conference on
Dependable Systems and Networks, pp. 34-27, 2008.

[16] Land, R., Sundmark, D., Luders, F., Krasteva, I. and Causevic, A.
“Reuse with Software Components - A Survey of Industrial State of
Practice,” Formal Foundations of Reuse and Domain Engineering,
Lecture Notes in Computer Science, vol. 5791, pp. 150-159, 2009.

[17] Langmaacka, H., Salwicki A. and Warpechowski, M. “On an algorithm
determining direct superclasses in Java and similar languages with inner
classes—Its correctness, completeness and uniqueness of solutions,”
Information and Computation, vol. 207, pp. 389-410, 2009.

[18] Lawrie, D., Morrell, C. Field, H. and Binkley, D. “Effective Identifier
Names for Comprehension and Memory,” Innovations in Systems and
Software Engineering, vol. 3, no. 4, pp. 303-318, 2007.

[19] Makela, S. and Leppanen, V. “Observations on Lack of Cohesion
Metrics,” In Proc of the International Conference on Computer Systems
and Technologies, 2006.

[20] Marcus, D. Poshyvanyk and R. Ferenc. “Using the Conceptual Cohesion
of Classes for Fault Prediction in Object-Oriented Systems,” IEEE
Transactions on Software Engineering, vol. 34, no. 2, pp. 287 – 300,
2008.

[21] McCabe, T. “A Complexity Measure,” IEEE Transactions on Software
Engineering, pp. 308-320, 1976.

[22] McConnell, S. Code Complete: A Practical Handbook of Software
Construction, 2ndEdition. Microsoft Press, 2004.

[23] McIlroy, D. “Mass-produced software components,” In Proc 1968
NATO Conference on Software Engineering, Buxton, J.M., Naur, P.,
Randell, B. (eds.), pp. 138-155, Petroceli/Charter, New York, 1969.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

131

[24] Navarro, G. “A Guided Tour to Approximate String Matching,” ACM
Computing Surveys, vol. 33, no. 1, pp. 31 – 88, 2001.

[25] Schildt H. Java - The Complete Reference, 8th Edition. McGraw-Hill
Osborne Media, 2011.

[26] Stein, C., Cox, G. and Etzkorn, L. “Exploring the Relationship between
Cohesion and Complexity,” Journal of Computer Science, vol.1, no. 2,
pp. 137–144, 2005.

[27] Subramanyam, R. and Krishnan, M. “Empirical analysis of CK metrics
for object-oriented design complexity: implications for software
defects,” IEEE Transactions on Software Engineering, vol. 29, no. 4, pp.
297 – 310, 2003.

[28] Taibi, F. “Reusability of Open-Source Program Code: A Conceptual
Model and Empirical Investigation,” ACM SIGSOFT Software
Engineering Notes, vol. 38, no. 4, pp. 1-5, 2013.

[29] Yu, P., Systa, T. and Muller, H. “Predicting Fault-Proneness Using OO
Metrics: An Industrial Case Study,” In Proc of the 6thEuropean
Conference on Software Maintenance and Reengineering, pp. 99-107,
2002.

[30] http://cccc.sourceforge.net/
[31] http://sourceforge.net/
[32] http://www.spinellis.gr/sw/ckjm/

