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Abstract—Portfolio optimization problem has received a lot of 

attention from both researchers and practitioners over the last six 
decades. This paper provides an overview of the current state of 
research in portfolio optimization with the support of mathematical 
programming techniques. On top of that, this paper also surveys the 
solution algorithms for solving portfolio optimization models 
classifying them according to their nature in heuristic and exact 
methods. To serve these purposes, 40 related articles appearing in the 
international journal from 2003 to 2013 have been gathered and 
analyzed. Based on the literature review, it has been observed that 
stochastic programming and goal programming constitute the highest 
number of mathematical programming techniques employed to tackle 
the portfolio optimization problem. It is hoped that the paper can 
meet the needs of researchers and practitioners for easy references of 
portfolio optimization. 

 
Keywords—Portfolio optimization, Mathematical programming, 

Multi-objective programming, Solution approaches. 

I. INTRODUCTION 
ORTFOLIO selection problem has been one of the most 
important topics of research in modern finance. The 

problem is concerned with allocating capital over a number of 
available assets. The main goal of the portfolio selection is to 
select the best combination of assets that yields the highest 
expected returns, while at the same time ensuring an 
acceptable level of risk. Since the future returns of securities 
returns are unknown at the time of the investment decision is 
made, portfolio selection problem can be categorized as one of 
the decision-making under risk. 

Over the last decades, several methods have been proposed 
to solve the portfolio selection problem. Tiryaki and 
Ahlatcioglu [1] for example proposed to construct a portfolio 
using analytical hierarchy process methodology whereas [2] 
and [3] performed a portfolio selection using data 
envelopment analysis. Outranking methods have also been 
employed to solve the problem. Some examples are 
PROMETHEE [4], and ELECTRE [5], [6]. 

The first portfolio selection model has been developed by 
Markowitz [7] based on mathematical programming. The so-
called mean-variance model assumes that the total return of a 
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portfolio can be described using the mean return of the assets 
and the variance of return between these assets. For a given 
level of risk, one can derive the maximum return by 
maximizing the expected return of a portfolio or alternatively 
for a given specific return one can derive the minimum risk by 
minimizing the variance of a portfolio. 

After the introduction of mean-variance model, 
mathematical programming techniques have become essential 
tools to support financial decision making process and being 
increasingly applied in practice. Mathematical programming is 
one of the operations research techniques which seek to 
maximize or minimize a function of many variables subject to 
a set of constraints imposed by the nature of the problem being 
studied and integrality restrictions on some or all of the 
variables [8]. In contrast to other mathematical tools such as 
statistical models, forecasting, and simulation, mathematical 
programming models allow the decision maker to find the best 
or optimal solution. 

In recent years, the development of new techniques in 
operations research and management science, as well as the 
progress in computer and information technologies gave rise 
to new mathematical programming techniques for modeling 
the portfolio problem. Many models based on mathematical 
programming have been developed to solve the current 
portfolio selection problems which involve a complex, yet 
realistic set of managing constraints. Thus, the purpose of this 
paper is to present the current state of research in portfolio 
optimization with the support of mathematical programming 
techniques by providing a comprehensive review of the 
existing literature in the field. This paper also surveys the 
solution algorithms proposed in the literature for solving 
portfolio optimization models classifying them according to 
their nature in heuristic and exact solution methods. Based on 
the literature review, some potential paths for future research 
within this area are also suggested. 

The rest of the paper is organized as follows: Section II 
provides a literature review of the existing mathematical 
programming models for portfolio selection problem. Section 
III discusses the solution approaches used to solve the 
portfolio selection model. Finally, in Section IV the 
conclusions and the future direction of the study will be 
presented. 

II. MATHEMATICAL PROGRAMMING MODELS 
In this section, we present publication in which authors 

have used mathematical programming techniques to model 
portfolio optimization problem. For ease of presentation, the 
mathematical programming models will be divided into two 
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main categories, namely, single objective portfolio 
optimization and multi-objective portfolio optimization. 

A.  Single Objective Portfolio Optimization 
The first application of mathematical programming for 

portfolio selection was due to Markowitz [7]. He built up a 
quadratic programming model for selecting a diversified 
portfolio of stocks which requires the use of complex non-
linear numerical algorithms to solve the problem. In order to 
simplify the Markowitz model, several authors [9], [10] have 
proposed linear programming models with a different 
definition of the risk function. In [9], the authors proposed the 
mean absolute deviation (MAD) from the mean as the risk 
measure. The model is however equivalent to the Markowitz 
model when they possess a multivariate normal distribution of 
the returns. On the other hand, Young [10] introduced a model 
which maximizes the minimum return (Maximin) or 
minimizes the maximum loss (minimax). According to Young 
[10], the minimax formulation might be a more appropriate 
method compared to the mean-variance formulation when data 
are log-normally distributed. 

In [11], the authors formulated two different linear 
programming models based on minimization of MAD and 
Maximin formulations. These models were then compared to 
the classical quadratic programming formulation to test to 
what extent all these formulations provide similar portfolios. 
The results from this study showed that the Maximin 
formulation yields the highest return and risk while the 
quadratic formulation provides the lowest risk. In addition, all 
the three formulations were found to outperform the top equity 
fund portfolios in Sweden and performed much better than the 
market portfolio. 

Another linear programming model for the portfolio 
selection problem is presented by Kamil and Ibrahim [12]. In 
this study, the problem was modeled as a mean-risk bicriteria 
portfolio optimization problem with the mean absolute 
negative deviation of annual return from the average annual 
return is used as the downside risk. In order to evaluate the 
performance of the proposed model, the authors compared the 
results from the proposed model with the results from mean-
variance model and MAD model. According to their results, 
the proposed model provides better returns than the mean-
variance and MAD models. 

Konno and Yamamoto [13] formulated a portfolio 
optimization problem with nonconvex transaction cost, 
minimal transaction unit constraints and cardinality constraints 
as a nonlinear integer programming problem. The aim of this 
study is to show that this class of problems can be successfully 
solved by the state-of-the-art integer programming approaches 
if absolute deviation is used as the risk measure. 
Computational experiments for medium size problem using 
CPLEX yield a good solution within a practical amount of 
time. 

Chiodi et al [14] presented a model for the problem of 
selecting a portfolio of mutual funds when entering and 
management commissions are taken into account. This 
problem was formulated as a mixed integer linear 

programming (MILP) model using mean semi-absolute 
deviation. The authors have also designed some heuristic 
approaches to solve the portfolio problem. The results of the 
computational experiments proved that the problem can be 
solved using heuristics effectively and efficiently. The study, 
however, could be extended to consider leaving commissions 
which might become a relevant feature of the problem. 

In [15], the authors proposed a new portfolio optimization 
problem based on an extension of the Markowitz model with 
value-at-risk replacing the variance on the objective function. 
This problem has been formulated as a MILP model. The 
authors show that the proposed model can be solved using 
CPLEX as a solver in a reasonable amount of time if the 
number of past observations or the number of assets involved 
in the study is low.  

Two different MILP models for solving portfolio selection 
problem that takes into account minimum transaction lots, 
transaction costs and cardinality constraints were proposed by 
Angelelli et al. [16]. The first model is based on the 
maximization of the worst conditional expectation (CVaR) 
while the second model is based on the minimization of the 
MAD. Although from the computational experiments it was 
found that the CVaR portfolios had more stable returns 
compared to the MAD model, it required a huge 
computational time to solve the problem to optimality.  

The portfolio optimization problem with real life features of 
financial market has also been studied in [17]. The authors 
extended the mean–variance model to include the minimum 
transaction lots, cardinality constraint, and sector 
capitalization constraint. As a consequence of considering 
these constraints, modeling a portfolio selection problem 
requires the use of mixed integer programming technique and 
thus, the model is classified as a mixed-integer non-linear 
programming model. To solve the model, genetic algorithm 
(GA) was utilized. Based on the computational results, it was 
found that the proposed model and the solution approach are 
applicable and reliable in real markets with large number of 
stocks. 

Another study carried out by Golmakani and Fazel [18] was 
similar to [17], but they considered bounds on holdings 
constraint in the model. Since their model is a quadratic 
mixed-integer programming, the authors proposed a heuristic 
based on particle swarm optimization (PSO) method to tackle 
the complexity of the extended model. The authors also 
compared their approach with GA and the computational 
results clearly proved that the proposed PSO effectively 
outperforms GA especially in large-scale problems. 

Ibrahim et al. [19] proposed single-stage and two-stage 
stochastic programming models with the objective of the 
models are to minimize the maximum downside deviation 
from the expected return. The purpose of this study is to 
compare the optimal portfolio of the two models. The results 
showed that the two stage model outperforms the single stage 
model in both out-of-sample and in-sample analysis. However, 
the authors noticed that the models had lost the trend 
information due to the use of original historical data treated as 
future return scenarios. 
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B. Multi-Objective Portfolio Optimization 
Based on the goal programming (GP) approach, Pendaraki 

et al. [20] proposed a methodology for the construction of 
equity mutual fund portfolio. The proposed methodology was 
conducted in two stages. In the first stage, the UTADIS 
classification method was used to evaluate and select a limited 
set of the mutual funds. In the second stage, a goal 
programming model was employed to determine the 
proportion of the selected mutual funds in the final portfolios. 
The proposed methodology has been applied on data of Greek 
equity mutual funds with promising results. The method 
however, could also be extended to consider other types of 
mutual funds. 

In order to construct an optimal mutual fund portfolio for an 
investor, Sharma and Sharma [21] employed lexicographic 
goal programming approach with specific parameters such as 
standard deviation, portfolio beta, expected annual return and 
expense ratio were taken into account. The objective of the GP 
model is to minimize a weighted sum of deviations from the 
target goals. In this study, the distances of all possible 
solutions from the ideal solution were measured by using 
Euclidean distance method. Although the model is flexible 
enough to accommodate other constraints, the performance of 
the model depends on the appropriate weights in a priority 
structure.  

Based on Sharpe’s single index model, Bilbao-Terol et al. 
[22] have formulated a new model for portfolio selection. In 
this work, imprecise future beta of each asset was represented 
through a fuzzy trapezoidal numbers constructed on the basis 
of statistical data and the relevant knowledge of experts. The 
authors have modeled the problem using fuzzy compromise 
programming and introduced the fuzzy ideal solution concept. 
The main feature of this model, as pointed out by the authors 
is its sensitivity to the analyst’s opinion as well as to the 
investors’ preferences. 

Based on the combination of chance constrained 
programming and compromise programming, Ben Abdelaziz 
et al. [23] proposed a chance constrained compromise 
programming to convert the multi-objective stochastic 
programming portfolio model into a deterministic one. This 
study assumes that the parameters associated with the 
objectives are random and normally distributed. A numerical 
example was carried out to illustrate that the proposed model 
could be effectively and efficiently used in practice. 

In Masmoudi and Ben Abdelaziz [24], the authors 
addressed a problem of portfolio selection where the cost of 
not achieving an acceptable expected rate of return was 
minimized. The problem was modeled as a bi-objective 
stochastic programming where the first objective function was 
to maximize the return and the second objective function was 
to optimize the risk. The certainty equivalent program was 
obtained through a combination of a GP and recourse 
approach. The model results were illustrated through a case 
study using data from S&P100 securities. 

By taking into account stochastic and fuzzy uncertainties, 
Messaoudi and Rebai [25] developed a novel fuzzy goal 
programming model for solving a stochastic multi-objective 

portfolio selection problem. In this model, fuzzy chance-
constrained goals were described along with the imprecise 
importance relations among them. The proposed model was 
then utilized to build a new portfolio selection model that 
considered the tradeoff between expected return, Value-at-
Risk the price earnings ratio and the flexibility of investor’s 
preferences. However, the applicability of the proposed model 
on real world data had not been tested in this study. 

Xidonas et al. [26] developed a multi-objective MILP 
model for equity portfolio construction and selection. In order 
to generate Pareto optimal portfolios, the authors utilized the 
novel version of the ε-constraint method. Additionally, an 
interactive filtering process was also proposed to guide the 
decision maker in selecting among a number of Pareto optimal 
portfolios his/her most preferred. The proposed methodology 
could be a useful tool in helping the investors to construct and 
design their portfolios. 

Stoyan and Kwon [27] presented a complex Stochastic-
Goal Mixed-Integer Programming (SGMIP) approach for an 
integrated stock and bond portfolio problem. The portfolio 
model integrates uncertainty in security prices and involves 
several real-world trading constraints as well as other 
important portfolio elements such as liquidity, management 
costs, portfolio size and diversity. An algorithm to solve the 
model that consists of a decomposition, warm-start, and 
iterative procedure has also been proposed. This study 
contributes a significant finding as the proposed algorithm is 
able to solve the problem of practical size in an efficient 
manner. 

A very recent study by Tamiz et al. [28] investigated the 
problem of portfolio selection for international mutual funds. 
The authors employed three variants of GP, namely, 
Weighted, Lexicographic and MinMax approach to model the 
portfolio problem. Seven factors were considered to be treated 
as objectives in the GP models in which three were specific to 
mutual funds, three were taken from macroeconomics and one 
factor represented regional and country preferences. The 
results of this study, although very promising were not 
globally conclusive as they were based on certain factors such 
as target values, priority levels and other sets of penalized 
unwanted deviational variables. 

Considering the increasing importance of investment in 
financial portfolios, Amiri et al. [29] developed a new model 
called Nadir Compromising Programming (NCP) model by 
using an extended of Compromise Programming (CP). This 
model which can be used to optimize multi-objective 
problems was formulated on the basis of the nadir values of 
each objective. In order to compare the performance of the CP 
method and the proposed method, the authors conducted a 
case study by selecting a portfolio with 35 stocks from the Iran 
stock exchange. The results obtained confirmed that in spite of 
being feasible and optimal, the NCP model was more 
consistent with decision maker purposes.  

Kırış and Ustun [30] built a multi objective portfolio 
optimization model which combined Markowitz’s model with 
the objective of the expected performance value of portfolio 
and cardinality constraints.  
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TABLE I 
MATHEMATICAL PROGRAMMING APPLIED TO PORTFOLIO OPTIMIZATION

 Authors Real-life 
constraints 

Mathematical Programming 
LP IP MIP MIQP SP GP CP SCP SGP 

Multi-
objective 

Tamiz et al. [28] No          
Messaoudi and Rebai [25] No          
Kırış and Ustun [30] No          
Masmoudi and Ben Abdelaziz [24] No          
Stoyan and Kwon [27] Yes          
Amiri et al. [29] No          
Xidonas et al. [26] No          
Ben Abdelaziz et al. [23] No          
Bilbao-Terol et al. [22] No          
Sharma and Sharma [21] No          
Pendaraki et al. [20] No          

Single 
objective 

Golmakani and Fazel [18] Yes          
Soleimani et al. [17] Yes          
Ibrahim et al. [19] No          
Angelelli et al. [16] Yes          
Kamil and Ibrahim [12] No          
Benati and Rizzi [15] No          
Konno and Yamamoto [13] Yes          
Papahristodoulou and Dotzauer 
[11] No          

Chiodi et al. [14] Yes          
Note: LP-Linear Programming, IP-Integer Programming, MIP-Mixed Integer Programming, MIQP-Mixed Integer Quadratic Programming, SP-Stochastic 
Programming, GP-Goal programming, CP-Compromise Programming, SCP-Stochastic Compromise Programming, SGP, Stochastic Goal Programming 

 
This model is classified as a multi-objective mixed integer 

nonlinear programming. The proposed model was solved by 
utilizing reservation level driven Tchebycheff procedure.  

In summary, it has been observed from this literature review 
that the majority of the research conducted on single objective 
optimization for portfolio selection problems employed mixed 
integer programming techniques. On the other hand, for multi-
objective optimization, goal programming is the most utilized 
approach. Table I presents the summary of past studies that 
use mathematical programming techniques in portfolio 
optimization model. 

III. SOLUTION APPROACHES 
In recent years, the research community has made 

significant advances in portfolio optimization problem. One of 
the focuses has been put on the identification of efficient and 
effective solution approaches for solving the mathematical 
programming model of portfolio optimization problems. The 
approaches can be classified into two main categories: exact 
methods and heuristics methods. 

A. Exact Methods 
A number of exact approaches have been proposed to solve 

portfolio optimization model. For instance, Mansini and 
Separanza [31] presented an exact algorithm for MILP model. 
Their method is based on the partition of the initial problem 
into two sub-problems and the use of local search heuristic to 
obtain an initial solution. The computational results showed 
that the solution of the first subproblem alone could be 
effectively used as heuristic, indeed the authors showed that in 
all the instances this subproblem can find an optimal solution; 

therefore, it is very likely that it can achieve a very good 
performance in general.  

In the study of Li et al. [32], proposed a solution for 
cardinality constrained mean-variance model under concave 
transaction costs and minimum transaction lots constraints. 
The proposed method is based on a Lagrangian relaxation 
scheme and contour-domain cut branching rule. However they 
performed the computational experiments with only one data 
set containing 30 assets which was too small both to take into 
account the size of real world portfolios and the computational 
behavior of algorithms as the problem size grew. 

A branch and bound algorithm for mixed integer nonlinear 
programs in portfolio selection problem was presented in the 
work of Bonami and Lejeune [33]. The algorithm features two 
new branching rules which are the idiosyncratic risk and 
portfolio risk branching rule. The computational results 
showed that the proposed algorithm was effective to solve to 
optimality with up to 200 assets.  

Veilma et al. [34] presented a branch-and-bound algorithm 
for the exact solution of the cardinality constrained portfolio 
optimization problem based on a lifted polyhedral relaxation 
of conic quadratic constraints. Computational results were 
presented for problems drawn from real-world data. 

Shaw et al. [35] investigated a branch-and-bound method 
for portfolio optimization problem, where the asset returns are 
driven by a factor model. Subgradient method was employed 
to compute the lagrangian bound of each subproblem in the 
branch and bound process. The authors reported that the 
proposed algorithm could produce optimal solutions with up 
to 250 assets in a reasonable time. 
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Another branch and bound method was proposed by Sun et 
al. [36] who implemented a branch and bound procedure 
based on Lagrangian relaxation to solve the cardinality 
constrained portfolio optimization problem. The numerical 
results for test problems using real-world data up to 150 
securities demonstrated that the proposed method was capable 
of solving the portfolio problem. However, the authors did not 
report solving the problems to optimality. 

Bertsimas and Shioda [37] presented an approach for the 
exact solution of the cardinality constrained portfolio 
optimization problem. The authors utilized Lemke’s method to 
optimize the convex quadratic programming at each node. 
Computational results were presented for their approach as 
well as for CPLEX on problems involving up to 500 assets. 
Although the proposed algorithm appeared to have advantage 
over generalized solver, it failed to find the optimal solution 
within the computational time limit. 

Gulpinar et al. [38] proposed an exact solution method 
based on difference of convex function's algorithm to solve 
cardinality constrained portfolio optimization model. The 
authors selected a portfolio with respect to the worst-case 
associated with specified scenarios. The computational results 
for test problem up to 98 assets showed that the method 
outperformed in almost all cases the commercial solver 
CPLEX. 

Utilizing a new Lagrangian decomposition scheme, a 
convex relaxation and a mixed integer quadratically 
constrained quadratic program reformulation were derived in 
Cui et al. [39] for cardinality constrained portfolio problem. 
The numerical results have shown that the dual problem 
obtained from the decomposition scheme can be reduced to a 
second-order cone program problem which is tighter than or at 
least as tight as the continuous relaxation of the standard 
reformulation.  

In a recent development, Gao and Li [40] developed a 
branch and bound method based on a novel geometric 
approach to solve cardinality constrained mean-variance 
portfolio selection problem. Computational results on test 
problems of portfolio selection demonstrated that the method 
was promising in finding good quality solution. 

B. Metaheuristics Approaches 
There are many studies applying metaheuristics methods to 

solve the problem of portfolio optimization. One of the studies 
was carried out by Crama and Schyns [41] who applied 
heuristic technique based on simulated annealing (SA) to an 
extended version of the mean-variance model with trading and 
turnover constraints. Computational results for problems with 
up to 151 stocks seem to show that the approach is promising 
for medium size problems. 

Maringer and Kellerer [42] considered the mean–variance 
model as extended to include the cardinality constraints. Then, 
a hybrid local search algorithm that combines principles of SA 
and evolutionary strategies was applied to solve the resulting 
mixed-integer quadratic programming model. The 
effectiveness and applicability of the technique were 

demonstrated via computational experiment for two data sets 
involving 30 and 96 assets. 

Another interesting solution approach was presented by 
Fernandez and Gomez in [43] who employed Hopfield neural 
networks to solve the mean-variance model with cardinality 
and bounding constraints. The authors also compared the 
approach with genetic algorithm (GA), tabu search (TS) as 
well as SA and performed the computational experiments 
using five sets of benchmark data that have been used in [44]. 
Although the results showed that none of the four has clearly 
outperformed the others, when dealing with problem 
demanding portfolios with low investment risk, the proposed 
method provides better solutions than the other heuristics. 

Cura [45] developed an approach based on particle swarm 
optimization (PSO) to solve the same portfolio problem as in 
[43]. In order to evaluate the performance of the approach, it 
was compared to GA, TS and SA. The numerical tests were 
conducted employing the same benchmark datasets used in 
[44]. The results indicated that none of the heuristic 
approaches outperformed the others. 

Chang et al. [46] introduced a heuristic approach based on 
GA for solving portfolio optimization problems in different 
risk measures and compared its performance to mean–variance 
model in cardinality constrained efficient frontier. The authors 
showed that the problems could be solved effectively by GA if 
mean–variance, semivariance, mean absolute deviation, and 
variance with skewness were used as the measures of risk. 
They conducted empirical tests in order to prove the 
robustness of their heuristic method. 

In Deng and Lin [47], the authors proposed ant colony 
optimization (ACO) for solving mean-variance model with 
cardinality and bounding constraints which is a mixed integer 
quadratic programming problem. According to the 
computational results obtained on benchmark data sets, the 
proposed ACO has shown to be more robust and effective than 
PSO especially for low risk investment portfolios. 

A new hybrid solution approach combining an improved 
PSO and SA was proposed by Mozafari et al. [48] to address 
the problem of portfolio optimization presented in [42]. The 
effectiveness of the proposed algorithm was tested on 
benchmark data with up to 225 assets and the results indicated 
that it could generate good solutions within acceptable 
computing times. 

Zhu et al. [49] suggested a meta-heuristic approach to 
portfolio optimization problem using particle swarm 
optimization (PSO) technique. The objective functions and the 
constraints are based on the Markowitz and Sharp Ratio 
model. Computational experiments were carried out on 
various restricted and unrestricted risky investment portfolios 
and the results obtained were very encouraging.  

Woodside-Oriakhi et al. [50] studied the application of GA, 
TS and SA approaches to find the solution of the cardinality 
constrained efficient frontier. The authors considered the 
extended mean–variance model under the discrete restrictions 
of cardinality and bounding constraints. The authors carried 
out numerical experiments on test problems consisting up to 
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1318 assets and the results showed that the proposed heuristics 
were effective and quite efficient.  

A heuristic framework based upon kernel search is 
presented in [51]. This new framework is proposed to solve 
portfolio optimization problem with real features that is 

modeled as a MILP problem. A computational test was 
performed using different data sets involving 400 stocks. The 
results demonstrated that the proposed heuristics were very 
effective and applicable to a variety of combinatorial 
problems.

 
TABLE II  

SOLUTION APPROACHES FOR PORTFOLIO OPTIMIZATION MODEL 

Authors Mathematical 
Programming 

Exact Methods  Metaheuristics methods 
BB LR PM LDS DCA PSO GA ACO SA NN TS KS 

Gao and Li [40] MIQP             
Cui et al. [39] MIQP             
Angelelli et al. [51] MILP             
Mozafari et al. [48] MIQP             
Woodside-Oriakhi et al. [50] MIQP             
Zhu et al. [49] MIQP             
Deng and Lin [47] MIQP             
Gulpinar et al. [38] MIQP             
Chang et al. [46] MINLP             
Sun et al. [36] MIQP             
Cura [45] MIQP             
Bonami and Lejeune [33] MINLP             
Bertsimas and Shioda [37] MIQP             
Fernandez and Gomez [43] MIQP             
Shaw et al. [35] MIQP             
Veilma et al. [34] MIQP             
Li et al. [32] NLIP             
Mansini and Speranza [31] MILP             
Maringer and Kellerer [42] MIQP             
Crama and Schyns [41] MIQP             

Note: BB-Branch and Bound, LR-Lagrangian Relaxation, PM-Partitioning Method, LDS-Lagrangian Decomposition Scheme, DCA-Difference of Convex 
Algorithm, PSO-Particle Swarm Optimization, GA-Genetic Algorithm, ACO-Ant Colony Optimization, SA- Simulated Annealing, NN-Neural Network, TS-
Tabu Search, KS-Kernel Search. 

 
Table II presents the summary of past studies along with the 

solution approaches used to solve the portfolio optimization 
model. It can be seen that metaheuristics methods, particularly 
simulated annealing are the most popular approaches used to 
solve the mathematical programming model of the portfolio 
problem. For the exact solution methods, 60% of the 
publications employed branch and bound and the largest size 
of problems solved by this method was 250 assets. 

IV. DISCUSSION AND FUTURE RESEARCH 
The review has shown that mathematical programming 

techniques have been applied successfully to formulate the 
portfolio optimization problems in the past decade. Most of 
the studies on single objective portfolio optimization used 
mixed integer programming techniques to formulate the 
problem. This is due to the incorporation of non-negligible 
aspects of real-world trading constraints. 

The analysis of the literature also shows that, there has been 
an increasing interest in the design of multi-objective 
programming techniques to handle the problem of portfolio 
optimization. However, most of the studies reviewed 
employed goal programming technique to formulate the 
problem. In future research it might be possible to use 
different multi-objective optimization techniques such as 
compromise programming. In addition, there is only one study 

on multi-objective portfolio optimization incorporated real-
world trading constraints in the model. Hence, drawing 
attention to multi-objective portfolio optimization problem 
with the consideration of these constraints seems quite 
worthwhile and practical.  

Another important observation is that many studies 
reviewed have chosen heuristics or metaheuristics method 
rather than exact solution approaches in solving portfolio 
optimization problem with real-life constraints. However, 
most of these studies have focused on a sole metaheuristics 
technique which is often not sufficient to achieve results 
meeting practical requirements. Thus, there exists the need to 
design hybrid metaheuristics techniques. 

V.  CONCLUSION 
This paper has presented a comprehensive review of 

literature on the application of mathematical programming 
techniques in portfolio optimization problems. For this 
purpose, 40 papers from scholarly journals were gathered and 
analyzed. This overview has also enlightens some potential 
areas for future research. Finally, it is hoped that this paper 
gives a clear overview of the application of mathematical 
programming as a support tool in the portfolio optimization 
problem. 
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