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Bifurcation Analysis of a Plankton Model with
Discrete Delay
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Abstract—In this paper, a delayed plankton-nutrient interaction
model consisting of phytoplankton, zooplankton and dissolved
nutrient is considered. It is assumed that some species of
phytoplankton releases toxin (known as toxin producing
phytoplankton (TPP)) which is harmful for zooplankton growth and
this toxin releasing process follows a discrete time variation. Using
delay as bifurcation parameter, the stability of interior equilibrium
point is investigated and it is shown that time delay can destabilize the
otherwise stable non-zero equilibrium state by inducing Hopf-
bifurcation when it crosses a certain threshold value. Explicit results
are derived for stability and direction of the bifurcating periodic
solution by using normal form theory and center manifold arguments.
Finally, outcomes of the system are validated through numerical
simulations.

Keywords—pPlankton, Time delay, Hopf-bifurcation, Normal
form theory, Center manifold theorem.

I. INTRODUCTION

LANKTON refer to all single-celled, microscopic organism
in marine environment that drift with the oceanic currents.
Phytoplankton in particular is capable of photo-synthesis in the
presence of sunlight and occupies the first trophic level for all
aquatic food chains. Hence, they are producers and recyclers of
most of the energy that flows through the oceanic ecosystem.
Zooplankton, the herbivores prey on phytoplankton for their
food and occupies the next trophic level in aquatic food chain.
The rapid increase and decrease of phytoplankton population is
a common feature in marine ecology and known as "bloom".
Generally, highly nutrient and favorable conditions play a key
role in rapid or massive growth of algae and low nutrient
concentration as well as unfavorable conditions inevitably
limits their growth. Although, the sudden appearance and
disappearance of blooms is not well understood; many
researchers have studied the nutrient-plankton interaction to
understand the importance of nutrient concentration on the
growth of plankton [1], [2]. The persistence and co-existence in
nutrient-plankton interaction have also been discussed by Ruan
(31, [4].
The understanding of the dynamic of plankton-nutrient
system becomes complex when additional effects of toxicity
(caused due to the release of toxic substances by some
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phytoplankton species known as harmful phytoplankton) are
considered. The role of toxin and nutrient on the plankton
system has been discussed in [5]-[8]. Sarkar et al. in [9] and
[10] studied the interaction of toxin producing phytoplankton-
zooplankton system and concluded that harmful phytoplankton
may be used as bio-control agent in the termination of harmful
planktonic blooms. It is well known that time delay in
biological systems is a reality and it can have complex impact
on the dynamic of the system namely loss of stabilty, induced
oscillations and periodic solutons [11]-[13]. The interaction of
plankton-nutrient model with delay due to gestation and
nutrient recycling has also been studied in [14] and [15].
Chattopadhyay et al. in [16] proposed and analyzed a
mathematical model of toxic phytoplankton (Noctilucca
Scintillans belonging to the group Dinoflagellates of the
division Dinophyta)-zooplankton (Paracalanus belonging to
the group Copepoda) interaction and assumed that the
liberation of toxic substances by the phytoplankton species in
not an instantaneous process but is mediated by some time lag
required for maturity of species. Extending the work of [16],
Bandyopadhyay et al. [17] and Rehim et al. [18] have studied
the global stability of the toxin producing phytoplankton-
zooplankton system. Sufficient efforts have already been made
to understand the interaction of phytoplankton-zooplankton
system with delay in toxin liberation, but the study of nutrient-
plankton interaction with delay in toxin liberation by the
phytoplankton species is not done so far. In this paper, an open
system with three interacting components consisting of
phytoplankton (P), zooplankton (Z) and dissolved nutrient (N)
is considered. Here, it is assumed that the functional form of
biomass conversion by the herbivore is of holling-11 type and
the predator is obligate that is they does not take nutrient
directly. The toxic substance term which causes extra mortality
in zooplankton is expressed in holling-1 type functional form
[19]. It is also taken into account that the liberation of toxic
substances by the phytoplankton species follows discrete time
variation. The main aim of the present study is to see the effect
of this discrete time delay on the nutrient-plankton system and
the organisation of our paper is as follows: In subsection A, the
mathematical model is presented using simultaneous
differential equations and we analyze the stability of the co-
existence equilibrium in the absence of delay in subsection B.
After that we have considered the delayed plankton model and
considering delay as bifurcation parameter the dynamical
behavior of the system around coexisting equilibrium is
discussed. In subsection C, we have investigated the direction
and stability of the bifurcating solution using a technique based
upon normal form theory and center manifold theorem. Some
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supports our analytical findings through numerical simulations
are given in subsection D. Finally, the basic outcomes of our
mathematical findings and their ecological significance are
mentioned in Section I1.

A. The Mathematical Model

Let N(z) denotes the concentration of nutrient at time 't.
Let x(t) and y(t) be the concentration of phytoplankton and
zooplankton population respectively at time 't'. Let N, is the
constant input of nutrient concentration and a is their
absorption rate. Let 5 and ¢ be the nutrient uptake rate for

the phytoplankton population and conversion rate of nutrient
for the growth of phytoplankton population, respectively (

b<a,). Let [ be the maximal zooplankton ingestion rate
and B (f,< /) be the maximal zooplankton conversion
rate. Let b, be the mortality rate of the phytoplankton

population, ¢, be the mortality rate of the zooplankton

population and let nutrient are recycled at the rate k after the
dead of phytoplankton population. It is assumed zooplankton
population decay at the rate of o due to toxin producing

phytoplankton. The grazing phenomenon is described by the
holling-11 type functional form with » as the half saturation

constant. Let 7 is the time delay which is incorporated with
the assumption that the liberation of toxin is not instantaneous
it is mediated by some time lag. The biological significance of
this time lag lies in the fact this time may be considered the
time required for the maturity of toxic-phytoplankton to reduce
the grazing impact of zooplankton.

With these assumptions our model system is

il—];/ =N, —aN —bNx + kb, x
1)
e o, Nx —bx— Py
dt (7 +x)

dy _ pxy
= — — t—
& () o,y —px(t—1)y

The initial conditions of the system (1) has the form
N@) =40, x(0)=¢,0). »(0)=4(0).4(6)=0,
#,(0)=0, ¢,(0)=0, 0 e[-7,0], 4(0)=0, 4,(0)>0 ,
$,(0)>0, where ¢,(6),4,(6).¢;(0) € C([-7,0],R)). the
banach space of continuous functions mapping the interval
[-7,0] into R® where R® ={(x,,x,,x,):x,>0,i=1,2,3}.

B. Stability Analysis of the Mathematical Model
The given system has three equilibria namely:
. _ N
(i) The boundary equilibrium E, 2(70’0’0)

(ii) A planar equilibrium Ezz(ﬁ, Nooy —aby o) existif - an,
o b(b-ak) oy

and a1<3.

kl

(iii) A positive interior equilibrium E, = (N.,, x., y.)

where N, = Ny, +kbx. |
a+bx.
_Bi=a—pn) - ((B=a, - py)* ~4payy) and
2p

X

_ (&N, -b)(y+x)
" B

which existif g >a, + py and N, > ﬁ
o

Proposition: The plankton free equilibria Elz(&’oyo)
a

always exist and stable so long the constant input rate of
nutrient is less than certain threshold value ie. , _db.
0 al
Moreover zooplankton free equilibriai.e. E,= b6 Nya, —ab 0)
9] ' by (b-ayk;) ‘
exist and unstable if the growth rate of phytoplankton biomass
oy satisfies the inequality, o < m,-n(Lbl,ﬁ).
0 1
Definition: The Equilibrium E, is called asymptotically
stable (AS) if there exist a K > 0 such that

SUP_r<p<0[|91(8) — N| +[0,(8) — x.| + |03(0) — ] <6

which implies that lim,_.(N(?), x(2), ¥(¢)) = (N« x=, y+), where
(N@), x(f), () is the solution of the system (1) with given
initial conditions.

Definition: The equilibrium Exis absolutely stable if it is AS
for all delays T = 0 and is conditionally stable if it is AS for t
in some finite interval.

The characteristic equation of the system at E« has the
following form

A+ AV +BA+C+(D+ENe ™ =0 )
In the absence of delay (z = 0), (2) reduces to,
A+ AP +(B+E)A+(C+D)=0, 3

where
By y- >0
(¥ +x.)
By y-
(y +x.)°

y BRI XY (CbNL k) - PPE 5 g
(7 + x.) (7 + x.)

A=a+bx.—oyN.+b +

B+E=(a+bx.)(—a,N.+b +
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C+D:ﬂx*y*(a+bx*){ Ly 350
(r+x) (r+x)

by using Routh-Hurwitz criterion we know that all the roots of
(3) have negative real parts ,i.e. the positive equilibrium E, is
Locally Asymptotically Stable provided that the condition

(H): ABB+E)-(C+D)>0

hold.

Remark: The detailed analysis of the model system in the
absence of delay is discussed in [7].

Now, we will be interested to determine how delay effects
the stability of the positive equilibrium by taking 7 as the
bifurcation parameter. Before this we shall introduce the
following lemma'’s.

Lemmal.[19] For the
P+ pPrqz+r=0,

(@i). If » <0, the equation has at least one positive root;

(ii). If »>0 and A=p*-3¢<0, then equation has no
positive root;

(iii).If »>0 and A = p® -3¢ >0, then equation has positive

polynomial equation

roots if = “p+VA  ang h(z))<0, Where
3
h(z) =2+ pz* +qz+r.
Lemma2.

(). The positive equilibrium E. of the system (1) is
absolutely stable if and only if the equilibrium E. of the
corresponding ODE system is asymptotically stable and
(2) has no purely imaginary roots for any 7 > 0

(ii). The positive equilibrium E. of the system (1) is
conditionally stable if and only if all the roots of (2) have
negative real parts at 7 = 0 and there exist some positive
values 7 such that (2) has pair of purely imaginary roots
tiw.

Theorem1.:Since

Px X I e P R+ BN, — ki) £ 0 SYSTEM
ON  (y+x.) (y+x)

(1) have one or more periodic solutions, where X = (N, x, ).

Theorem2. The interior equilibrium E, is conditionally
stable if the condition (#,) holds for the system (1).
Proof. Let A(7) = &(r)+iw(r) be the eigen value of the

system at E. and for finding the change of stability we assume

that for some 7 > 0, z@(w > 0) is a root of the characteristic
equation (2), we then have

—10° = A®* + Biwo+C+(D+1Ew)e™ =0

separating the real and imaginary parts, we have

Aw* —C = Dcoswr+wEsinwr @)

Bw—o® = -wEcosor+ Dsinwr 3)

eliminating @ from above equations and setting @? = z, it can
be obtained that

.3 2 -
h(z)=z"+pz"+qz+r=0 (©)

where p=A°-2B ,q=B*-24C—-E*, r=C*-D".

by lemma 1 there exist at least one positive root o = @, of
(2) satisfying (4) and (5) which implies (2) has a pair of purely
imaginary roots of the form * 1w, .

Further (4) and (5) gives the corresponding 7, >0 such that
(2) has a pair of purely imaginary roots,

Du%443+%%@g—m+g@

2 2
D" +aE @,

4)

1
= ——arccos

@y

T

Under the condition of (H,), all the roots of (2) have
negative real parts when 7 = 0. Therefore by lemma 2 the
positive equilibrium E. of system (1) is conditionally stable.
This completes the proof.

Next to obtain the transversality condition for the Hopf-

bifurcation, we will find the value of dj at £=0.
dr

Taking A(r) = &(r) +iw(zr) in (2) and differentiating with
respect to 7 , we can obtain

M e P ®)
Lde do_
tdr Ydr Pz

where
m, = -3w’° + B+ Ecos(wt) — tDcos(wt) — twEsin(wr)
n, = 2wA - Esin(wt) + Wsin(wt) — twEcos(wr)
p, = @(Dsin(w7) — wEcos(wt))
P, = @(Dcos(w7) + wEsin(wr)) 9)

Solving (8), we get

dg

o= mp +np,
dr <°

- m? +n?
or it can be obtained that

o (@)

2 2 -
m; +n, ~ dz "7

g, _
EL;:O_ ,#0
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thus root of (2) crosses the imaginary axis as 7 continuously
varies from a number less than 7, to one greater than 7, .
Therefore, the transversality condition holds and the conditions
for Hopf bifurcation [20] are then satisfied at 7 = 7, which is

the least positive value of 7, given by (7). Based on the above
analysis we have the following theorem.
Theorem 3.Suppose that E. exist and the condition /1,
satisfied for the model system (1), then
(i) if 7 €[0,7,] the positive equilibrium point E. is Locally
Asymptotically stable;
(ii). if 7 > 7, the positive equilibrium point E. is unstable;

(iiii).system undergoes Hopf-bifurcation at 7 = 7, around E..

C. Direction and Stability of the Hobf-Bifurcation

In this subsection we will determine the stability, direction
and period of the periodic solutions bifurcating form E., and
following along the lines of Hassard et al. [20] we will derive
the explicit formulae for determining the properties of the
Hopf-bifurcation at the critical value of 7, by using the normal
form theory and the center manifold theorem.

Letx, =N—N., x, =x—x. and x; = y — ., rewriting

the system (1) by Taylor series expansion about

E.(N., x., y.) we have the following system of equations:

dx.
L= a0, (£) + agyex, (1) + E Ay
dt i+j+k>2

)X 2 (0) = F (53,55, 7)
dx
—2 = DXy (1) + by X, (1) + bogy x5 (£) + z
dt ) i+j+k=2
bi/kxil(t)XJZ(t)xk3(t) = F2(x,, %5, X5)
dx

—2= CrooX, (8) + Cop X, (E = 7) + Z Ciik
d[ i+j+k=2

x2(6)x’3(t)x 2 (t — 1) = F3(x,, x,, X,)

(10)

where
1 ai+»/’+kF1 1 ai+‘/'+kF2
a{jk:'.l.l PWPWE ijk:I.l.' PP
1il jlk ON'Ox’ 0y lil j'k ON'Ox’ Oy
1 8i+j+kF3

C., = - -
ik ox' oy ox (1 - 1)

Ay = —(a+bx.) and Qg0 = (DN + kb)) 1 by, = 2,

= ﬂW* X :ﬂ
bOlO = alN*—bl—m 'bo01 = —%’6100 (7/+x*)2 !

Coor =~

and the coefficients of non-linear terms are given by,

_ _ _ Vb
“110—_17'17110—0!1'b(m:—#vb —m'
/A - _ By~
Clg = —L—, Coy = =P Cppy = —
110 +x.) 011 = TP Cogo +x)

let 7=7,+u, u,(t)=u,(«¢) and dropping the bars for
simplification of notations, system (10) becomes a functional
differential equation in C = C([-1,0],R%) as

u(@) =L, )+ f(uu,) 11

where u(t) = (uy(£), 1, (£),u5(£))" e R® and

L,:C— R, f:RxC — R° are given respectively, by

L,(p) = (7, + )[4p(0)+ 4,p(-1)] (12)
and
[ a,9,(0) 9, (0)
b110 1 O 2 0
#:(0) ¢, (0) + 13)

b1 0, (0) 95 (0) + by (/’22 0)
con®2 (1) ;(0) +
1109, (0) 95 (0) + ¢4 (022 0)

S, @)= (z, + 1)

Ao Qoo O 0 0 O
4, = by boro Doy | A = 0 0 0
0 ¢ O 0 ¢ O

By Riesz representation theorem, there exists a function
¢(0, 1) of bounded variation for € €[—1,0] such that

L,(0) = [ ds(0.000(60)  for p<C (14)
In fact we can choose
c(0, 1) = (z;, + )[46(0) — 4,6(0+1)] (15)

where 0 denote the Dirac delta function. For
@ € C[(-1,0),%°], define
20 p 1)
Awo=5 , d¢
[ds@s.m)pls)  0=0
and
0 0e[-1,0)
R(p)( ):{
O fwg)  0=0
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then system (11) is equivalent to
() = A(u)u, + R(p)u, (16)
where u,(6) = u(t+6) for 9 [-1,0]

for y e C*([0,1],R") , define

_dy(s)
A*l// = 5 ds
[w0ds(t0)  s=0

s€(0,1]

and a bilinear inner product
<Y(),0(0)>= 700 O) - [[_7(E - 0)ds(O)p(&)ds (A7)

where ¢(0)=¢(6,0). Then A(0) and A4  are adjoint
operators. From the results of last section, we know that
*iw,r, are eigen values of A(0), it implies that they are also

eigen values of A" So the corresponding eigen vectors
computation follows the theorem:

Theorem 4. Let ¢(0)=(Lq.q,)" " be the

eigenvector of A(0) corresponding to
q*=D(1,qI,q;)e'w°T“ be the

corresponding to — 1@, 7, .

lw,7, and

eigenvector of A

Then <¢',g>=1land <¢",g>=0

where
_ 10 — Ao _ (g —byg) g —biyy = T10 ~ o
q, = 'q, = . , 3 ,
Qo10 o1 100
« (1w, +a,,0)b,
‘= (199 + A100) by ,and
1pbygg
1

D= — x 10T —
1+ q1q, + 4,9, + 76 (Condiq2)

Proof.: As ¢(6) is the eigenvector of 4(0) corresponding
to 1w, , then we have

A(0)q(0) = 10,7,4(0)
from (12), (15) and by definition of 4(0),
{(4, + Aye ") —10,139(0) = O,
simplification gives,

100y — g

g, = T

2
Qo0 Doy

q, =

since ¢ (0) is the eigen vector of A corresponding to eigen

value — 1,7, and by the definition of A’ ,we can obtain
{(4] + 4¢%) +10,1}q () =0

and further simplification leads to

¢ = “l% "% gnd ¢ = (195 + a10) Doy .
2
by 1@bygg

now in order to assure < g (s),q(d) >=1, we will find D
and using (17),

< q*,q >
T —_% % T 0 0 —_% %
=D{L% @) (Lang) - [ [ (L3 3).

= —x —x 0 E— w7, 0
= D{(1+ a7, +4,:)~ [ (1,3, 3;)6 " ds(L,1,4,)"}

— % _x _* —1pT
=D{1+q,q, +4,9, + T, con1q.¢ ° *}

To obtain < ¢"(s),¢(#) >=1, we can choose

1
D=
* 19Ty

L+ 14y + 3,9, + T Condid5e
further, <y, Ap >=< A"y, @ >, we then have

— 1,7, <CI*,CY> =< q*qu>
=<Aq ,q>=<-wy7,q ,q>

= 1y7, < 4,7 >

Therefore < q*, g >=0. This completes the proof.
Next we will compute the coordinates to describe the center
manifold Cy at £ =0.

Let u, be the solution of (16) when £ =0.
Define

z(¢) =< q*,u/ >, W(t,0)=u (0)-2Re{z(t)q(0)} (18)

on the center manifold CO , we have

Wt 0)=w(z(t),z(¢),6),
where
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2 2

W (z(), (1), 0) = W,, () % W (0)F + W, (9)% P

z and z are local coordinates for center manifold C, in the
direction of g* and g*. We will consider only real solutions as
W is real if u, is real. so for solution u, € C; of (16),

z(t) =w,rz+ 7 (0)£(0,(W (z,z,0) + 2Rezq(6)))
S wyr,z + cj*(O)fO(z, Z)

we rewrite this equation as
z(t) = 1wyr,z + g(2,2)

where

g(z,2) =77 (0)£,(z,2)
72 22 (20)

= (9)i+ g, g,
82 2 gu g022 g212 ........

thus from (18) and (19), we have

u, =W(t,0)+2Re{z(1)q(0)}

z _ z It 2'6’
= Wzo(‘g)?"'Wll(‘g)ZZ +Wo2(9)? +(1’q1qu)Te WKz
+(13,.3,)" @z ...
Using (13), (20) can be expressed as,

2(z2)=q (0)/,(.2) =q (0)/(O,u,)

Aoty (O)uy, (0)
byyotty, (O)u,, (0) +
Dyqtty, (Q)uz, (0)+ b020u22t 0)
Conthy, (—1)uz (0)+
Cuagtha, (O, (0) + o0t (0)

— z? _ 7?2 _
= TAD[QZM{W;) (0 7‘*’ W& (0) zz +W012 0) 7‘*’ z+ 7}

= ka)(lvé;: le*)

{2 (0) 272+ W.2(0) zz + W2 (0) Z;+ 4,z + 3,2} (21)
+ &L {2 (0) 22—2+ W.2(0) zz + W (0) Z;—z+ .z + q,7}

w2 () 22—Z+ W 2(0) zz + W 3 (0) §+ 4,7+ 7,7}

+ & {2 (0) Zz—z+ W.2(0) zz + Wy (0) §+ g,z + q,z}°

+ & WA (-1 22—2+ W2(-1)zz+ Wy (-1) §+
gre Tk z 1 gre Ot E MW 2 (0) Zz—z+ wi0) 2z

—2
z p—
+Wog(0) 2 + 4,2+ q,2}]

where

So1 = ugo HhiaoGr S0z = Doy + €110

Sos = bon G * Co009: » 504 = Co9>

Comparison of coefficients with (19) gives,

— -0 T
g, = Dt {2q.&, +28,9,9,+25,9 + 299,56 '}
gll = l_)Tk{ZReq1§01 + 2Iee(qlaZ)fm + 2qlal 03 +

J— () T
2Re(q,q,e ° )&}
ey _ _ _ o w. T,
2 = Dr {244, +244,5, +24, &, + 243,56 ° '}
2o = Do A&, (W (0)g, + 24,1, (0) + 27 (0) + 1, (0)) +
&, (W 0)g, +29,7; (0)+ 24 (0)+ 5, () +&, (W5 (07,

+2q)7,(0)+297; (0)+ 7, (0) + (22)
& (@I (D) + 24,72 (1) + 2. W (0)+
Ge "W 0)

since W,,(6) and W, (6) arein g,,, we still to compute it.
From (16) and (18), we have
W =i(t)-z2q-2q
_ {A(O)W ~2Re{g (0)/,4(0)} 0 <[z30)
AW —2Re{q (0)£,9(0)} s=0

= AQW + H(z,7,0) (23)
where

H(z,%,0) = Hzo(ﬂ)z—;+H11(6’)ZE+H02(6’)2—22+ ........ (24)

Substituting (24) above and comparing the coefficients, we
have

(A(0) — 21,7, 1YW, (0) = —H ,,(0)

(25)
AW, (0) = —H,, (0)
from (23) and for 8 €[-1,0)
H(z2,7.0) = =7 (0)£,4(6) -4 (0)£,3 ()
= -g(z,9)q(0)~2(=. )7 (0) 26)
Comparing the coefficients with (24) we get
Hyo(0) = —g509(0) — 20,9 (0) (27)
and
Hy,(0) = -g1,9(0) - 8.9 (0) (28)

now from the definition of 4(0), (25) and (27), we obtain
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Wzo (0) = 21wyt Wy (0) + 220q(0) + 8,q (0)

T z(uofke

Solving itand for ¢(0) = (1,4,,9,)" e , We have

0,7, 0

W, (0) = 22 4(0)e 82z (0)e " + Ee
.\ T

Ork 0"k

0,7, 0 N 207,00

where E, = (E,, E?, E_) is a constant vector.
Similarly, (25) and (28) gives,

10,7, 0 N 10T, 0

W,(0) = -2 g(0)e S’ﬁam)e +E,

W7, Wy

finally, we will seek the values of £, and E,.
from the definition of 4(0) and (25) , we have

[(dc(0)7,4(60) = 2107, ,5(0)- H.5(0)

and
[Cds@m.(0) = 1,0)

where ¢(6) =¢(0,6).
For 8 =0 and using (20), (23) and (26)

H(z,7,0) =-2Re(q (0)fq(0)+f

=7 0190 -4¢ ©) /g0 +f

or
z z?
H,(0)—+H,zz+H,—+......
2 2
2 —2
z _ z
=—q(0){g,, —+g,zz + g, —+.n. }
2 2
2 z?
TONE, T+ EF +Ea o},
Now from (13)

[ a,, u,, (0)u,, (0) W
b, u,, (0)u,, (0) +

by, u,, (0)u,, (0) + bmu; (0)
Cop ity (1)u,, (0) +

Cppolty, (0)uy, (0) + ¢ u’ (0)

1107 2¢ 20077 2¢

1

From (18), we have
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w(6) =W(t,60)+2Rez(t)q(6)
=W(t,0)+z(t)q(6) +z (1) (0)

2 2

=W, (e)% W, (0)ZZ + W, (9)% +2(6)q(6)

+Z(O)G(O) e
(29)
Thus we can obtain
Fn 2 l—‘21
z
fo=2r | T, ?+1k L, |zz +. (34)
30
( ) rlﬁ FZS
where
[y = a4,
_ 2
Ly = biogh + 6919, + boxods »
.= —:wOTk 2
(31) 13 ~ Co11919-€ + €019 + Cop0qs

Iy = 2Re{%}anov
[, = 2Re(q,)byyo + 2Re(q,,)bgy; + 2by3001; »
—  —wwnT _ _
(32) [y = 2Re(q,g,¢ " )con +2Re(q1q;)crip + 2¢5000101

By (33) and (34), we have

r

11

H,,(0) = -2,,9(0) - 28,,4(0) + 27, | T,

Ly (35)

and
T

21

H,0)=-£,900)-2,90) +7,| T,
r
23 (36)

(33) Substituting (29) and (35) into (31), we find,

Iy

0 Zza)ofke _
{ZZwOTkI—Le ds(0)}E, =27, | T},
I

which leads to

210 —ayy Ao10 0 I,
—bigo 21y — by —by |E, =2 T3,
0 ~Ci00 760016—2114“‘ 2iy Is

and we can easily obtain the following
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1
El(l) — H{_2(4w§ + 2tybyyg + bygy (€10 +

210, T
e " VN, —diwyd, T, — 2ag0byg s}

1
El(Z) = H{(ZM)O — a0 ) (410 T + 2bg I5) +

4oL}

1
£ = {210 ~a50) [2(260; b )Ty + 2e

~210yT), )

+Conn€ D1+ 2a4,0b10 15 + 2By

2100 T
(C1o0 tCome ~ ° * ) }and
M = (2w, - a1oo){(_4a)02 = 2i0,by,)

21037

= by1C100 — BoosCon® 3 210004

Similarly substituting (30) and (36) into (32), we get

Q100 010 0 Iy
bigg Doy boo |E, =| Ty
0 captcm O Ly

therefore we have

1
Ez(l) = N (a010b001T 23 = Do (€100 + €o01)T 21)

1
Ez(Z) = _N(aloobomF 2)

1
E® = N (@100D010 — brooo10 )T 25 + (Cuo0 +

Co01)(Brool 21 — Aol )

and N = —a4by10 (€100 + Cor)
Thus, we can determine W,,(¢) and W, (@) from (29) and

(30) and further g,, can be computed from (22).
Thus we can compute the following values:

6(0) = 5 {21 —%&%
o2,
Re{@H7i)y
B, = 2Re{6‘1(0)}
e O+t
T,=- e L k=012,...

where g, are given by (22).

Population
=)
(7]

1000 2000 " 3000 4000 5000

043 0.25 0;(3 035 0.4
0_;- ¢
08
8:3’““&&1_% R
03— 05

Fig. 1 (a), (b) and (c) convergence of trajectories towards E,at t = 6.3

Theorem5. Due to Hassard et al. [20], we gives the
properties of the Hopf bifurcation at the critical value of

7 =1, as follows:

(i) If p,>0(<0);
(subcritical).

(i) If B,<0(>0);
stable (unstable.)

(iii) If T, > 0(< 0) ; period of the bifurcating periodic solution
increases(decreases).

Hopf bifurcation is supercritical

the bifurcating periodic solutions are

D. Numerical Simulation

In this subsection, we will provide a numerical example to
dignify our theoretical findings. We have considered the given
system by choosing a set of parameters N, =3, =28,
b=175, k=03, b =055, ¢ =150, pB=125,
p,=121, y=1, a,=0.25, p=0.095.i.e.

%’ =3-2.8N -1.75Nx +0.3(0.55)x

& _ 1 50N — 0,55 — =22
dt (1+x)

W 1210605, 0.095x(t - 1)y
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using the package of DDE 23 in Matlab, we have integrated
the system (37) with initial data N(r) =1.0, x(r)=0.28,
¥(t)=0.90 and observe that the local asymptotic stability
condition (#,) in the absence of time delay is evidently
satisfied. The system trajectories approaches to positive interior
equilibrium at E.,(0.9193,0.2953,0.8586) in the form of a
stable focus as shown in Fig. 1. Further we find a purely
imaginary root i@, of (2) with @, =0.4613 and after some
algebraic calculations one can find the minimum value of the

delay parameter 'z’ for the model system (1) for which the
stability behavior changes and the this critical value is given by

7, = 6.714 such that, the co-existence equilibrium E. remain

stable for 0 <7 <6.714 (see Figs. 1 (a)-(c)) and is unstable
for 7>6.714 (see Figs. 2 (a)-(c)). Finally the stability
determining quantities for Hopf-bifurcating periodic solutions
are given by

¢,(0) =3.1737¢+ 002+ 7.7626¢ + 001,

M, =—2.6060e+ 004, B, =634.7315 and 7, = -39.8943

Using Theorem 5, we can conclude that the Hopf bifurcation is
subcritical in nature as well as the bifurcating periodic
solutions are unstable and decreases as 7 increases through its

critical value 7, .

=
o

Populations

2000

3000

2000

1000

027085

Fig. 2 (a), (b) and (c) Hopf-bifurcation at T = 6.9.

Il. CONCLUSION

In the present paper, a delayed plankton-nutrient interaction
model system is analyzed with the assumption that the toxin
liberation by the phytoplankton species follows a discrete time
variation. Firstly the stability of the given system in the
absence of delay is discussed and it is shown that interior
equilibrium remained stable under certain conditions. Next we
have considered the plankton-nutrient interaction in the
presence of delay and it is observed that the system does not
possess any periodic orbit for 7 €[0,6.714) . But when time

delay 7 crosses a threshold value 7,=6.714 the system
enters into a Hopf-bifurcation and a periodic orbit around
equilibrium state E. appearers.
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