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Entropic Measures of a Probability Sample Space
and Exponential Type (α, β) Entropy

Abstract—Entropy is a key measure in studies related to
information theory and its many applications. Campbell for the first
time recognized that the exponential of the Shannon’s entropy is just
the size of the sample space, when distribution is uniform. Here is
the idea to study exponentials of Shannon’s and those other entropy
generalizations that involve logarithmic function for a probability
distribution in general. In this paper, we introduce a measure of
sample space, called ‘entropic measure of a sample space’, with
respect to the underlying distribution. It is shown in both discrete and
continuous cases that this new measure depends on the parameters
of the distribution on the sample space - same sample space having
different ‘entropic measures’ depending on the distributions defined
on it. It was noted that Campbell’s idea applied for Rènyi’s parametric
entropy of a given order also. Knowing that parameters play a role in
providing suitable choices and extended applications, paper studies
parametric entropic measures of sample spaces also. Exponential
entropies related to Shannon’s and those generalizations that have
logarithmic functions, i.e. are additive have been studies for wider
understanding and applications. We propose and study exponential
entropies corresponding to non additive entropies of type (α, β),
which include Havard and Charvât entropy as a special case.

Keywords—Sample space, Probability distributions, Shannon’s
entropy, Rènyi’s entropy, Non-additive entropies .

I. INTRODUCTION

LET Δn = {P = (p1, . . . , pn) : pi ≥ 0,
∑n

i=1 pi =
1}, n ≥ 2 be a set of n-complete probability

distributions.

For any probability distribution P = (p1, . . . , pn) ∈
Δn, Shannon’s entropy [9], is defined as

H(P ) = −
n∑

i=1

p(xi) log p(xi) (1)

Various generalized entropies have been introduced in the

literature, taking the Shannon entropy as basic and have

found applications in various disciplines such as economics,

statistics, information processing and computing etc.

Generalizations of Shannon’s entropy started with Rènyi’s

entropy [8] of order-α, given by

Hα(P ) =
1

(1− α)
log

[ n∑
i=1

(p(xi))
α
]
, α �= 1, α> 0 (2)

Campbell [1] studied exponentials of the Shannon’s and

Rènyi’s entropies, given by

E(P ) = eH(P ) (3)
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and

Eα(P ) = eHα(P ) (4)

where H(P ) and Hα(P ) represent respectively the Shannon’s

and Rènyi’s entropies. It may also be mentioned that Koski

and Persson [5] studied

E(α,β)(P ) = eH(α,β)(P ) (5)

exponential of Kapur’s entropy [4] given by

Hα,β(P ) =
1

(β − α)
log

∑n
i=1(p(xi))

α∑n
i=1(p(xi))β

, α �= β, α, β> 0

(6)

It is interesting to notice that, in the case of discrete uniform

distribution P ∈ Δn , (3), (4) and (5) all reduce to n, just the

‘size of sample space of the distribution’.

In fact, when we consider corresponding entropies in the

continuous case,uniform distribution in a finite interval (a, b),
the exponential of these entropies are equal to length [b − a]
of the sample space.

Measures, as we know, are important for concepts and their

applications. Here we raise a question: Is there a measure

of the sample space in terms of the probability distribution

defined over it? In this paper we introduce such a measure

and study it.

Further, it is well known that, parameters in measures

play a significant role in widening their applications and

meaningfulness. In this paper we introduce a measure for

general sample space of a probability distribution, involving

parameters also.

It may be recalled that Shannon’s and Rènyi’s entropies

are additive and involve logarithmic function. The idea

has significantly been advanced in non-additive measures

by Havrda and Charvât [2] and Sharma and Taneja [10].

Exponential entropies corresponding to these expend this

study. Since Sharma and Taneja’s entropy holds Havrda and

Charvât entropy as a particular case, we take for studying

exponential ‘type (α, β)’ entropy, corresponding to Sharma

and Taneja [10] entropy of type (α, β) which is a two

parametric non-additive generalization of Shannon’s entropy

given by:

H(α,β)(P ) =

∑n
i=1 (p(xi))

α −∑n
i=1 (p(xi))

β

2(1−α) − 2(1−β)
, (7)

where

α �= β, α, β> 0.

define a measure called “entropic measure of sample
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This paper is organized as follows: In section II we
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space of a probability distribution”, in general, based on

“order-α entropic measure” for sample space of a probability

(α, β)” entropy and discuss its limiting and particular cases.

(α, β)” entropy and brief our conclusions are presented in

II. ENTROPIC MEASURE OF THE SAMPLE SPACE OF A

PROBABILITY DISTRIBUTION

We proceed with the following formal definition:

Definition 1(Entropic Measure of a Sample Space): Given a

probability distribution P on a sample space S , the entropic

measure of S with respect to the distribution P is defined as:

E(S, P ) = eH(P ) (8)

where H(P ) is Shannon’s entropy of the distribution.

Note 1: As pointed out earlier, E(S, P ) gives size/order

of the sample space when the distribution is uniform on

a finite sample space. The condition of ‘finiteness’ of the

sample space, as illustrated by examples below, may not

be necessary. In fact an infinite sample space, depending

upon the distribution defined on it may have finite entropic

measure.

Note 2: The idea of size of the sample space is expandable

to multivariate cases also. If we consider bi-variate situation

specified by two discrete random variables X and Y :

X = (x1, . . . , xn), Y = (y1, . . . , yn), (9)

their joint occurrences are given by the set of points

XY = (xiyj |i = 1, . . . , n; j = 1, . . . ,m), (10)

when both the distributions on X and Y are uniform, and their

resulting joint distribution is also uniform, U , and

E(XY,U) = eH(XY ) = nm (11)

which is also the size of product sample space.

This is also the case, if X and Y were continuous random

variables uniformly distributed in finite intervals, (a, b) and

(c, d), as can be quickly verified.

Note 3: The entropic measure E(S, P ) that we define, as will

be seen below, is finally a function of the parameters of the

distribution, which makes it interesting further.

Examples of discrete distributions: The entropic measures of

sample space S, under the following distributions are different

depending only on the parameters of the distributions:

(i) Geometric distribution [3]: For S = {i|i = 0, 1, . . . ,∞},

pi = qpi, p+ q = 1 (12)

then

H(P ) = −1

q
[p log p+ q log q]. (13)

From Definition in (1), we get

E(S,G(P )) =
1

1− p

(1
p

) p
1−p

(14)

where G(P ) stands for geometric distribution, is a function

of parameter p only.

(ii) Inverse λ-Power distribution [3]: For S = {i|i =
1, . . . ,∞} and λ > 1,

pi =
i−λ

ζ(λ)
, ζ(λ) =

∞∑
i=1

i−λ (15)

then

H(P ) = log ζ(λ)− λ
ζ

′
(λ)

ζ(λ)
. (16)

Using Definition in (1), we get

E(S, ζ(λ)) = ζ(λ)e−λ
ζ
′
(λ)

ζ(λ) (17)

where ζ(λ) represents inverse λ-power distribution, is a

function of parameter λ only.

Examples of continuous distributions:
(i) Two sided power distribution [6]: For −∞ < a ≤ m ≤
b < ∞ and n > 0

f(x) =

⎧⎪⎨
⎪⎩

n
b−a

(
x−a
m−a

)n−1

, if a < x ≤ m,

n
b−a

(
b−x
b−m

)n−1

, if m ≤ x ≤ b,
(18)

then

H(P ) = log (b− a)− log n+
n− 1

n
. (19)

From Definition in (1), we get

E(S, Ts(P )) =
(b− a) exp (n−1

n )

n
(20)

where Ts(P ) represents two sided power distribution, is a

function of parameters a, b only.

(ii) Two piece normal distribution [6]: For −∞ < μ < ∞,

σ1 > 0 and σ2 > 0,

f(x) =

⎧⎨
⎩

√
2
π

1
σ1+σ2

exp {− (x−μ)2

2σ1
2 }, if x ≤ μ,√

2
π

1
σ1+σ2

exp {− (x−μ)2

2σ2
2 } if x > μ,

(21)

then

H(P ) =
1

2
− log

(√ 2

π

1

σ1 + σ2

)
. (22)

Using Definition in (1), we get

E(S, Tp(P ) =

√
π

2
exp

(1
2

)
(σ1 + σ2) (23)

where Tp(P ) represents two piece normal distribution, is a

function of parameters σ1, σ2 only.

(iii) Exponential distribution [3]: For 0 ≤ x < ∞ and

λ > 0,

f(x) =

{
λe−λx, if x ≥ 0 ,

0, if x < 0,
(24)

Shannon’s entropy. In section III we propose a generalized

distribution. In section IV. we introduce exponential “type

In section V. we study some properties of exponential “type

Section VI.
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then

H(P ) = log (λ)− 1. (25)

From Definition in (1), we get

E(S,Ed(P )) =
λ

e
(26)

where Ed(P ) represents exponential distribution, is a function

of parameter λ only.

(iv) Asymmetric Laplace distribution [6]: For −∞ < θ < ∞
and φ1, φ2 > 0,

f(x) =

{
1

2φ1
exp(− |x−θ|

φ1
), if x ≥ θ,

1
2φ2

exp(− |x−θ|
φ2

), if x < θ,
(27)

then

H(P ) = 1 + log (2) +
(log φ1 + log φ2)

2
. (28)

Using Definition in (1), we get

E(S,Al(P )) = 2e
√

φ1φ2 (29)

where Al(P ) represents two piece Asymmetric Laplace

distribution, is a function of parameters φ1, φ2 only.

(v) Generalized Pareto distribution [6]: For x > 0 (if

c ≤ 0 and k > 0) or for 0 < x < k
c (if c > 0 and k > 0),

f(x) =
1

k
(1− cx

k
)

1
c−1 (30)

then

H(P ) = 1− c+ log k. (31)

From Definition in (1), we get

E(S,Gpd(P ) = k exp (1− c) (32)

where Gp(P ) represents generalized Pareto distribution, is a

function of parameters k, c only.

(vi) Gaussian distribution [7]: For −∞ < x < ∞,

−∞ < μ < ∞ and σ2 > 0,

f(x) =
1√
2πσ2

e
(x−μ)2

2σ2 (33)

then

H(P ) =
1

2
log (2πeσ2). (34)

Using Definition in (1), we get

E(S,Gd(P )) = σ
√
(2πe) (35)

where Gd(P ) represents Gaussian distribution, is a function

of parameter σ only.

So far we studied a measure which contained no extraneous

parameter.

In the next section, we propose a generalized order-α entropic

measure of a sample space.

III. GENERALIZED ORDER-α ENTROPIC MEASURE OF A

SAMPLE SPACE

As we mentioned earlier, parametric generalization, in

particular Rènyi’s order-α entropy has been studied with quite

some interest. In this section, we introduce “order-α entropic

measure” of a sample space in respect of an underlying

probability distribution.

Definition 2 (Order-α Entropic Measure of a Sample Space):

Given a probability distribution P on a sample space S ,

order-α entropic measure of S, is defined as:

Eα(S, P ) = eHα(P ) (36)

where Hα(P ) is Rènyi’s entropy of the distribution P .

Examples of order-α entropic measure of discrete distri-
butions:
In these examples, we take the various distributions considered

earlier.

(i) Geometric distribution [6]:

Hα(X) =
1

1− α
log

[ (1− p)α

1− pα

]
. (37)

Using Definition in (2), we get

Eα(S,G(P )) =
[ (1− p)α

1− pα

] 1
1−α

(38)

where G(P ) stands for geometric distribution, is a function

of parameters α, p only.

(ii) Inverse λ-Power distribution [6]:

Hα(P ) = log
[ζ(λα)
ζ(λ)α

] 1
1−α

. (39)

From Definition in (2), we get

Eα(S, ζ(λ)) =
[ζ(λα)
ζ(λ)α

] 1
1−α

(40)

where ζ(λ) represents inverse λ-power distribution, is a

function of parameters α, λ only.

Examples of order-α entropic measure of continuous
distributions:
(i) Two sided power distribution [6]:

Hα(P ) = log (b− a) +
α log n− log (αn− α+ 1)

1− α
. (41)

Using Definition in (2), we get

Eα(S, Ts(P )) =
(b− a)n

α
1−α

(αn− α+ 1)
1

1−α

(42)

where Ts(P ) represents two sided power distribution, is a

function of parameters a, b, α only.

(ii) Two piece normal distribution [6]:

Hα(P ) = −log
(√ 2

π

1

σ1 + σ2

)
− log(α)

2(1− α)
. (43)
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From Definition in (2), we get

Eα(S, Tp(P ) =

√
π

2
α

1
2(α−1) (σ1 + σ2) (44)

where Tp(P ) represents two piece normal distribution, is a

function of parameters α, σ1, σ2 only.

(iii) Exponential distribution [7]:

Hα(P ) = log λ− logα

1− α
. (45)

Using Definition in (2), we get

Eα(S,Ed(P )) = λα(α−1) (46)

where Ed(P ) represents exponential distribution, is a function

of parameters α, λ only.

(iv) Asymmetric Laplace distribution [6]:

Hα(P ) =
1

1− α
log

[φ1
1−α + φ2

1−α

α2α
]
. (47)

From Definition in (2), we get

Eα(S,Al(P )) =
[φ1

1−α + φ2
1−α

α2α

] 1
1−α

(48)

where Al(P ) represents asymmetric Laplace distribution, is

a function of parameters α, φ1, φ2 only.

(v) Generalized Pareto distribution [6]:

Hα(P ) = log k − log(α− αc+ c)

1− α
(49)

Using Definition in (2), we get

Eα(S, Pd(P )) = k(α− αc+ c)
1

α−1 (50)

where Pd(P ) represents generalized Pareto distribution, is a

function of parameters k, α, c only.

(vi) Gaussian distribution [7]:

Hα(P ) =
1

2
log (2πσ2)− logα

2(1− α)
. (51)

From Definition in (2), we get

Eα(S,Gd(P )) = σ
√
(2π)α2(α−1) (52)

where Gd(P ) represents Gaussian distribution, is a function

of parameters σ, α only.

In the next section, we first propose a exponential

two-parametric generalization of Shannon’s entropy that we

refer to as exponential “type(α, β)” entropy and discuss its

limiting and particular cases also.

IV. EXPONENTIAL “TYPE(α, β)” ENTROPY

Corresponding to Sharma and Taneja “type (α, β)” entropy,

the exponential “type(α, β)” entropy is defined as follows:

Definition 3: Expontial type(α, β) entropy of a discrete

distribution P is given by:

E(α,β)(P ) =

[
e

(∑n

i=1
(pi)

α−
∑n

i=1
(pi)

β

)
− 1

]
e(21−α−21−β) − 1

(53)

where

α �= β, α, β> 0.

This has interesting particular cases that we briefly mention

below.

Limiting and Particular cases:
(a) When α → β, measure (48) reduces to

Hβ(P ) = −2β−1
n∑

i=1

(p(xi))
β log p(xi) (54)

This measure was given by Sharma and Taneja [10].

(b) When α → β and further taking β → 1, measure

(48) reduces to Shannon’s entropy.

(c)When α = 1 , measure (48) reduces to

E1,β(P ) =

[
e1−

∑n

i=1
(pi)

β − 1
]

e1−21−β − 1
, β �= 1, β> 0 (55)

This can be considered as exponential “type-β” entropy

corresponding to Havrda and Charvât entropy [2] of type β
given by

Hβ(P ) =

∑n
i=1(pi)

β − 1

21−β − 1
, (56)

In the next section, we study some properties of E(α,β)(P ),
the exponential “type(α, β) ” entropy.

V. PROPERTIES OF THE EXPONENTIAL “TYPE(α, β)”
ENTROPY

The quantity introduced in the preceding section is an

‘entropy’. Such a name will be justified, if it shares some

major properties with Shannon’s and other entropies in the

literature. We study some such properties in the next three

theorems.

Theorem 1: The measure of information E(α,β)(P ), P ∈ Δn,

where Δn = {P = (p1, . . . , pn) : pi ≥ 0,
∑n

i=1 pi = 1} has

the following properties:

1) Symmetry:

E(α,β)(P ) = E(α,β)(p1, . . . , pn) is a symmetric

function of (p1, . . . , pn).
2) Normalized:

E(α,β)( 12 ,
1
2 ) = 1.

3) Expansible:

E(α,β)(p1, . . . , pn, 0) = E(α,β)(p1, . . . , pn).
4) Decisive:

E(α,β)(1, 0) = E(α,β)(0, 1) = 0.
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5) Continuity:

E(α,β)(p1, . . . , pn) is continuous in the region pi ≥ 0
for all α, β > 0.

Proof: (1) to (4):these properties are obvious and can be

verified easily.

5). We know that
∑n

i=1(pi)
α − ∑n

i=1(pi)
β is continuous in

the region pi ≥ 0 for all α, β > 0.

Hence, E(α,β)(P ), is also continuous in the region pi ≥ 0
for all α, β > 0.

Theorem 2: The measure E(α,β)(P ) is non-negative

for all α, β > 0.

Proof: We consider the following cases:

Case(i): When α > 1 and 0 < β < 1,

e
∑n

i=1
(pi)

α−
∑n

i=1
(pi)

β − 1 < 0

and

e(2
1−α−21−β) − 1 < 0

we get

E(α,β)(P ) > 0. (57)

Case(ii): When β > 1 and 0 < α < 1,

e
∑n

i=1
(pi)

α−
∑n

i=1
(pi)

β − 1 > 0

and

e(2
1−α−21−β) − 1 > 0

we get

E(α,β)(P ) > 0. (58)

Case(iii): When α > 1 and β > 1,

(a) Let α > β > 1

e
∑n

i=1
(pi)

α−
∑n

i=1
(pi)

β − 1 < 0

and

e(2
1−α−21−β) − 1 < 0

we get

E(α,β)(P ) > 0. (59)

(b) Let β > α > 1

e
∑n

i=1
(pi)

α−
∑n

i=1
(pi)

β − 1 > 0

and

e(2
1−α−21−β) − 1 > 0

we get

E(α,β)(P ) > 0. (60)

Case(iv): When α < 1 and β < 1,

(a) Let α < β < 1

e
∑n

i=1
(pi)

α−
∑n

i=1
(pi)

β − 1 > 0

and

e(2
1−α−21−β) − 1 > 0

we get

E(α,β)(P ) > 0. (61)

(b)Let β < α < 1

e
∑n

i=1
(pi)

α−
∑n

i=1
(pi)

β − 1 < 0

and

e(2
1−α−21−β) − 1 < 0

we get

E(α,β)(P ) > 0 (62)

From (57), (58), (59), (60), (61), (62), we conclude that

E(α,β)(P ) > 0 for all α, β > 0.

To prove the next theorem, we shall use the following

definition of a concave function.

Definition 4 (Concave Function): A function f(.) over

the points in a convex set R is concave if for all r1, r2 ∈ R
and μ ∈ (0, 1)

μf(r1) + (1− μ)f(r2) ≤ f(μr1 + (1− μ)r2) (63)

The function f(.) is convex if the above inequality holds with

≥ in place of ≤.

Theorem 3: The measure E(α,β)(P ) is a concave function

of the probability distribution P = (p1, . . . , pn), pi ≥
0,
∑n

i=1 pi = 1, when one of the parameters α, β(> 0) is

greater than unity and the other is less than or equal to unity,

i.e., either α > 1 and 0 < β ≤ 1 or β > 1 and 0 < α ≤ 1.

Proof : Associated with the random variable

X = (x1, x2, . . . , xn), let us consider r distributions

Pk(X) = {pk(x1), . . . , pk(xn)}, (64)

where
n∑

i=1

pk(xi) = 1, k = 1, 2, . . . , r.

Next let there be r numbers (a1, a2, . . . , ar) such that ak ≥ 0,∑n
i=1 ak = 1 and define

P0(X) = {p0(x1), . . . , p0(xn)},
where

p0(xi) =
r∑

k=1

akpk(xi), i = 1, 2, . . . , n. (65)

Obviously
∑n

i=1 p0(xi) = 1 and thus P0(X) is a bonafide

distribution of X .

If α > 1 and 0 < β ≤ 1, then we have

r∑
k=1

akE
(α,β)(Pk)− E(α,β)(P0)

=
r∑

k=1

akE
(α,β)(Pk)−

[
e

(
[
∑r

i=1
aipi]

α−[
∑n

i=1
aipi]

β

)
− 1

]
e(21−α−21−β) − 1

≤
r∑

k=1

akE
(α,β)(Pk)−

[
e

(∑r

i=1
ai(pi)

α−
∑n

i=1
ai(pi)

β

)
− 1

]
e(21−α−21−β) − 1
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i.e.,
r∑

i=1

aiE
(α,β)(Pi) ≤ E(α,β)(P ) (66)

By symmetry in α and β, the above result is also true for

β > 1 and 0 < α ≤ 1.

VI. CONCLUSION

In this paper, for the first time, concept of measure

of a sample space with associated probability distribution

has been introduced. This idea has quite some potential

for further study and exploration both in statistics as well

as in information theoretic applications.Using parametric

generalization provides further desirable flexibilities.
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