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Abstract—In this paper,the exponential passivity criteria for
BAM neural networks with time-varying delays is studied.By
constructing new Lyapunov-Krasovskii functional and dividing the
delay interval into multiple segments,a novel sufficient condition is
established to guarantee the exponential stability of the considered
system.Finally,a numerical example is provided to illustrate the
usefulness of the proposed main results.
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I. INTRODUCTION

B I-DIRECTIONAL associative memory (BAM) neural

networks have been extensively studied in recent years

due to its wide application in various areas such as image

processing,automatic control,pattern recognition,and so on.

Therefore,it is meaningful and important to study the BAM

neural network.They were originally introduced by Kosko

[1-3],have attracted by many researchers.The problems of

robust passivity,delay-dependent and stability have been well

investigated;see,for example,[7,8,10-24] and references cited

therein.Moreover,the problems of dissipativity of neural

networks were proposed in [4,9].

Recently,the exponential passivity of neural networks with

time-varying delays has been studied.A typical example of it

is [5],where sufficient conditions have been obtained for

considered neural networks to be exponential passivity.But in

[5,6],the information of neuron activation functions and the

involved time-varying delays has not been adequately

considered,which may lead to some conservatism.In [7], the

derivative of a time-varying delay be less than 1,but it is not

necessary to consider the derivative of a time-varying delay

less than 1.

As so far,the problems of exponential passivity of BAM

neural networks with time-varying delays has not been

widely studied,which motivates this work.in the present

paper,we investigate the problem of delay-dependent

exponential passivity for BAM neural networks with

time-varying delays.The delay belongs to a given interval,and

the restriction that the derivative of a time-varying delay be

less than 1 is removed. A novel sufficient condition is
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established by dividing the delay interval into multiple

segments,and constructing new Lyapunov-Krasovskii

functional which contains some new integral terms.Finally, in

order to show the feasibility of the proposed criteria in this

paper,a numerical example is considered.

II. PROBLEM STATEMENT

Consider the following BAM neural networks with time

varying delays described by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ(t)=−Ax(t) + Cf(y(t)) + Ef(y(t− h(t))) + μ(t)

z1(t)=f(y(t)) + f(y(t− h(t))) + μ(t)

ẏ(t)=−By(t) +Dg(x(t)) + Fg(x(t− ς(t))) + ν(t)

z2(t)=g(x(t)) + g(x(t− ς(t))) + ν(t)
(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ Rn and y(t) =

[y1(t), y2(t), . . . , yn(t)]
T ∈ Rn denote the neuron state

vectors;g(x(t))= [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]
T ∈Rn

and f(y(t))= [f1(y1(t)), f2(y2(t)), . . . , fn(yn(t))]
T ∈Rn are

the neuron activation function;A = diag{ai} ∈ Rn and

B = diag{bi} ∈ Rn are positive diagonal matrices;C and D

are the connection weight matrices,E and F are the delayed

connection weight matrices;μ(t) and ν(t) are the external

input vector to neurons;z1(t) and z2(t) are the output vector

of neuron networks.

The following assumptions are adopted throughout the paper.

Assumption 1: The delay h(t) and ς(t) are time-varying

continuous functions and satisfies:

0 ≤ ς(t) ≤ ς, ς̇(t) ≤ ςD, 0 ≤ h(t) ≤ h, ḣ(t) ≤ hD (2)

where ς, h,ςD and hD are constants.

Assumption 2: Neuron activation function gi(·), fi(·) in (1)

satisfies the following condition:

δ−i ≤ fi(α)− fi(β)

α− β
≤ δ+i

σ−
i ≤ gi(α)− gi(β)

α− β
≤ σ+

i

gi(0) = 0, fi(0) = 0, α, β ∈ R,α �= β, i = 1, 2, . . . , n.

(3)

where

Σ+ = diag{δ+1 , δ+2 , . . . , δ+n },Σ− = diag{δ−1 , δ−2 , . . . , δ−n },

Γ+ = diag{σ+
1 , σ

+
2 , . . . , σ

+
n },Γ− = diag{σ−

1 , σ
−
2 , . . . , σ

−
n }

Thus,under this assumption,the following inequalities hold for
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any diagonal matrices R1, R2 > 0

yT (t)ΣR1Σy(t)− fT (y(t))R1f(y(t)) ≥ 0

xT (t)ΓR2Γx(t)− gT (x(t))R2g(x(t)) ≥ 0
(4)

where

Σ=diag{δ1, δ2, . . . , δn}, δi= max
1≤i≤n

{|δ+i |, |δ−i |},
Γ=diag{σ1, σ2, . . . , σn}, σi= max

1≤i≤n
{|σ+

i |, |σ−
i |}

Definition 1 The system (1) is said to be exponentially

passive from input,if there exists an exponential Lyapunov

function V (xt, yt),and a constant ρ > 0 such that for all μ(t)
and ν(t),all initial conditions x(t0) and y(t0),all t ≥ t0,the

following inequality holds:

V̇ (xt, yt) + ρV (xt, yt) ≤ 2(zT1 (t)μ(t) + zT2 (t)ν(t)), t ≥ t0

where V̇ (xt, yt) denotes the total derivative of V (xt, yt) along

the state trajectories x(t) and y(t) of system (1).

Lemma 1 [26]. The following inequalities are true :

0≤
∫ yi(t)

0

(fi(s)− δ−i s)ds≤(fi(yi(t))− δ−i yi(t))yi(t) (5)

0≤
∫ yi(t)

0

(δ+i s− fi(s))ds≤(δ+i yi(t)− fi(yi(t)))yi(t) (6)

Lemma 2 (Schur complement [25]).For any constant matrix

H1, H2, H3,where H1 = HT
1 and H2 = HT

2 > 0.Then

H1 + HT
3 H

−1
2 H3 < 0 if and only if

[
H1 HT

3

H3 −H2

]
< 0 or[−H2 H3

HT
3 H1

]
< 0

III. MAIN RESULTS

In this section,a new exponential passivity criterion for

BAM neural networks with time-varying delays system is

obtained.For representation convenience,the following

notations are introduced:

x̄(t) = x(t− ς(t)), ȳ(t) = y(t− h(t))

Σ̄1=diag

{
δ+1 + δ−1

2
,
δ+2 + δ−2

2
, . . . ,

δ+n + δ−n
2

}
Σ̄2=diag

{
δ+1 δ

−
1 , δ+2 δ

−
2 , . . . , δ+n δ

−
n

}
Γ̄1=diag

{
σ+
1 + σ−

1

2
,
σ+
2 + σ−

2

2
, . . . ,

σ+
n + σ−

n

2

}
Γ̄2=diag

{
σ+
1 σ

−
1 , σ

+
2 σ

−
2 , . . . , σ

+
n σ

−
n

}

ξT(t)=

[
xT(t), xT(t− ς

3
), xT(t− 2ς

3
), xT(t− ς), x̄T(t),

gT(x(t)), gT(x̄(t)), μT(t), yT(t), yT(t− h

3
),

yT(t− 2h

3
), yT(t− h), ȳT(t), fT(y(t)),

fT(ȳ(t)), νT(t)
]

Theorem 1 Given that the Assumption 1-2 hold,the system

(1) is exponentially passive if there exist symmetric positive

definite matrices Pi, Qi, i = 1, 2, . . . , 6,G,M ,positive

diagonal matrices Wj , j = 1, 2, 3, 4,R1, R2,Ki =
diag{k1i, k2i, . . . , kni},Li = diag{l1i, l2i, . . . , lni} i = 1, 2,

any symmetric matrix Ti, i = 1, 2, 3, 4,and a constant ρ > 0,

such that the following LMIs hold:⎡
⎣E1 ℵT P̄6 �T P̄4

∗ −P̄6 0
∗ ∗ −P̄4

⎤
⎦ < 0 (7)

[
P3 T1

∗ P4

]
> 0 (8)

[
P3 T2

∗ P4

]
> 0 (9)

[
P5 T3

∗ P6

]
> 0 (10)

[
P5 T4

∗ P6

]
> 0 (11)

where

E1 = [E1
ij ] (i, j = 1, 2, . . . , 16)

ℵ = [−A, 0n×12n, C,E, I] ,� = [0n×5n, D, F, I,−B, 0n×7n]

P̄4 = hP4, P̄6 = ςP6

r(ςD) =

{
− (1− ςD)e−ρς , if ςD ≤ 1

− (1− ςD), if ςD > 1

r̄(hD) =

{
− (1− hD)e−ρh, if hD ≤ 1

− (1− hD), if hD > 1

E1
11 = ρP1 − P1A−AP1 + 2Γ−L1A− 2Γ+L2A+ ΓR2Γ

+G11−2G12Γ− + 2G13Γ
+ + Γ−G22Γ−−2Γ−G23Γ

+

+ Γ+G33Γ
+ +Q1 +Q2 +Q3+ ςP5−e−ρςT3

− 2ρΓ−L1 + 2ρΓ+L2 − Γ̄2W3

E1
16 = −L1A+ L2A+G12 −G13 − Γ−G22 + Γ−G23

+ Γ+GT
23 − Γ+G33 + ρL1 − ρL2 + Γ̄1W3

E1
18 = P1 − Γ−L1 + Γ+L2

E1
1,14 = P1C − Γ−L1C + Γ+L2C

E1
1,15 = P1E − Γ−L1E + Γ+L2E

E1
22 = −e−

ρς
3 Q1, E

1
33 = −e−

2ρς
3 Q2

E1
44 = −e−ρς(Q3 − T4)

E1
55 = r(ςD)(ΓR2Γ +G11 − 2G12Γ− + 2G13Γ

+ + Γ−G22Γ−
− 2Γ−G23Γ

+ + Γ+G33Γ
+)− Γ̄2W4 + e−ρς(T3 − T4)
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E1
57 = r(ςD)(G12−G13−Γ−G22+Γ−G23+Γ+GT

23−Γ+G33)

+ Γ̄1W4

E1
66 = −R2 +G22 − 2G23 +G33 −W3

E1
68 = L1 − L2, E

1
69 = DTP2 −DTK1Σ− +DTK2Σ

+

E1
6,14=L1C− L2C+DTK1−DTK2, E

1
6,15= L1E− L2E

E1
6,16=−I, E1

77= r(ςD)(−R2 +G22 − 2G23 +G33)−W4

E1
7,9=FTP2 − FTK1Σ− + FTK2Σ

+

E1
7,14=FTK1 − FTK2, E

1
7,16=−I

E1
88=−2I, E1

8,14=−I, E1
8,15=−I

E1
99 = ρP2 − P2B −BP2 + 2Σ−K1B − 2Σ+K2B

+ΣR1Σ+M11−2M12Σ−+2M13Σ
++Σ−M22Σ−

−2Σ−M23Σ
+ +Σ+M33Σ

+ +Q4+Q5+Q6+hP3

− e−ρhT1−2ρΣ−K1 + 2ρΣ+K2 − Σ̄2W1

E1
9,14=−BTK1 +BK2 +M12 −M13 − Σ−M22 +Σ−M23

+Σ+MT
23 − Σ+M33 + Σ̄1W1 + ρ(K1 −K2)

E1
9,16=P2 − Σ−K1 +Σ+K2, E

1
10,10=−e−

ρh
3 Q4

E1
11,11=−e

−2ρh
3 Q5, E

1
12,12=−e−ρh(Q6 − T2)

E1
13,13= r̄(hD)(ΣR1Σ+M11−2M12Σ−+2M13Σ

+

+Σ−M22Σ−−2Σ−M23Σ
+ +Σ+M33Σ

+)

− Σ̄2W2 + e−ρh(T1 − T2)

E1
13,15= r̄(hD)(M12 −M13 − Σ−M22 +Σ−M23 +Σ+MT

23

− Σ+M33) + Σ̄1W2

E1
14,14= −R1 +M22 − 2M23 +M33 −W1

E1
15,15= r̄(hD)(−R1+M22−2M23+M33)−W2

E1
14,16= K1 −K2, E

1
16,16=−2I

All other terms are 0.

Proof: Construct a new class of Lyapunov functional

candidate as follow:

V (xt, yt)=
6∑

i=1

Vi(xt, yt)

with

V1(xt, yt)=xT (t)P1x(t) + yT (t)P2y(t)

V2(xt, yt)=2
n∑

i=1

∫ yi(t)

0

[
ki1(fi(s)−δ−i s)+ki2(δ

+
i s−fi(s))

]
ds

+2
n∑

i=1

∫ xi(t)

0

[
li1(gi(s)−σ−

i s)+li2(σ
+
i s−gi(s))

]
ds

V3(xt, yt)=

∫ t

t−h(t)

ϕ
[
yT (s)ΣR1Σy(s)−fT (y(s))R1f(y(s))

]
ds

+

∫ t

t−ς(t)

ϕ
[
xT (s)ΓR2Γx(s)−gT (x(s))R2g(x(s))

]
ds

V4(xt, yt)=

∫ t

t−h(t)

ϕ

⎡
⎣ y(s)
f(y(s))− Σ−y(s)
Σ+y(s)− f(y(s))

⎤
⎦
T

M

⎡
⎣ y(s)
f(y(s))− Σ−y(s)
Σ+y(s)− f(y(s))

⎤
⎦ds

−
∫ t

t−ς(t)

ϕ

⎡
⎣ x(s)
g(x(s))− Γ−x(s)
Γ+x(s)− g(x(s))

⎤
⎦
T

G

⎡
⎣ x(s)
g(x(s))− Γ−x(s)
Γ+x(s)− g(x(s))

⎤
⎦ds

V5(xt, yt)=

∫ t

t−h
3

ϕyT (s)Q4y(s)ds+

∫ t

t− 2h
3

ϕyT (s)Q5y(s)ds

+

∫ h

t−h

ϕyT (s)Q6y(s)ds+

∫ t

t− ς
3

ϕxT (s)Q1x(s)ds

+

∫ t

t− 2ς
3

ϕxT (s)Q2x(s)ds+

∫ t

t−ς

ϕxT (s)Q3x(s)ds

V6(xt, yt)=

∫ 0

−h

∫ t

t+θ

ϕ(yT (s)P3y(s) + ẏT (s)P4ẏ(s))ds

=

∫ 0

−ς

∫ t

t+θ

ϕ(xT (s)P5x(s) + ẋT (s)P6ẋ(s))ds

where

ϕ=e−ρ(t−s)

M=

⎡
⎣M11 M12 M13

∗ M22 M23

∗ ∗ M33

⎤
⎦ , G=

⎡
⎣G11 G12 G13

∗ G22 G23

∗ ∗ G33

⎤
⎦

Then, taking the derivative of V (xt, yt) with respect to t along

the system (1) yields

V̇1(xt, yt) = 2xT (t)P1ẋ(t) + 2yT (t)P2ẏ(t) (12)

V̇2(xt, yt)=2(fT (y(t))− yT (t)Σ−)K1ẏ(t)

+ 2(yT (t)Σ+ − fT (y(t)))K2ẏ(t)

+ 2(gT (x(t))− xT (t)Γ−)L1ẋ(t)

+ 2(xT (t)Γ+ − gT (x(t)))L2ẋ(t)

(13)

V̇3(xt, yt)≤−ρV3 + xT (t)ΓR2Γx(t)− gT (x(t))R2g(x(t))

+r(ςD)[x̄T (t)ΓR2Γx̄(t)−gT (x̄(t))R2g(x̄(t))]

+yT (t)ΣR1Σy(t)− fT (y(t))R1f(y(t))

+r̄(hD)[ȳT (t)ΣR1Σȳ(t)−fT (ȳ(t))R1f(ȳ(t))]
(14)
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V̇4(xt, yt)≤−ρV4+

⎡
⎣ x(t)
g(x(t))− Γ−x(t)
Γ+x(t)− g(x(t))

⎤
⎦
T

G

⎡
⎣ x(t)
g(x(t))− Γ−x(t)
Γ+x(t)− g(x(t))

⎤
⎦

+r(ςD)

⎡
⎣ x̄(t)
g(x̄(t))−Γ−x̄(t)
Γ+x̄(t)−g(x̄(t))

⎤
⎦
T

G

⎡
⎣ x̄(t)
g(x̄(t))−Γ−x̄(t)
Γ+x̄(t)−g(x̄(t))

⎤
⎦

+

⎡
⎣ y(t)
f(y(t))− Σ−y(t)
Σ+y(t)− f(y(t))

⎤
⎦
T

M

⎡
⎣ y(t)
f(y(t))− Σ−y(t)
Σ+y(t)− f(y(t))

⎤
⎦

+r̄(hD)

⎡
⎣ ȳ(t)
f(ȳ(t))−Σ−ȳ(t)
Σ+ȳ(t)−f(ȳ(t))

⎤
⎦
T

M

⎡
⎣ ȳ(t)
f(ȳ(t))−Σ−ȳ(t)
Σ+ȳ(t)−f(ȳ(t))

⎤
⎦

(15)

V̇5(xt, yt)=−ρV5 + xT (t)(Q1 +Q2 +Q3)x(t)

−e−
ρς
3 xT (t− ς

3
)Q1x(t− ς

3
)

−e−
2ρς
3 xT (t− 2ς

3
)Q2x(t− 2ς

3
)

−e−ρςxT (t− ς)Q3x(t− ς)

+yT (t)(Q4 +Q5 +Q6)y(t)

−e−
ρh
3 yT (t− h

3
)Q4y(t− h

3
)

−e−
2ρh
3 yT (t− 2h

3
)Q5y(t− 2h

3
)

−e−ρhyT (t− h)Q6y(t− h)

(16)

V̇6(xt, yt)≤−ρV6+ h(yT (t)P3y(t) + ẏ(t)P4ẏ(t))

+ς(xT (t)P5x(t) + ẋT (t)P6ẋ(t))

−e−ρh

∫ t

t−h

(yT (s)P3y(s) + ẏ(s)P4ẏ(s))ds

−e−ρς

∫ t

t−ς

(xT (s)P5x(s) + ẋT (s)P6ẋ(s))ds

(17)

Now,we consider the following four zero equalities with any

symmetric matrix T1, T2, T3, T4

yT(t)T1y(t)−ȳT(t)T1ȳ(t)−2
∫ t

t−h(t)

yT(s)T1ẏ(s)ds=0 (18)

ȳT(t)T2ȳ(t)−yT(t−h)T2y(t−h)−2
∫ t−h(t)

t−h

yT(s)T2ẏ(s)ds=0

(19)

xT(t)T3x(t)−x̄T(t)T3x̄(t)−2
∫ t

t−ς(t)

xT(s)T3ẋ(s)ds=0 (20)

x̄T(t)T4x̄(t)−xT(t−ς)T4x(t−ς)−2
∫ t−ς(t)

t−ς

xT(s)T4ẋ(s)ds=0

(21)

Here,using Lemma 1,we have

n∑
i=1

∫ yi(t)

0

[
ki1(fi(s)−δ−i s)+ki2(δ

+
i s−fi(s))

]
ds

≤(f(y(t))−Σ−y(t))TK1y(t)+(Σ+y(t)−f(y(t)))TK2y(t)
(22)

n∑
i=1

∫ xi(t)

0

[
li1(gi(s)−σ−

i s)+li2(σ
+
i s−gi(s))

]
ds

≤(g(x(t))−Γ−x(t))TL1x(t)+(Γ+x(t)−g(x(t)))TL2x(t)
(23)

From (3), we can get that there exist positive diagonal matrices

W1,W2,W3,W4 such that the following inequalities holds:[
y(t)

f(y(t))

]T [−Σ̄2W1 Σ̄1W1

∗ −W1

] [
y(t)

f(y(t))

]
≥ 0 (24)

[
ȳ(t)

f(ȳ(t))

]T [−Σ̄2W2 Σ̄1W2

∗ −W2

] [
ȳ(t)

f(ȳ(t))

]
≥ 0 (25)

[
x(t)

g(x(t))

]T [−Γ̄2W3 Γ̄1W3

∗ −W3

] [
x(t)

g(x(t))

]
≥ 0 (26)

[
x̄(t)

g(x̄(t))

]T [−Γ̄2W4 Γ̄1W4

∗ −W4

] [
x̄(t)

g(x̄(t))

]
≥ 0 (27)

From (12)-(27),we can get

V̇ (xt, yt) + ρV (xt, yt)− 2zT1 (t)μ(t)− 2zT2 (t)ν(t)

≤ξT (t)(E1 + ℵT P̄6ℵ+ �T P̄4�)ξ(t)

−
∫ t

t−h(t)

[
y(s)
ẏ(s)

]T[
P3 T1

∗ P4

][
y(s)
ẏ(s)

]
ds

−
∫ t−h(t)

t−h

[
y(s)
ẏ(s)

]T[
P3 T2

∗ P4

][
y(s)
ẏ(s)

]
ds

−
∫ t

t−ς(t)

[
x(s)
ẋ(s)

]T[
P5 T3

∗ P6

][
x(s)
ẋ(s)

]
ds

−
∫ t−ς(t)

t−ς

[
x(s)
ẋ(s)

]T[
P5 T4

∗ P6

][
x(s)
ẋ(s)

]
ds

Using Lemma 2,and (7)-(11),we can get

V̇ (xt, yt) + ρV (xt, yt) ≤ 2zT1 (t)μ(t)− 2zT2 (t)ν(t)

Based on Definition 1, the system (1) is guaranteed to be

exponential passivity,which complete the proof.

Remark 1 Firstly,in this paper,the restriction that the

derivative of a time-varying delay be less than 1 is

removed.Secondly,dividing the delay interval [0, h] and [0, ς]
into three different ones [0, h

3 ], [
h
3 ,

2h
3 ], [ 2h3 , h] and

[0, ς
3 ], [

ς
3 ,

2ς
3 ], [

2ς
3 , ς] ,respectively,and constructing new

Lyapunov functional which contains some new integral

terms.It have potential to yield less conservative results.

Remark 2 Theorem 1 reduces to the LMIs exponential

stabil ity condition for delayed BAM neural networks if the

μ(t) = 0 and ν(t) = 0.
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Next,we consider the special case of the system (1) with

μ(t) = 0, ν(t) = 0.
Corollary 1 Given that the Assumption 1-2 hold,the system

(1) is exponentially passive if there exist symmetric positive

definite matrices Pi, Qi, i = 1, 2, . . . , 6,G,M ,positive

diagonal matrices Wj , j = 1, 2, 3, 4, R1, R2,Ki =
diag{k1i, k2i, . . . , kni},Li = diag{l1i, l2i, . . . , lni} i = 1, 2,

any symmetric matrix Ti, i = 1, 2, 3, 4 and a constant ρ > 0
such that the following LMIs hold:⎡
⎣F 1 ℵT

1 P̄6 �T
1 P̄4

∗ −P̄6 0
∗ ∗ −P̄4

⎤
⎦ < 0 (28)

[
P3 T1

∗ P4

]
> 0 (29)

[
P3 T2

∗ P4

]
> 0 (30)

[
P5 T3

∗ P6

]
> 0 (31)

[
P5 T4

∗ P6

]
> 0 (32)

where

ℵ1 = [−A, 0n×11n, C,E] ,�1 = [0n×5n, D, F,−B, 0n×6n]

F 1 = [F 1
ij ] (i, j = 1, 2, . . . , 14)

F 1
11 = ρP1 − P1A−AP1 + 2Γ−L1A− 2Γ+L2A+ ΓR2Γ

+G11−2G12Γ− + 2G13Γ
+ + Γ−G22Γ−−2Γ−G23Γ

+

+ Γ+G33Γ
+ +Q1 +Q2 +Q3+ ςP5−e−ρςT3

− 2ρΓ−L1 + 2ρΓ+L2 − Γ̄2W3

F 1
16 = −L1A+ L2A+G12 −G13 − Γ−G22 + Γ−G23

+ Γ+GT
23 − Γ+G33 + ρL1 − ρL2 + Γ̄1W3

F 1
1,13 = P1C − Γ−L1C + Γ+L2C

F 1
1,14 = P1E − Γ−L1E + Γ+L2E

F 1
22 = −e−

ρς
3 Q1, F

1
33 = −e−

2ρς
3 Q2

F 1
44 = −e−ρς(Q3 − T4)

F 1
55 = r(ςD)(ΓR2Γ +G11 − 2G12Γ− + 2G13Γ

+ + Γ−G22Γ−
− 2Γ−G23Γ

+ + Γ+G33Γ
+)− Γ̄2W4 + e−ρς(T3 − T4)

F 1
57 = r(ςD)(G12−G13−Γ−G22+Γ−G23+Γ+GT

23−Γ+G33)

+ Γ̄1W4

F 1
66 = −R2 +G22 − 2G23 +G33 −W3

F 1
6,13=L1C− L2C+DTK1−DTK2, F

1
6,14= L1E− L2E

F 1
77= r(ςD)(−R2 +G22 − 2G23 +G33)−W4

F 1
78=FTP2 − FTK1Σ− + FTK2Σ

+

F 1
7,13=FTK1 − FTK2

F 1
88 = ρP2 − P2B −BP2 + 2Σ−K1B − 2Σ+K2B

+ΣR1Σ+M11−2M12Σ−+2M13Σ
++Σ−M22Σ−

−2Σ−M23Σ
+ +Σ+M33Σ

+ +Q4+Q5+Q6+hP3

− e−ρhT1−2ρΣ−K1 + 2ρΣ+K2 − Σ̄2W1

F 1
8,13=−BTK1 +BK2 +M12 −M13 − Σ−M22 +Σ−M23

+Σ+MT
23 − Σ+M33 + Σ̄1W1 + ρ(K1 −K2)

F 1
8,14=P2 − Σ−K1 +Σ+K2, F

1
9,9=−e−

ρh
3 Q4

F 1
10,10=−e

−2ρh
3 Q5, F

1
11,11=−e−ρh(Q6 − T2)

F 1
12,12= r̄(hD)(ΣR1Σ+M11−2M12Σ−+2M13Σ

+

+Σ−M22Σ−−2Σ−M23Σ
+ +Σ+M33Σ

+)

− Σ̄2W2 + e−ρh(T1 − T2)

F 1
12,14= r̄(hD)(M12 −M13 − Σ−M22 +Σ−M23 +Σ+MT

23

− Σ+M33) + Σ̄1W2

F 1
13,13= −R1 +M22 − 2M23 +M33 −W1

F 1
14,14= r̄(hD)(−R1+M22−2M23+M33)−W2

All other terms are 0.

Proof: The proof of the Corollary 1 is consequence of

Theorem 1 by choosing μ(t) = 0, ν(t) = 0.Hence the proof

is omitted.

Remark 3 In this paper,Theorem 1 and Corollary 1 require

the upper bound hD, ςD to be known.However,in many cases

hD, ςD is unknown,considering this situation ,we can set

Ri = 0, (i = 1, 2),M = G = 0 in V (xt, yt),and employ the

same methods in Theorem 1 and Corollary 1,we can derive

the delay-dependent and delay-derivative-independent

exponential passivity criteria.
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IV. EXAMPLE

In this section,we provide a example to demonstrate the

effectiveness and feasibility of our results.

Example 1 Consider the BAM neural networks with the

following parameters:

A=

[
1.8 0
0 2.2

]
, B=

[
2.5 0
0 2.2

]
, C=

[−1 0
−1 −1

]
,

D=

[
0.1 0
0 −0.1

]
, E=

[
0.9 0.1
0.1 0.5

]
, F =

[
0.3 0.1
0.1 0.4

]
,

Σ+=diag{0.1, 0.1},Σ−=diag{−0.1,−0.1},
Γ+=diag{1, 1},Γ−=diag{−1,−1},
and f1(s)=tanh(−0.7s), f2(s)=tanh(0.2s),
g1(s)=tanh(−0.2s), g2(s)=tanh(−0.8s)
h(t) = 0.8| cos t|, ς(t)=0.8| sin t|.
In Table I,we consider the case of h = ς = n1, hD = ςD =
n2,the upper bound of ρ is derived by Theorem 1 and Corollary

1.According to Table II,we can know the maximum values of

ρ for various h, ς ,and unknown hD, ςD.By using the Matlab

LMI toolbox,we solve LMIs (7)-(11),for the case of h = ς =
0.6, ςD = hD = 0.7, ρ = 1.028,and obtain

P1=

[
2.9045 −0.0637
−0.0637 3.1610

]
, P2=

[
0.7688 0.1800
0.1800 0.4953

]
,

P3=

[
0.4171 0.2033
0.2033 0.1061

]
, P4=

[
0.2005 0.1067
0.1067 0.0829

]
,

P5=

[
0.4354 −0.1857
−0.1857 2.8541

]
, P6=

[
1.5861 0.1032
0.1032 0.2407

]
,

Q1=

[
0.0011 −0.0130
−0.0130 0.1691

]
, Q2=

[
0.0113 −0.0011
−0.0011 0.1691

]
,

Q3=

[
0.8193 −0.0038
−0.0038 0.8689

]
, Q4=

[
0.1185 0.0571
0.0571 0.0279

]
,

Q5=

[
0.1183 0.0274
0.0274 0.0450

]
, Q6=

[
0.0808 0.0389
0.0389 0.0190

]
,

K1=

[
0.0027 0

0 0.0027

]
,K2=

[
0.0026 0

0 0.0026

]
,

R1=

[
0.3472 0

0 0.3472

]
, R2=

[
0.7006 0

0 0.7006

]
,

L1=1.0× 10−3 ×
[
0.1101 0

0 0.1101

]
,

L2=1.0× 10−3 ×
[
0.1094 0

0 0.1094

]
,

M=

⎡
⎣ 0.0011 −0.0130 0.1691
−0.0130 0.0011 −0.0130
0.1691 −0.0130 0.1691

⎤
⎦ ,

G=

⎡
⎣ 0.4354 −0.1857 2.8541
−0.1857 1.5861 0.1032
2.8541 0.1032 0.2407

⎤
⎦ ,

The state trajectories of variables x(t) and y(t) with the initial

condition xT (t) = [1,−1]T and yT (t) = [2,−2]T are shown

in Fig.1.

TABLE I
M 1 2

Method Theorem 1 Corollary 1
n1 = 0.1, n2 = 0.4 1.467 3.557
n1 = 0.4, n2 = 0.4 1.159 3.230
n1 = 0.6, n2 = 0.7 1.028 3.113
n1 = 0.8, n2 = 0.9 0.921 2.979

TABLE II
MAXIMUM VALUE OF ρ WITH DIFFERENT h, ς , UNKNOWN hD, ςD IN

Method Theorem 1 Corollary 1
h = 0.1, ς = 0.3 1.183 3.703
h = 0.3, ς = 0.3 1.178 3.000
h = 0.5, ς = 0.4 1.107 2.816
h = 0.7, ς = 0.8 0.886 2.448
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Fig.1. The state response of system (1) in Example 1.

V. CONCLUSION

In this paper,the issues of delay-dependent exponential

passivity analysis is investigated for BAM neural networks

with time-varying delays.The obtained criteria are less

conservative because a bounding technique of integral terms

with free-weighting matrices in different delay intervals is

utilized. Finally,for this problem,one example is provided to

show the feasibility of the proposed criteria in this paper.
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