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Abstract—Most of greenhouse growers desire a determined 

amount of yields in order to accurately meet market requirements. 
The purpose of this paper is to model a simple but often satisfactory 
supervised classification method. The original naive Bayes have a 
serious weakness, which is producing redundant predictors. In this 
paper, utilized regularization technique was used to obtain a 
computationally efficient classifier based on naive Bayes. The 
suggested construction, utilized L1-penalty, is capable of clearing 
redundant predictors, where a modification of the LARS algorithm is 
devised to solve this problem, making this method applicable to a 
wide range of data. In the experimental section, a study conducted to 
examine the effect of redundant and irrelevant predictors, and test the 
method on WSG data set for tomato yields, where there are many 
more predictors than data, and the urge need to predict weekly yield 
is the goal of this approach. Finally, the modified approach is 
compared with several naive Bayes variants and other classification 
algorithms (SVM and kNN), and is shown to be fairly good. 
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I. INTRODUCTION 
OR many years, reliable supplies of high quality food in 
agreed quantities are required by stakeholders such as the 

tomato growers, the supermarkets and various others such as 
the consumers. Growers have increased food quality and yield 
in many parts of the world through the use of greenhouses 
where the environmental conditions can be controlled, and by 
selecting better cultivars [2]. However, weekly yields can 
fluctuate and this can pose problems of both over-demand and 
over-production if the yield cannot be predicted accurately. In 
this respect growers and scientists are looking for ways to 
forecast tomato yield so as to be able to plan greenhouse 
operations, marketing etc. One of the dynamic and complex 
systems is tomato crop growth, and it has been studied through 
the development of mechanistic models. Two of the verified 
dynamic growth models are TOMGRO [13] and TOMSIM 
[14]. Both models are built on physiological processes and 
they model biomass dividing, growth, and yield as a function 
of several climate and physiological parameters. Their use is 
narrow, especially for practical application by growers, by 
their complexity and by the difficulty in obtaining the initial 
condition parameters required for implementation [12]. 

Bayesian network classifiers [1] are often used for 
classification problems. The model parameters are usually 
found by maximizing the joint likelihood. The naive Bayes 
model is a simple Bayesian network classifier [5] that assumes 
the predictors are independent given each class value. In spite 
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of this strong assumption, this classifier has been proven to 
work satisfactorily in many domains [2], [3]. 

The lasso [10] is a popular regularization technique that 
imposes an L1-penalty on the usual least-squares linear 
regression, with the aim of reducing the variance of the 
estimates, preventing overfitting, performing simultaneously 
variable selection and, finally, improving the model 
interpretability. Depending on the chosen regularization 
parameter, some regression coefficients are set to exactly zero, 
and the corresponding predictors are discarded [10]. 

The L1-penalty [11] has been widely used in many 
classification paradigms, like logistic regression [8] with a 
minor modification, the LARS algorithm13 assesses the 
complete lasso regularization path, and that is, the whole set of 
regression coefficient estimates with regard to the 
regularization parameter. LARS is of particular interest 
because it solves the complete regularization path at the cost 
of an ordinary least squares fit. Besides least squares 
functions, the LARS algorithm can be used to efficiently 
minimize other loss functions subject to an L1-penalty 
provided these loss functions meet certain conditions [7]. In 
this paper, we introduce a supervised classification method 
that is inspired on naive Bayes and based on convex 
optimization. On the one hand, this formulation allows 
applying regularization techniques from linear regression that 
permit to discard both redundant and irrelevant predictors. 
Redundant predictors are known to be harmful for naive Bayes 
and variants, and also for our model [4]. On the other hand, 
like naïve Bayes, it can directly deal with both continuous and 
discrete predictors and can be directly used in multi-class 
problems. Thus, our method is applicable to a wide range of 
data sets [4]. 

The proposed method establishes a linear combination of 
the likelihood contributions of each predictor. This linear 
combination is chosen so that the result is maximized, 
assuming that the coefficients are somehow constrained. This 
will give priority to those variables whose likelihood 
contributions are higher. The applied constraint is an L1-
penalty, which yields a sparse vector of coefficients, dropping 
the likelihood contribution of some predictors and, thus, 
enhancing the interpretability of the model. As results will 
show, this method can discard both redundant and irrelevant 
predictors (i.e. their respective likelihood contributions). The 
devised loss function also meets the requirements for applying 
a LARS type algorithm [7] This algorithm would efficiently 
compute the entire regularization path at one shot. This is 
beneficial in high dimensional settings on computational 
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grounds. Finally, our method is applicable to a wide range of 
data [7]. 

The rest of the paper is organized as follows. Section II 
introduces the used scheme in detail. Section IV details the set 
of experiments used to test the algorithm. Section V discusses 
conclusions and future work. 

II. NAÏVE BAYES AND VARIANTS 
Naive Bayes is one of the most efficient and effective 

inductive learning algorithms for machine learning and data 
mining. Its competitive performance in classification is 
surprising, because the conditional independence assumption 
on which it is based is rarely true in real-world applications 
[4]. 

III. THE METHOD 
In this paper, each predictor builds a penalized linear 

expression whose minimization will yield a classifier that 
discards irrelevant and redundant predictors. 

We first obtain the ML parameters "i, for i  _, and "µi and 
"2 where, following the Bayes’ rule or Vector f = ("1, . . . "p) 
would be chosen to maximize (10), hence giving more weight 
to predictors that are more relevant for the classification. The 
rationale of this approach is that relevant predictors will have 
values P(Y =yr|Xi = xri, ˆi) closer to one than irrelevant 
predictors. Hence, when maximizing (10) across the data set, 
the coefficients _i of the relevant predictors are promoted to 
be higher [7]. 

Note also that, as long as ranges from 0 to 1, like a 
probability. This could be used as a basis for classifying future 
instances. Specifically, for a new instance given by xi, the 
class value j  {1 . . . c} that maximizes Note that _i = 0 
implies that predictor Xi is not selected. Likewise, higher 
values of _i would attach more importance to predictor Xi. 
Predictors that are considered to be relevant (i.e., with a high 
_i) are expected to have a higher probability P(Y = j|Xi = xi, 
ˆi) for the true class, as it was in the training data set. 

To obtain _, we could devise a linear optimization problem 
that maximizes (10) for the data set. However, it will not drive 
any i to exactly zero, and, hence, will not perform variable 
selection. We alternatively propose an L1-constrained problem 
[9]. 

IV. REDUNDANT PREDICTORS AND IRRELEVANT PREDICTORS 
Place Let Xi1 and Xi2 be two redundant predictors, for 

example, a predictor that appears twice. 
First, if Xi1 and Xi2 are discrete and (5) is satisfied, the 

value of Xi2 can be determined if Xi1 is known and vice 
versa. Hence, there is a bisection between the i1-th and the i2-
th columns of matrix X. Obviously, this means that P (Xi1 = 
xri1 |Y = yr, ˆ_i1) and P (Xi2 = xri2 |Y = yr, ˆ_i2) are equal, r 
= 1, . . . n. Therefore, it follows that P (Y = yr|Xi1 = xri1, ˆ_i1) 
and P (Y = yr|Xi2 = xri2, ˆ_i2), r = 1, . . . n, are equal too. 
Hence, if two predictors, Xi1 and Xi2, are highly correlated 
then vector P (Y = yr|Xi1 = xri1, ˆ_i1), r = 1, . . . n, and vector 
P (Y = yr|Xi2 = xri2, ˆ_i2), r = 1, . . . n, will also be highly 

correlated. Therefore, (12), which can be solved by LARS, 
would drop either Xi1 or Xi2 due to the lasso constraint 
properties (i.e., the ability of the L1-penalty to discard 
redundant predictors) [9]. 

If Xi1 and Xi2 are continuous and redundant, either Xi1 or 
Xi2 would also be discarded. 

LARS starts with no predictors. Firstly, it includes the 
predictor that is most correlated with the response into the 
active set of predictors A. The response is regressed on this 
predictor, so that the coefficient of this predictor is moved 
towards the least squares solution until a new predictor 
reaches the same absolute correlation with the vector of 
residuals as that of A. 

This new predictor is included in the active set A. Now, the 
vector of residuals is regressed on the predictors in A, moving 
their coefficients towards the joint least squares solution until 
a new predictor not in A reaches the same absolute correlation 
with such vector of residuals as that of A. When n ≥ p, this 
procedure is repeated until all predictors are into the model. 
Otherwise, after n − 1 steps, the residuals are zero and the 
algorithm terminates [7]. 

Now, to accomplish the condition _i ≥ 0, we compute as the 
minimum value such that some predictor i /  A reaches the 
same positive correlation with the vector of residuals as that of 
A. Thus, the difference is that the negative correlations with 
the residuals of predictors i / A are ignored for computing and 
deciding which predictor i /  A enters the model. This 
modification was presented in the paper by Efron et al. [6]. 

V. EXPERIMENTS 

A. Tomato Yield Prediction Data 
Wide areas in WSG (Wight Salads Group) in the Isle of 

Wight, United Kingdom, are used for this study. These regions 
make major contribution in tomato production of UK. The 
inputs to the network are several parameters derived from the 
crop model [12]-[14], and including (temperature, CO2, vapor 
pressure deficit (VPD), yield, and radiation), which originally 
were measured on weekly basis during each season. 

We present some illustrative results on two different 
scenarios. First, we evaluate the effect of redundant and 
irrelevant predictors. Second, we test the proposed method on 
a high dimensional data set. Finally, we run the naive Bayes 
methods on a data set than combine numeric with categorical 
predictors.  
In this section, we test the behavior of our method on WSG 

tomato yield data sets. We focus on the version with no 
missing values. This data set has n = 672 instances, p = 63 
predictors and four classes, whose relative proportions are 
(0.21, 0.21, 0.21, 0.37).We have chosen this data because it is 
a well-structured data set, suitable for testing how sensitive the 
algorithm is to the above issues. 

Based on the original data set, we built several new data 
sets by adding different numbers of irrelevant and redundant 
predictors. We tested all combinations of redundancy and 
irrelevance redundant. Predictors are randomly generated 
values that are highly correlated (0.8) with an existing 
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predictor, which is itself highly correlated to the class. We 
have tested a total of 9 x 9 = 81 data sets [10]. 

We compared the proposed method to ordinary naive Bayes 
[5] and selective naive Bayes. Three random predictors were 
introduced and sampled from a different distribution with five 
categories and equal probabilities for each category. 
Afterwards, those predictors whose mutual information is 
lower than one of the three random predictors have been 
discarded. For each data set we performed 5-fold cross-
validation, so that 80% of the data is used for training at each 
fold. Model evaluation was based on the AIC statistic. 

Fig. 1 indicates with a horizontal thick line that the 
difference of the L1-NB accuracy to the second best method is 
statistically significant with a significance level of 0.05. We 
do not show the number of correctly selected predictors 
because it is not clear which variables from the original set 
should really be selected. The total number of predictors in the 
data set is marked by the ordinary naive Bayes line. 
 

 
Fig. 1 Classification accuracy (Y-axis) for increasing redundant 

predictors (X-axis). The solid line plots L1-NB, the long-dashed line 
plots ordinary naïve Bayes, the short-dashed line plots naïve Bayes 

with prefiltering feature selection, the dotted line plots weighted 
naïve Bayes with prefiltering feature selection and he dashed-dotted- 

line plots selective naïve Bayes 
 

As expected, irrelevant predictors do not affect the 
performance of the evaluated classifiers much, except for 
selective naive Bayes. Their accuracies do not greatly decrease 
as the number of irrelevant predictors grows. On the other 
hand, excepting this approach and selective naive Bayes, there 
is an increment of selected predictors for data sets containing 
more irrelevant predictors. 
 
 
 

 

 
Fig. 2 Number of selected predictors (Y axis) against increasing 

redundant predictors (X axis). The solid- line plots L1-NB, the long-
dashed-  line plots ordinary naïve Bayes, the short-dashed line plots 
naïve Bayes with prefiltering feature selection, the dotted line plots 

weighted naïve Bayes with prefiltering feature selection and the 
dashed-dotted line plots selective naïve Bayes 

 
The effect of redundant predictors is stronger. As a general 

rule, selective naïve Bayes exhibits lower accuracy in the 
presence of redundant predictors. The more redundant 
predictors there are, the greater the number of selected 
predictors. 

 
TABLE I 

MEAN ACCURACY AND MEAN NUMBER OF SELECTED PREDICTORS 
Method Accuracy predictors Method Accuracy predictors 
L1-NB 0.29(±0.09) 511(±130) WNB 0.39(±0.01) 92.0(±0.0)
NB 0.37(±0.01) 100.0(±0.0) SNB 0.31(±0.02) 60.5(±6.2)
SVM 0.39(±0.1) 100.0(±0.0) SVM  0.31(±0.01) 81.0(±0.0)
 

On the other hand, the number of selected variables for L1-
NB and selective naive Bayes barely fluctuates at around 3 
predictors for all data sets, always selected from the original 
set of variables Fig. 2. 

VI. CONCLUSION AND FUTURE WORK 
So far, the issue of irrelevant predictors and redundant 

predictors for the naive Bayes model has been discussed. The 
utilized model that, initially inspired by the naive Bayes 
scheme, deals reasonably well with these false predictors. This 
has been proved empirically on several data sets, where 
different numbers of irrelevant and redundant predictors have 
been added. The proposed method had been found much better 
than naive Bayes model, since the L1-penalty deals with 
redundancy then the redundant predictors could be discard. In 
the future, we plan to extend this or alternative formulations 
for exploring more complex predictor relations than 
redundancy. 
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