
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:8, No:1, 2014

61

 

  
Abstract—Conjugate Gradient (CG) method has been 

enormously used to solve large scale unconstrained optimization 

problems due to the number of iteration, memory, CPU time, and 

convergence property, in this paper we proposed a new class of 

nonlinear conjugate gradient coefficient with global convergence 

properties proved by exact line search. The numerical results for our 

CG method new present an efficient numerical result when it 

compared with well-known formulas. 

 

Keywords—Conjugate gradient method, conjugate gradient 

coefficient, global convergence.  

I. INTRODUCTION 

ONLINEAR conjugate gradient method (CG) is useful 

method to find the minimum value of function for 

unconstrained optimization problems. Let us consider the 

following form: 
 

},)(min{ nRxxf ∈                             (1)  

                                                                                                                

where RRf n →:  is continuously differentiable and its 

gradient is denoted by )()( xfxg ∇= , the method to find a 

sequence of points }{ kx  
starting from initial point }{ nRx∈  

is given by iterative formula:  
 

 
kkkk dxx α+=+1 ,  ,...,3,2,1,0=k                  (2)   

                                                                                                                                                                                        

where kx is the current iteration point and 0>kα  is the step 

size obtained by some line search. In this paper we used exact 

line search which is, 

 

0),(min)( ≥+=+ ααα kxkkk dxfdxf .         (3)  

                                                                                             

Many researchers do not prefer to study this method, 

because it is very slow especially when the initial point is far 
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away from the optimal solution point, so it is very expensive 

when compared with inexact line search, but our formula 

gives a good numerical result by using fast computer 

processors which is an advantage for exact line search method. 

The search direction 
kd  is defined by: 
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where )( kk xgg =  and 
kβ  is scalar known as the conjugate 

gradient coefficient. The most well know formulas for kβ  are 

as follows: (Hestenses–Stiefel (HS) [1]), (Fletcher–Reeves 

(FR) [2]), (Polak-Ribiere–Polyak (PR) [3]), (Conjugate 

Descent (CD) [4]), (Liu–Storey (LS) [5]), (Dai–Yuan, (DY) 

[6]), (Wei et al. (WYL) [7]). (Mohd Rivaie, Mustafa Mamat, 

Ismail Mohd (RMIL) [17]). 
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The global convergence of FR method with exact line 

search was achieved by [8]; its behavior on numerical 
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computation is unpredictable. Sometimes it is as efficient as 

PRP method, nevertheless most time it is very slow, also DY 

and CD have the same performance with exact line search. 

Global convergence of PRP method for convex objective 

function under exact line search was proved by Polak and 

Ribiere in 1969 [3], in the other hand Powell gave out a 

counter example which shows that there exist non convex 

function, which PRP method does not converge globally even 

though the exact line search is used. After that Powell 1986 

suggested that it is very important to achieve the global 

convergence of 
kβ  should not be negative. Gilbert and 

Nocedal [9] proved that nonnegative PRP method is globally 

convergent with the Wolfe-Powel line search, but it is still 

open for Strong Wolf condition. HS method and LS method 

have the same performance as PRP method with exact line 

search. Therefore, PRP method is the most efficient method 

compare to the other conjugate gradient methods, there has 

been much research on convergence of these methods you can 

see [10]-[14]. 

Recently [8] gave a new
kβ which is a variant of PRP 

method. It seems like original PRP method which has been 

studied in both exact line search and inexact line search, and 

many modifications appeared as; 
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Without loose of generating in Sections II and III we will 

present our new formula, the algorithm, sufficient descent 

condition, and the global convergence properties with its 

proof. The numerical results and discussion will be presented 

in Section IV. Finally, the conclusions are presented in Section 

V. 

II. THE NEW FORMULA 

In this section we present our new *AMR

kβ , where *AMR  

denotes to Ahmad, Mustafa, and Rivaie which is extended for 
WYL

kβ method with coefficient, that is, 
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k

k
k

g

g
m

1−= , and . means the Euclidean norm.     

The algorithm is given as follows: 

1
st 
Step: Initialization. Given n

Rx ∈0 , set 0=k . 

2
nd 
Step: Compute kβ  based on (5). 

3
rd 
Step

:
 Compute 

kd  based on (4), If 0=kg , then stop. 

4
th 
Step: Compute kα  based on (3). 

5
th 
Step: Updating new point based on (2). 

6
th 
Step: Convergent test and stopping criteria. 

If ε≤kg  then stop. Otherwise go to Step2 with 1+= kk  

III. CONVERGENT ANALYSIS OF AMR* METHOD  

In this section, the convergent properties of *AMR
kβ is 

studied, for above algorithm to be convergent, it should have 

fulfilled the sufficient descent condition and the global 

convergence properties. 

A. Sufficient Descent Condition 

For the Sufficient descent condition to hold, 

 

2

kk
T
k gcdg −≤ , for 0≥k  and 0>c .                  (6)   

                                                                                         

Theorem 1. Consider a CG method with the search direction 

(4) and *AMR
kβ  given as (5), then condition (6) holds for all 

0≥k  and 0>c . 

Proof. From (4) we have if 0=k , the 
2

000 gcdgT −= . for 

1≥k , we need to multiply (4) by 
T

kg 1+  and set 1+= kk  

then we have, 
 

2

1 1 1 1 1 1 1 1( ) .T T T T

k k k k k k k k k kg d g g d g g dβ β+ + + + + + + += − + = − +  (7)                                                   

  

for exact line search easy to know 01 =+ k
T
k dg . Thus     

                                                                                  

.
2

111 +++ −= kk
T
k gdg                                  (8)                                                                                                                          

   

Thus, sufficient descent direction holds. The proof is 

completed. 

B. Global Convergence Properties 

We need to show that *AMR

kβ  is globally convergent under 

exact line search, before we start we need to simplify *AMR

kβ to 
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* ≥AMR
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β , by using Cauchy -

Schwartz inequality, we have 
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The following assumptions are needed to use in our proof. 

Assumption A. )(xf  is bounded from below on the level set 

 

)}()(:{ 0xfxfRx n ≤∈=Ω  

 

where 0x  is the starting point and Ω  is bounded. 

Assumption B. In some neighborhood N  of Ω , f is 

continues and differentiable, and its gradient is Lipchitz 

continues, that is, for any ,, Nyx ∈   there exists a constant 

0≥L  such that:  

 

yxLygxg −≤− )()( . 

 

Under the above assumptions, we have the following Lemma: 

Lemma 1. Suppose the Assumptions A and B hold true, 

consider any form of (4), for all k  and kα  satisfied (3)  the 

following condition, known as the Zoutendijk condition holds 
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∞
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By substitute (8) in Zoutendijk condition then it is 

equivalent to, 
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C. Angle Condition 

Theorem 2. Suppose that Assumptions A and B hold, and the 

sequence{ }xx is generated by aforementioned Algorithm, if  

01 →−+ kk xx  while ∞→k , then 

                           0inflim =
∞→

k
k

g .                                       (14)                                                                 

Proof. We use proof by contradiction, firstly consider kθ is 

the angle between kd and the steepest descent search direction 

kg− , where 
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By using (4) and (15) we indicate the following relations,   
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Combining (16) and (17), indicate  
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Suppose (14) does not hold true, then for all k , there exist

0>ε , such that 

 

       ε≥kg                                      (19)                                                                                                                         

 

By 01 →−+ kk xx    and Lipschitz condition   

 

ε≤−+ kk gg 1 . 

 

Since          

1 1k k k kg g g g+ +− ≤ −  

 

This imply that  
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ε21 ≤+kg . 

 

So  

kk θθ sec4tan 1 ≤+ . 

 

Since kk θθ tansec ≥ , for all ∈kθ [
2

,0
π

), we have 

k

k θ
θ
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4
tan 1 ≤+

 

Therefore the angle between kd and the steepest descent 

direction kg−  is bounded away from
2

π
, so from (11), (12), 

and (17) we have, 
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This implies 0inflim =
∞→

k
k

g , which contradicts (14). The 

proof is complete. 

D. Linear Convergence Rate 

In this section, we shall discuss linear convergence rate for 

AMR* method under this convergence, we need the following 

necessary assumption to prove. 

Assumption C. The sequence (2) where kα  generated by the 

exact line search kd and kβ  generated by (4) and (5) 

respectively, converges to ∗x . In addition, )(2 ∗∇ xf  is a 

symmetric positive definite matrix and twice continuously 

differentiable on }|||||{),( 00 εε <−= ∗∗
xxxxN . 

The conclusion of the following Lemma is used to prove the 

linear convergence of nonlinear conjugate gradient methods. 

The proof can be seen given in [18], [19]. 

Lemma 2. If Assumption 2 holds true, thenm , M  and 1ε  

exist with Mm ≤<0 and 1εε < such that,  
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Thus we get      
2**2 ||||)()(|||| xxMxxxgyxm T −≤−≤−  

 ),( * εxNx ∈∀ .                              (21) 

 

   Using Cauchy–Schwartz inequality, (20) and (21) we obtain  
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Lemma 3. Supposed Assumption C holds true, and let kθ be 

the angle between kg−  and kd , the sequence kx is generated 

by the exact line search and kd  is a descent direction. If a 

constant 0>η  exist for which, 
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then a constant a > 0 and )1,0(∈r  exist, such that ,   
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Hence kx will converge to 
*x at least R-linearly. The proof 

for this Lemma can be seen from [20]. 

Theorem5. If Assumption C holds true, then constants

0>a  and )1,0(∈r exists such that the sequence generated 

by (2), (4) and (1) using the exact line search satisfies, 
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hence, kx will converge to
*x at least R-linearly. 

Proof. If Assumption C hold true, then we assume, 
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Hence, Lemma 3 holds true. By (22) we can obtain (23). The 

proof is completed.  

IV. NUMERICAL RESULTS AND DISCUSSIONS 

In this section, we use some test problems to find the 

computational results to analyze the efficiency of AMR*. We 
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performed a comparison with other CG methods, including PR 

and WYL. The tolerance ε  is selected as equal to 
510−
 for all 

algorithms to investigate how rapidly the iteration of these 

algorithm towards the optimal solution, also the gradient value 

as the stopping criteria. Hence the stopping criteria are set 
510 −≤kg , the test functions can be found on many 

trusted web sites with a lot of cods for exact and inexact line 

search made by Fortran, Matlab, C, and C++, Hager and 

Andrei as an example and others. We used Maple 13 

subroutine program, with CPU processor Intel (R) Core (TM), 

i7 CPU, and 4GB RAM memory. The performance results are 

shown in Figs. 1 and 2, respectively, using a performance 

profile introduced by Dolan and More [20]. In this 

performance profile, they introduced the notion of a means to 

evaluate and compare the performance of the set solvers s on 

a test set P  Assuming sn  solvers and pn  problems exists for 

each problem P  and solver S , they define =spt ,
 computing 

time (the number of iterations or CPU time or others) required 

to solve problems p by solver s  

Requiring a baseline for comparisons, they compared the 

performance on problem p  by solver s  with the best 

performance by any solver on this problem using the 

performance ratio 
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Suppose that a parameter spM rr ,≥  for all Msp rr =,  is 

chosen, and if and only if solver s  does not solve problem p . 

The performance of solvers s  on any given problem might be 

of interest, but because we would like to obtain an overall 

assessment of the performance of the solver, then it was 

defined  
  

}:{
1

)( , trPpsize
n

t sp
p

s ≤∈=ρ , 

 

Thus )(tsρ  was the probability for solver Ss ∈  that a 

performance ratio spr , was within a factor Rt ∈  of the best 

possible ration, function sp was the cumulative distribution 

function for perform- ance ratio, the performance profile 

]1,0[: →Rps  for a solver was a non-decreasing piecewise, 

and continuous from the right. The value of )1(sp  is the 

probability that the solver will win over the rest of the solvers. 

In general, a solver with high values of )(tp  or at the top right 

of the figure are preferable or represent the best solver. 

Figs. 1 and 2 show that AMR*is best performance, since it 

can solve all test problems and reach 100%. Although the 

performance of PRP seems to be much better than AMR*, but 

it can solve only 90% and WYL solved 87% and it seems less 

than AMR* for both performance. Hence we considered 

AMR* as the best and superior method above since that can 

solve all problems. 

V. CONCLUSION 

In this paper, we have proposed a new and simple 
kβ  that is 

easy to implement. Our numerical results have shown that, our 

new method has the best performance compared to the other 

standard CG methods. We have also provide proof showing 

that this method converges globally with a linear convergence 

rate, in future we intend to test *AMR

kβ using inexact line 

search under strong Wolf condition, Armijo line search and 

Grippp-Lucidi line search, also we can make some 

modification to improve *AMR

kβ to get results characterized by 

speed, accuracy, and less space in memory using various types 

line search. 

 
TABLE I 

 A LIST OF PROBLEM FUNCTIONS 

No. Function Number of variables Initial points 

1 Beale 10, 100, 500, 1000 (13,13,…,13), (30,30…,30), (50,50…,50) 

2 Colville 4 (-10,-10,-10,-10), (-5,-5,-5,-5), (5,55,5), (10,10,10,10) 

3 Extended Himmelblau 10, 100, 500, 1000 (1,1,…,1), (5,5,…,5), (10,10…,10),(100,100,…,100) 

4 Generalize Quadratic 10, 100, 500, 1000 (1,1,…,1), (5,5,…,5), (10,10…,10),(100,100,…,100) 

5 Generalized Tridiagonal 10, 100, 500, 1000 (2,2,…,2), (5,5,…,5), (10,10…,10),(100,100,…,100) 

6 Goldstein-Price's 2 (3,-3), (5,-5), (10,-10), (25,-25) 

7 liarwhd 10, 100 (2,2,…,2), (4,4,…,4), (10,10,…,10),(100,100,…,100) 

8 Rosenbrock 10, 100, 500, 1000 (2,2…,2), (5,5…,5), (10,10…,10),(100,100…,100) 

(2,2…,2), (5,5…,5), (10,10…,10) 

9 Three-hump 2 (-1,1), (5,5), (-5,5) 

10 White-Holst 10, 100, 500 (2,2…,2), (5,5…,5), (10,10…,10) 

11 Fletcher 10, 100, 500, 1000 (2,2…,2), (5,5…,5), (10,10…,10) 

12 Extended Freudenstein and Roth 10, 100, 500, 1000 (2,2…,2), (5,5…,5), (10,10…,10) 

13 Powell 10, 100,500 (5,5…,5), (10,10…,10), (15,15…,15) 

14 Extended Tridiagonal 1 10, 100, 500, 1000 (1,1…,1), (5,5…,5), (10,10…,10) 

15 Extended Tridiagonal 2 10, 100, 500, 1000 (1,1…,1), (5,5…,5), (10,10…,10) 

16 Extended wood 10, 100, 500, 1000 (-1,-1,…,-1), (5,5,…,5), (10,10…,10) 

17 Extended denschnf 10, 100, 500, 1000 (1,1,…,1), (5,5,…,5), (10,10…,10), (100,100,…,100) 
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Fig. 1 Performance profile based on the number of iteration 
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