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Abstract—A trigonometric shear deformation theory for flexure 

of thick beams, taking into account transverse shear deformation 
effects, is developed. The number of variables in the present theory is 
same as that in the first order shear deformation theory. The 
sinusoidal function is used in displacement field in terms of thickness 
coordinate to represent the shear deformation effects. The noteworthy 
feature of this theory is that the transverse shear stresses can be 
obtained directly from the use of constitutive relations with excellent 
accuracy, satisfying the shear stress free conditions on the top and 
bottom surfaces of the beam. Hence, the theory obviates the need of 
shear correction factor. Governing differential equations and 
boundary conditions are obtained by using the principle of virtual 
work. The thick cantilever isotropic beams are considered for the 
numerical studies to demonstrate the efficiency of the. Results 
obtained are discussed critically with those of other theories. 

 
Keywords—Trigonometric shear deformation, thick beam, 

flexure, principle of virtual work, equilibrium equations, stress. 

I. INTRODUCTION 
T is well-known that elementary theory of bending of beam 
based on Euler-Bernoulli hypothesis disregards the effects 

of the shear deformation and stress concentration. The theory 
is suitable for slender beams and is not suitable for thick or 
deep beams since it is based on the assumption that the 
transverse normal to neutral axis remains so during bending 
and after bending, implying that the transverse shear strain is 
zero. Since theory neglects the transverse shear deformation, it 
underestimates deflections in case of thick beams where shear 
deformation effects are significant.  

Bresse [1], Rayleigh [2], and Timoshenko [3] were the 
pioneer investigators to include refined effects such as rotatory 
inertia and shear deformation in the beam theory. Timoshenko 
showed that the effect of transverse vibration of prismatic 
bars. This theory is now widely referred to as Timoshenko 
beam theory or first order shear deformation theory (FSDT) in 
the literature. In this theory transverse shear strain distribution 
is assumed to be constant through the beam thickness and thus 
requires shear correction factor to appropriately represent the 
strain energy of deformation. Cowper [4] has given refined 
expression for the shear correction factor for different cross-
sections of beam. The accuracy of Timoshenko beam theory 
for transverse vibrations of simply supported beam in respect 
of the fundamental frequency is verified by Cowper [5] with a 
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plane stress exact elasticity solution. To remove the 
discrepancies in classical and first order shear deformation 
theories, higher order or refined shear deformation theories 
were developed and are available in the open literature for 
static and vibration analysis of beam.  

Levinson [6], Bickford [7], Rehfield and Murty [8], Krishna 
Murty [9], Baluch, Azad and Khidir [10], Bhimaraddi and 
Chandrashekhara [11] presented parabolic shear deformation 
theories assuming a higher variation of axial displacement in 
terms of thickness coordinate. These theories satisfy shear 
stress free boundary conditions on top and bottom surfaces of 
beam and thus obviate the need of shear correction factor. 
Irretier [12] studied the refined dynamical effects in linear, 
homogenous beam according to theories, which exceed the 
limits of the Euler-Bernoulli beam theory. These effects are 
rotary inertia, shear deformation, rotary inertia and shear 
deformation, axial pre-stress, twist and coupling between 
bending and torsion.  

Kant and Gupta [13], Heyliger and Reddy [14] presented 
finite element models based on higher order shear deformation 
uniform rectangular beams. However, these displacement 
based finite element models are not free from phenomenon of 
shear locking (Averill and Reddy [15], Reddy [16]).  

There is another class of refined theories, which includes 
trigonometric functions to represent the shear deformation 
effects through the thickness. Vlasov and Leont’ev [17], Stein 
[18] developed refined shear deformation theories for thick 
beams including sinusoidal function in terms of thickness 
coordinate in displacement field. However, with these theories 
shear stress free boundary conditions are not satisfied at top 
and bottom surfaces of the beam. Ghugal and Sharma [19] 
presented hyperbolic shear deformation theory for flexure and 
vibration of thick isotropic beams. A study of literature by 
Ghugal and Shimpi [20] indicates that the research work 
dealing with flexural analysis of thick beams using refined 
trigonometric and hyperbolic shear deformation theories is 
very scarce and is still in infancy.  In this paper development 
of theory and its application to thick cantilever beams is 
presented.       

II.  DEVELOPMENT OF THEORY 
The beam under consideration as shown in Fig. 1 occupies 

in 0 x y z− − − Cartesian coordinate system the region:   
 

0 ; 0 ;
2 2
h hx L y b z≤ ≤ ≤ ≤ − ≤ ≤  

 
where x, y, z are Cartesian coordinates, L and b are the length 
and width of beam in the x and y directions respectively, and h 
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is the thickness of the beam in the z-direction. The beam is 
made up of homogeneous, linearly elastic isotropic material.  

 

 
Fig. 1 Beam under bending in x-z plane 

A. The Displacement Field 
The displacement field of the present beam theory is of the 

form: 
 

( , ) s in ( )

( , ) ( )

d w h zu x z z x
d x h

w x z w x

π φ
π

= − +

=
 

             (1)      

 
where u  is the axial displacement in x direction and w is the 
transverse displacement in z direction of the beam. The 
sinusoidal function is assigned according to the shear stress 
distribution through the thickness of the beam. The function φ  
represents rotation of the beam at neutral axis, which is an 
unknown function to be determined. The normal and shear 
strains obtained within the framework of linear theory of 
elasticity using displacement field given by (1) are as follows. 

 

Normal strain:   

2

 2= sinx
u d w h z dz
x h dxdx

π φε
π

∂
= − +

∂  
   (2)  

 

     Shear strain: coszx
u dw z
z dx h

πγ φ∂
= + =

∂
                     (3)                   

                                    
The stress-strain relationships used are as follows: 
            

,x x zx zxE Gσ ε τ γ= =                         (4) 

B. Governing Equations and Boundary Conditions  
Using (2) through (4) and using the principle of virtual 

work, variationally consistent governing differential equations 
and boundary conditions for the beam under consideration can 
be obtained. The principle of virtual work when applied to the 
beam leads to: 

 

( ).

/ 2

0 / 2

0
( ) 0

x x zx zx

x L z h

x z h
x L

x

b dx dz

q x w dx

σ δε τ δγ

δ

= = +

= = −
=

=

+

− =

∫ ∫

∫                
(5) 

 
where the symbol δ  denotes the variational operator. 
Employing Green’s theorem to (4) successively, we obtain the 

coupled Euler-Lagrange equations which are the governing 
differential equations and associated boundary conditions of 
the beam. The governing differential equations obtained are as 
follows: 

 

( )
4 3

4 3 3

2 4d w dE I E I q x
d x d x

φ
π

− =                      (6)  

 
3 2

3 3 2 2

2 4 6 0
2

d w d G AE I E I
d x d x

φ φ
π π

− + =
           

(7)   

 
The associated consistent natural boundary conditions 

obtained are of following form:  
At the ends x = 0 and x = L 
 

3 2

3 3 2

24 0x
d w dV EI EI
dx dx

φ
π

= − = or w  is prescribed          (8)               

 

      

2

2 3

24 0x
d w dM EI EI

dxdx
φ

π
= − =

 
or dw

dx
is prescribed    (9)    

 

   
2

3 2 2

24 6 0a
d w dM EI EI

dxdx
φ

π π
= − =  or φ  is prescribed  (10) 

 
Thus the boundary value problem of the beam bending is 

given by the above variationally consistent governing 
differential equations and boundary conditions.  

C.  The General Solution of Governing Equilibrium 
Equations of the Beam  

The general solution for transverse displacement w(x) and 
warping functionφ (x) is obtained using (6) and (7) using 
method of solution of linear differential equations with 
constant coefficients. Integrating and rearranging (6), we 
obtain the following expression  

                                                   
( )3 2

3 3 2

24 Q xd w d
EIdx dx

φ
π

= +                             (11) 

 
where Q(x) is the generalized shear force for beam and  it is 

given by ( ) 1
0

x

Q x qdx C= +∫ .  

Now (7) is rearranged in the following form:      
       

 
3 2

3 24
d w d
dx dx

π φ β φ= −                            (12) 

 
A single equation in terms ofφ  is now obtained using (11) 

and (12) as:  
 

2
2

2

( )d Q x
EIdx

φ λ φ
α

− =                      (13)  

where constantsα , β  and λ  in (12) and (13) are as follows  
 

q(x) 

x y 

LL 

b

h 

z, w 

z 
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3
2

3

24 , and
4 48

GA
EI

π π βα β λ
απ

⎛ ⎞⎛ ⎞= − = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠  

 
The general solution of (13) is as follows: 
 

  2 3
( )( ) cosh sinh Q xx C x C x
EI

φ λ λ
β

= + −                   (14) 

 
The equation of transverse displacement w(x) is obtained by 

substituting the expression of ( )xφ  in (12) and then 
integrating it thrice with respect to x. The general solution for 
w(x) is obtained as follows: 

 

( )

3
21

3

2

2 3 4 5 6

( )
6 4

sinh cosh
2

C x EIEI w x q dxdxdxdx

xC x C x C C x C

π λ β
λ

λ λ

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

+ + + +

∫ ∫ ∫ ∫

    

       (15)  

 
where 1 2 3 4 5 6, , , , and C C C C C C are arbitrary constants and can 
be obtained by imposing boundary conditions of beam.  

III. ILLUSTRATIVE EXAMPLES 
In order to prove the efficacy of the present theory, the 

following numerical examples are considered. The following 
material properties for beam are used  

 
E = 210 GPa, μ = 0.3 and ρ = 7800 kg/m3, 

 
 where E is the Young’s modulus, ρ  is the density, and μ is 
the Poisson’s Units 

A. Example 1: Cantilever Beam with Varying Load 
The beam has its origin at left hand side fixed support at x = 

0 and free at x = L. The beam is subjected to varying load, on 
surface z = +h/2 acting in the downward z direction with 
maximum intensity of load 0q . 

 

 
Fig. 2 Cantilever beam with varying load 

 
General expressions obtained for ( )w x  and ( )xφ  are as 

follows: 

    

( )4 5 3 2 2 2
0

5 3 2 2 2

( ) 1
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(16) 
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where ( ) (sinh cosh )x x xζ λ λ= −     

 
4 2

3 4 2

3 2
0

2

2

4 2

1 3 4
2
6 1 ( ) 2
5

16 zsin 1 ( )
h

x x x
z L LL L
h h E h xq h xu G LLEb

E L x x
G h L

ζ

π ζ
π

⎧ ⎫⎡ ⎤
− + +⎪ ⎪⎢ ⎥

⎪ ⎪⎢ ⎥−
⎪ ⎪⎢ ⎥⎛ ⎞⎪ ⎪+ −= ⎜ ⎟⎢ ⎥⎨ ⎬⎝ ⎠⎣ ⎦⎪ ⎪
⎪ ⎪⎛ ⎞
+ − +⎪ ⎪⎜ ⎟

⎪ ⎪⎝ ⎠⎩ ⎭

                     (18) 

 
2 3

2 3

0

4

4 6 2

6 1 ( )
5 2

24 sin 2 ( )

L x x
Lh Lz

hq E L xx b G
E z x L x
G h L

σ λ ζ

π λ ζ
π

⎧ ⎫⎡ ⎤⎛ ⎞
− +⎪ ⎪⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎢ ⎥−⎪ ⎪⎢ ⎥⎪ ⎪⎛ ⎞= ⎢ ⎥− +⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎪ ⎪
⎪ ⎪⎛ ⎞⎪ ⎪− +⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

                     

(19) 

 
2

0
3 2

24 cos 1 ( )
q L z x xzx b h h L

πτ ζ
π

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠                     
(20) 

 

( )

( )

2

2 2

2 2
2 2

2

2

5 2

2

2 2

0
6

2 2

1
4 243 ( )

8
cos

1 1 1
4 4 2

( ) 2

x x
z LL

q L h E h
L xzx bh G L

E h z
G hL

E h
G L

L x

τ λ ζ
π

π
π

π

λ ζ

+ −
−

+

+

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥⎡ ⎤⎪ ⎪⎢ ⎥⎢ ⎥⎪ ⎪⎢ ⎥⎣ ⎦= ⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪
⎪ ⎪

⎡ ⎤−⎪ ⎪⎣ ⎦⎩ ⎭        

(21)

 

B. Example 2: Cantilever Beam with Parabolic Load 
The beam has its origin at left hand side fixed support at x = 

0 and free at x = L. The beam is subjected to parabolic load, on 
surface z = +h/2 acting in the downward z direction with 
maximum intensity of load 0q .

 

 
Fig. 3 Cantilever beam with parabolic load 
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General expressions obtained for ( )w x  and ( )xφ  are as 
follows: 
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The axial displacement and stresses obtained based on 

above solutions are as follows 
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IV. NUMERICAL RESULTS 
In this paper, the results for inplane displacement, 

transverse displacement, inplane and transverse stresses are 
presented in the following non dimensional form for the 
purpose of presenting the results in this work. 

For beams subjected to various load, q(x); 
 

3

4
0 0

0 0

10, ,

,x zx
x zx

Ebu Ebh wu w
q h q L
b b
q q
σ τ

σ τ

= =

= =
 

 
 
 
 
 
 
 
 
 

TABLE I 
NON-DIMENSIONAL AXIAL DISPLACEMENT ( u ) AT (X = 0.25L, Z = H/2), 

TRANSVERSE DEFLECTION ( w) AT (X = 0.25L, Z =0.0) AXIAL STRESS ( xσ ) AT 

(X =0.25L, Z = H/2) MAXIMUM TRANSVERSE SHEAR STRESSES C R
z xτ  AND 

E E
z xτ AT (X = 0, Z = 0) OF THE BEAM SUBJECTED TO VARYING LOAD FOR 

ASPECT RATIO S = 4 AND 10 (EXAMPLE 1) 
Model S u  w  

xσ  C R
z xτ  E E

z xτ  

TSDT 

4 

54.2767 12.6172 42.5408 1.4763 -2.5000 
HPSDT 54.2637 12.6187 44.8793 1.7439 -3.4132 
HSDT 54.2771 12.6191 42.9385 1.5394 -2.1287 
FSDT 48.0000 11.3250 32.0000 0.9772 3.000 
ETB 48.0000 11.0000 32.0000 — 3.000 

TSDT 

10 

765.6917 11.2601 223.9812 6.2077 2.7248 
HPSDT 765.6593 11.2600 229.8401 6.6373 3.1864 
HSDT 765.6928 11.2603 233.2660 6.2594 3.1465 
FSDT 750.0000 11.0520 200.0000 1.5373 7.500 
ETB 750.0000 11.0000 200.0000 — 7.500 

 
TABLE II 

NON-DIMENSIONAL AXIAL DISPLACEMENT ( u ) AT (X = 0.25L, Z = H/2), 
TRANSVERSE DEFLECTION ( w) AT (X = 0.25L, Z =0.0) AXIAL STRESS ( xσ ) AT 

(X =0.25L, Z = H/2) MAXIMUM TRANSVERSE SHEAR STRESSES C R
z xτ  AND 

E E
z xτ AT (X = 0.01L, Z = 0) OF THE BEAM SUBJECTED TO PARABOLIC LOAD 

FOR ASPECT RATIO S = 4 AND 10 (EXAMPLE 2) 
Model S u  w  

xσ  C R
z xτ  E E

z xτ  

TSDT 

4 

44.6919 10.1289 31.5541 0.9843 -1.3644 
HPSDT 48,8646 10.9468 34.6825 1.1627 -2.2786 
HSDT 48.8990 10.9519 33.3971 1.0264 -1.4190 
FSDT 38.4000 8.8291 24.0000 0.7335 1.9999 
ETB 38.4000 8.6667 24.0000 — 1.9999 

TSDT 

10 

615.7298 8.9015 166.5143 4.1390  1.8179 
HPSDT 626.1615 9.0322 171.9896 4.4253  2.1254 
HSDT 626.2476 9.0331 168.7571 4.1735  2.0981 
FSDT 600.0000 8.6926 150.0000 1.1530  5.0000 
ETB 600.0000 8.6667 150.0000 — 5.0000 
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Fig. 4 Variation of maximum transverse displacement ( w ) of beam 
at (x = L, z = 0) when subjected to varying load with aspect ratio S 

(Example 1) 
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Fig. 5 Variation of axial displacement ( u ) through the thickness of 
beam at (x = L, z) when subjected to varying load for aspect ratio 4 

(Example 1) 
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Fig. 6 Variation of axial displacement ( u ) through the thickness of 
beam at (x = L, z) when subjected to varying load for aspect ratio 10 

(Example 1) 
 

-50 -40 -30 -20 -10 0 10 20 30 40 50

σx

-0.50

-0.25

0.00

0.25

0.50

z/h Present TSDT

HPSDT

HSDT

FSDT

ETB

 
Fig. 7 Variation of axial stress ( xσ ) through the thickness of beam at 

(x = 0, z) when subjected to varying load for aspect ratio 4    
(Example 1) 
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Fig. 8 Variation of axial stress ( xσ ) through the thickness of beam at 

(x = 0, z) when subjected to varying load for aspect ratio 10. 
(Example 1) 
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Fig. 9 Variation of transverse shear stress ( zxτ ) through the thickness 
of beam at (x = 0.01L, z) when subjected to varying load and obtain 

via constitutive relation for aspect ratio 4 (Example 1) 
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Fig. 10 Variation of transverse shear stress ( zxτ ) through the 
thickness of beam at (x = 0.01L, z) when subjected to varying load 
and obtain via constitutive relation for aspect ratio 10 (Example 1) 
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Fig. 11 Variation of transverse shear stress ( zxτ ) through the 

thickness of beam at (x = 0, z) when subjected to varying load and 
obtain using equilibrium equation for aspect ratio 4 (Example 1) 
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Fig. 12 Variation of transverse shear stress ( zxτ ) through the 
thickness of beam at (x = 0, z) when subjected to varying load and 
obtain using equilibrium equation for aspect ratio 10 (Example 1) 
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Fig. 13 Variation of axial displacement ( u ) through the thickness of 
beam at (x = L, z) when subjected to parabolic load for aspect ratio 4 

(Example 2) 
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Fig. 14 Variation of axial displacement ( u ) through the thickness of 
beam at (x = L, z) when subjected to parabolic load for aspect ratio 10 

(Example 2)  
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Fig. 15 Variation of axial stress ( xσ ) through the thickness of beam 
at (x = 0, z) when subjected to parabolic load for aspect ratio 4     

(Example 2) 
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Fig. 16 Variation of axial stress ( xσ ) through the thickness of beam 
at (x = 0, z) when subjected to parabolic load for aspect ratio 10 

(Example 2) 
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Fig. 17 Variation of transverse shear stress ( zxτ ) through the 
thickness of beam at (x = 0.01L, z) when subjected to parabolic load 

and obtain via constitutive relation for aspect ratio 4 (Example 2) 
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Fig. 18 Variation of transverse shear stress ( zxτ ) through the 
thickness of beam at (x = αL, z) when subjected to parabolic load and 

obtain via constitutive relation for aspect ratio 10 (Example 2) 
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Fig. 19 Variation of transverse shear stress ( zxτ ) through the 
thickness of beam at (x = 0, z) when subjected to parabolic load and 

obtain using equilibrium equation for aspect ratio 4 (Example 2) 
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Fig. 20 Variation of transverse shear stress ( zxτ ) through the 
thickness of beam at (x = 0, z) when subjected to parabolic load and 
obtain using equilibrium equation for aspect ratio 10 (Example 2) 
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Fig. 21 Variation of maximum transverse displacement ( w ) of beam 
at (x = L, z = 0) when subjected to parabolic load with aspect ratio S. 

(Example 2) 

V. DISCUSSION OF RESULTS 
The comparison of results of maximum non-dimensional 

axial displacement ( u ) for the aspect ratios of 4 and 10 is 
presented in Tables I and II for beams subjected to linearly 
varying and parabolic load (see Figs. 2 and 3). Among the 
results of all the other theories, the values of axial 
displacement given by present theory are in close agreement 
with the values of other refined theories for aspect ratio 4 and 
10.The through thickness distribution of this displacement 
obtained by present theory is in close agreement with other 
refined theories except the one given by classical and first 
order shear deformation theory (FSDT) as shown in Figs. 5, 6, 
13, and 14 for aspect ratio 4 and 10.  

The comparison of results of maximum non-dimensional 
transverse displacement ( w ) for the aspect ratios of 4 and 10 
is presented in Tables I and II for beams subjected to linearly 
varying load and parabolic load. Among the results of all the 
other theories, the values of present theory are in excellent 
agreement with the values of other refined theories for aspect 
ratio 4 and 10 except those of classical beam theory (ETB) and 
FSDT of Timoshenko.  The variation of w  with aspect ratio 
(S) is shown in Figs. 4 and 21. For the aspect ratios greater 
than 20 all the refined theories converges to the values of 
classical beam theory.  

The results of axial stress ( xσ ) are shown in Tables I and II 
4 for aspect ratios 4 and 10. The axial stresses given by 
present theory are compared with other higher order shear 
deformation theories. It is observed that the results by present 
theory are in excellent agreement with other refined theories. 
However, ETB and FSDT yield lower values of this stress as 
compared to the values given by other refined theories. The 

through the thickness variation of this stress given by ETB and 
FSDT is linear. Present and other higher order refined theories 
provide the non-linear variations of axial stress across the 
thickness at the built-in end due to heavy stress concentration. 
However, this effect of local stress concentration cannot be 
captured by lower order theories such as ETB and FSDT. The 
variations of this stress are shown in Figs. 7, 8, 15 and 16.   

The transverse shear stresses ( zxτ ) are obtained directly by 
constitutive relation and, alternatively, by integration of 
equilibrium equation of two dimensional elasticity and are 
denoted by ( CR

zxτ ) and ( EE
zxτ ) respectively. The transverse 

shear stress satisfies the stress free boundary conditions on the 
top ( )/ 2z h= − and bottom ( )/ 2z h= +  surfaces of the beam 
when these stresses are obtained by both the above mentioned 
approaches. The comparison of maximum non-dimensional 
transverse shear stress for a cantilever beam with varying load 
obtained by the present  theory and other refined theories is 
presented in Tables I and II for aspect ratio of 4 and 10 
respectively. The maximum transverse shear stress obtained 
by present theory using constitutive relation is in good 
agreement with that of higher order theory (HSDT), however 
HPSDT shows little departure from these theories for aspect 
ratio 4 and for aspect ratio 10 results of present theory and 
HSDT are in excellent agreement with each other. Among the 
values of this stress, the values obtained by HPSDT using 
equilibrium equation show considerable departure from the 
values of present and HSDT. The values of present theory and 
those of HSDT are in good agreement with each other. The 
through thickness variation of this stress obtained via 
constitutive relation are presented graphically in Figs. 9, 10, 
16, 17 and those obtained via equilibrium equation are 
presented in Figs. 11, 12, 19 and 20. It can be seen from these 
figures that the nature of variation obtained by both the 
approaches is different from each other.  

The through thickness variation of this stress via 
equilibrium equation shows the anomalous behavior (changes 
its sign) due to heavy stress concentration associated with the 
built-in end of the beam.  The maximum value of this stress 
does not occur at the neutral axis, however, it is observed to be 
shifted at z = 0.375h. Such a behavior is also observed by 
Hildebrand and Reissner [21].  The ETB and FSDT yield the 
identical values this stress at z = 0 and the variations across the 
thickness of the beam. It is seen that the anomalous behavior 
in the vicinity of built-in end cannot be captured by 
constitutive relation. Further, lower order theories, ETB and 
FSDT, cannot predict this behavior even with the use of 
equilibrium equation. Hence, the use of higher order or 
equivalent shear deformation theories is necessary to recover 
the effects of stress concentration at the built-in end of the 
beam with the use of equilibrium equation of two-dimensional 
theory of elasticity.  

VI. CONCLUSION 
The variationally consistent theoretical formulation of the 

theory with general solution technique of governing 

w  
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differential equations is presented. The general solutions for 
beams with cosine loads are obtained in case of thick 
cantilever beams. The displacements and stresses obtained by 
present theory are in excellent agreement with those of other 
equivalent refined and higher order theories. The present 
theory yields the realistic variation of axial displacement and 
stresses through the thickness of beam. Thus the validity of the 
present theory is established.  
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