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Abstract—This paper deals with modeling and optimization of 

two NP-hard problems in production planning of flexible 
manufacturing system (FMS), part type selection problem and 
loading problem. The part type selection problem and the loading 
problem are strongly related and heavily influence the system’s 
efficiency and productivity. These problems have been modeled and 
solved simultaneously by using real coded genetic algorithms 
(RCGA) which uses an array of real numbers as chromosome 
representation. The novel proposed chromosome representation 
produces only feasible solutions which minimize a computational 
time needed by GA to push its population toward feasible search 
space or repair infeasible chromosomes. The proposed RCGA 
improves the FMS performance by considering two objectives, 
maximizing system throughput and maintaining the balance of the 
system (minimizing system unbalance). The resulted objective values 
are compared to the optimum values produced by branch-and-bound 
method. The experiments show that the proposed RCGA could reach 
near optimum solutions in a reasonable amount of time. 

 
Keywords—Flexible manufacturing system, production planning, 

part type selection problem, loading problem, real-coded genetic 
algorithm.  

I. INTRODUCTION 
APID market changes (changing customer needs), peaks 
in demand for product quantity (e.g. new gadgets – tablet 

PC, mobile phones, etc.), concerns for product quality, and 
requirements to dramatically increase product mix have forced 
manufacturing industries to enhance their flexibility. Flexible 
manufacturing system (FMS) is designed to cope with these 
conditions by using high technologies and automation in 
transfer lines which enable factories to reconfigure rapidly to 
produce a variety of products by using same resources [1]-[3]. 
Due to the high investment required, higher resources 
utilization must be achieved and this issue can be resolved by 
establishing a good production planning. This planning will 
also increase productivity by maximizing system throughput 
and enable early return on investment. 

The planning problem in FMS is related with the 
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arrangement of parts and technological equipments such as 
tools, fixtures and pallets, and the determination of the type 
and quantity of the products which are made before starting 
production [4], [5]. The planning problems can be divided into 
two sub problems, an aggregate production planning and a 
short term planning (or a production planning) [6]. The 
aggregate production planning produces a master schedule 
containing part mix, production rates and lot sizes. The 
production planning gives interface between aggregate 
production planning and daily operation of the FMS. There are 
several issues in the production planning stage such as part 
type selection problem, machine grouping problem, 
production ratio problem, resource allocation problem, and 
loading problem [7], [8]. 

Depend on the specific characteristic of manufacturing 
environments, various combination of some production 
planning problems have been considered in the literatures. For 
example, Bilgin & Azizoglu [9], Chan & Swarnkar [10], and 
Chen & Ho [11] solved the machine loading problem. 
Swarnkar & Tiwari [12], Choudhary, Tiwari & Harding [13], 
Biswas & Mahapatra [14], Ponnambalam & Kiat [15], and 
Prakash et al. [16] solved the part type selection and loading 
problem simultaneously. Tabucanon, Batanov & Basu [17] 
solved the part type selection and loading problem 
simultaneously in the first stage and used the result on this 
stage to determine the production ratio in the next stage. 
However, the routing flexibility was not considered. Kim et al. 
[18] solved the loading problem and the partial machine 
grouping while considering tool life constraints. Seok Shin, 
Park & Keun Kim [19] solved the loading problem while 
considering a various flexibility such as machine, sequence, 
tool and process routing. This paper focuses on the part type 
selection and loading problem with machine and tool 
flexibility. 

The part type selection problem and the loading problem 
are parts of the production planning problems which are 
strongly related and heavily influence the system’s efficiency 
[14], [20]. The part type selection problem deals with selection 
of set of part types (products) which must be produced 
immediately from a number of part types as there are different 
due dates, limited number of machines, limited tool magazines 
capacity of each machine and limited number of tools. The 
loading problem is concerned with allocation of operations for 
selected part types and loading appropriate tools to the 
machines [7], [21]. Solving part type selection and machine 
loading problem simultaneously will produce a better solution 
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as higher throughput of the FMS is achieved while keeping the 
balance of machines’ workload [3]. Here, the efficient 
allocation of production resources will be achieved.  

Solving the part type selection problem and the machine 
loading problem simultaneously require a good approach to 
achieve a good result on reasonable amount of time. Genetic 
algorithms (GAs) are regarded as the powerful method to 
solve a complex problem with a large search space [22]. GAs 
have an ability to escape from local optima as they can jump 
randomly from one sequence to another sequence [23]. The 
power of GAs to solve various complex problems has attracted 
a lot of researchers to do research in this area. However, a 
simple GAs is insufficient to solve any complex problems in 
engineering. A proper representation, developing appropriate 
search operators and hybridizing it with other methods are an 
important key for its successful implementation and becoming 
challenging tasks [24], [25]. In addition, a good strategy to 
avoid premature convergence which produces local optimum 
solution should be developed [26]. This paper as an extension 
of [27], [28] attempts to develop a new representation using an 
array of real numbers which could produce good solutions 
efficiently by using simple genetic operators. The novel 
proposed chromosome representation is designed to produce 
only feasible solutions which minimize a computational time 
needed by GAs to push its population toward feasible search 
space or repair infeasible chromosomes. 

II. LITERATURE REVIEW 
The part type selection problem and the loading problem in 

the FMS environments have received significant attentions 
from researchers who proposed a various approaches to solve 
the optimization of the production planning problems such as 
mathematical programming [17], Lagrangean relaxation 
approach [9], genetic algorithms [11], [13], particle swarm 
optimization [14], [15], ant colony optimization [10], immune 
algorithm [16], two-stage heuristics based on a bin-packing 
algorithms and a simple search technique [18], multi-agent 
system [20], and symbiotic evolutionary algorithm [19]. A 
combination of two methods was also used such as 
hybridizing genetic algorithm with simulated annealing [21], 
[29], and hybrid tabu search and simulated annealing-based 
[12]. Here, heuristic methods is widely used since direct 
methods which are based on mathematical programming and 
smart enumeration are not practical to solve these complex 
problems [22].  

The extensive works were shown in several literatures. For 
example, Tabucanon, Batanov & Basu [17] used simulation to 
evaluate the solution of part type selection and loading 
problem produced by batching approach. They formulated 
mathematical programming method to maximize the number 
of part types in each batch. Denizell & Sayin [30] developed a 
mathematical programming model to solve the part type 
selection problem that considering due dates. Choudhary, 
Tiwari & Harding [13] addressed the problems by using a 
GAs with chromosome differentiation. A sexual 
differentiation of the chromosomes was applied to maintain a 
diversity of the population and explore the search space 

extensively. Tiwari et al. [21] proposed a constraints-based 
fast simulated annealing algorithm to solve a combination of 
part-type selection and operation allocation on machines. 
Their proposed algorithm which was performed by a 
combination of a GA and a simulated annealing (SA) had a 
capability to escape from local optimum and provide good 
solutions. Biswas & Mahapatra [14] proposed modified 
particle swarm optimization (PSO) to solve machine loading 
problems. This algorithm attempted to maintain the balance of 
the system while regarding the occurrence of technological 
constraints such as the availability of machining time and tool 
slots. Ponnambalam & Kiat [15] also used PSO to solve 
machine loading problems. This algorithm is equipped with 
two local search method to improve the solution quality. They 
applied two objectives, minimizing system unbalance and 
maximizing system throughput, while satisfying the 
technological constraints. Tiwari, Kumar Jha & Bardhan 
Anand [20] developed a combinatorial auction-based heuristic 
for multi-agent system to solve the problems. This approach 
was used to deal with a huge search space of the part type 
selection and machine loading problems. Even though all 
these researchers reported promising results, several 
simplicities were made to reduce the complexity of the 
problems. 

Part type selection and machine loading are NP-hard 
problems [14]. The complexity of the problems is harder when 
flexibilities of operations are considered. For example, each 
part has alternative routes (routing flexibility) which refer to a 
possibility of operation is processed on alternative machines 
with alternative tools. For simplicity, Tabucanon, Batanov & 
Basu [17] did not consider the routing flexibility. Denizell & 
Sayin [30] and Pacciarelli [31] considered FMS that consists 
of all general-purpose machines where the functionality of a 
machine is only determined by the set of tools loaded in their 
tool magazine. Here, each part is only processed by one 
machine. Furthermore, Swarnkar & Tiwari [12], Choudhary, 
Tiwari & Harding [13], Biswas & Mahapatra [14], 
Ponnambalam & Kiat [15], Prakash et al. [16] and Tiwari, 
Kumar Jha & Bardhan Anand [20] did not mention specific 
tool types and its availability; they only mentioned the number 
of slots needed by the tools. In contrast, this paper considers 
machine and tool flexibility and also limited numbers of tool 
types. 

III. PROBLEM DESCRIPTION 
This paper considers a FMS which consists of several 

computers numerically controlled (CNC) machines equipped 
with a tool magazine which has limited tool slot capacity. The 
machines can perform different operations when they are 
equipped with different tools. A limited number of tools are 
available and each tool requires a number of slots when it is 
assigned to a machine. When several jobs (part types) arrive, 
the system must select a set of part types which must be 
produced immediately as there is a limitation of machines and 
its tool slot capacity and tools availability. This approach is 
considered as batching approach as all part type should be 
grouped into several production batches [17]. 
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Each part type has a production requirement in form of 
sequence of operations. Each operation can be processed on 
several alternative machines with several alternative tools. 
This paper also considers unrelated machines approach where 
time needed for parts’ operations depend on the assigned 
machine. 

A. Subscripts 
p =   1,…,P  part type 
o =   1,…,Op  operation of part type p 
t =   1,…,T  tool type 
m =   1,…,M  machine type 

B. Parameters 
MSm =  tool slot capacity of machine m 
TNt =   number of tools type t 
TSt =   number of slots required by tool type t 
PSp =  batch size of part type p 
PVp =   value (price) of part type p 
MOPpo = set of possible machines on which operation o of 
part type p can be performed 

{ }0,1=pomtTM : 1 if tool t is required for processing operation 

o of part type p on machine m 
Tpom = processing time of operation o of part type p on 
machine m 

C. Decision variables 
{ }0,1=pX :  1 if part type p is selected in the batch 

{ }0,1=pomX : 1 if machine m is selected to process operation 

o of part type p 
{ }0,1=mtY :  1 if tool t is loaded to the machine m 

D. Objectives 
A various objectives had been considered in the references 

such as maximizing system throughput [3], [12], [13], [15]-
[17], [21], [23], [29], [30], [32], maintaining the balance of the 
system [3], [12]-[16], [19], [21], [23], [29], [32], minimizing 
part movement [19], minimizing tool changeovers [19] and 
minimizing production cost [33]. However, most of references 
considered two common objectives, maximizing system 
throughput and maintaining the balance of the system 
(minimizing system unbalance). System throughput and 
system unbalance can be calculated in different ways as 
follows: 

1) Maximizing System Throughput 

∑
=
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Maximizing system throughput can be achieved by 

maximizing the number of selected part types in each batch 
which can be expressed as in (1). This objective means 
minimizing a time lost for tools changeover. Tabucanon, 
Batanov & Basu [17], Kumar & Shanker [3] used this 

objective function. Another way to maximize system 
throughput is by maximizing the value (price or profit) or the 
sum of batch size (if all part types have equal price or profit) 
of selected part types in each batch as shown in (2). Kumar & 
Shanker [3], Choudhary, Tiwari & Harding [13], Prakash et al. 
[16], Ponnambalam & Kiat [15], and Yogeswaran, 
Ponnambalam & Tiwari [29] used this objective function. 

2) Maintaining the Balance of the System 
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Maintaining the balance of the system can be achieved by 

minimizing system unbalance as expressed in (3) where Wm is 
workload of machine m and W  is the average machine 
workload. Seok Shin, Park & Keun Kim [19] used this 
objective function. Another way to minimize system 
unbalance is by minimizing a maximum machine’s load as in 
(4). If length of scheduling period for each machine (SPm) is 
determined in advance and overloading of the machines is 
allowed, the system unbalance may be expressed as in (5). 
Mukhopadhyay, Midha & Krishna [32], Biswas & Mahapatra 
[14] used this objective function. However, if overloading of 
the machines is not allowed, (6) is used. Here, length of 
scheduling period becomes a maximum machine workload. 
Choudhary, Tiwari & Harding [13], Biswas & & Mahapatra 
[14] used this objective function. 

E. Constraints 
While minimizing system unbalance and maximizing 

system throughput, several technological constraints must be 
satisfied as follows: 
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Constraint (7) guarantees that if a part type is selected, all 

its operations must be performed. This constraint states that 
operation assignments are equal to the total operations 
required. Constraint (8) states that each operation of selected 
part types must be completed on one machine. As there is 
possibility of operation can be processed on alternative 
machines, the machine must be determined and the operation 
must be processed by the chosen machine. Constraint (9) 
guarantees that if a machine is selected to process an operation 
of a part type, all the tools needed must be loaded to the 
machine. Constraint (10) ensures that the number of tools 
loaded to the machines must not exceed its availability. 
Constraint (11) ensures that the number of tool slots used on a 
machine must not exceed the machine’s tool slot capacity. 
Constraint (12) is only used if length of scheduling period for 
each machine (SPm) is determined in advance and overloading 
of the machines is not permitted. 

IV. MODELING USING GA 
GAs are general purpose search algorithms which imitate a 

natural evolution process. Candidate solutions are represented 
by chromosomes which evolve over time (generations) 
through reproduction and stochastic selection. Along 
generations these chromosomes become better (with higher 
fitness value) and at the final generation the best chromosome 
can be decoded as a near optimum solution [34]. This section 
describes how real-coded genetic algorithm is used to solve 
part type selection and loading problem. 

A. Chromosome Representation 
A suitable chromosome representation determines the 

successful implementation of genetic algorithms [35]. This 
paper uses real number representation so GAs which uses this 
representation can be called real-coded GAs (RCGA). A 
chromosome is a vector of real number whose size is same 
with the number of part types. This representation usually was 
used to solve optimization problems on continuous domains 
[36]. However, a simple implementation of its operators 
(crossover and mutation) and possibility to decode one real 
number into several values (part type’s index and its several 
operations) become the main reason to use this representation 
for solving part type selection and loading problem. 

The construction of a chromosome in our RCGA is shown 
in Table I. Each element of the chromosome X=(x1,x2,…,xp) 
corresponds to the continuous position values for p number of 
part-types. The value of xi is maintained between 0 and 

bitPart+bitMac×opMax2 . opMax is maximum number of operations 
of each part type. bitMac is number of bits required to 
represent a binary number which has largest value of 
maximum number of alternative machines of each operation. 
For example, the maximum number of alternative machines of 
each operation is 5. Therefore, the minimum bits required to 
represent a binary number between 0 and 5 is 3. bitPart is 

number of bits required to represent a binary number which 
has largest value of number of part types. xi is stored and 
treated as a real number when genetic operators (crossover and 
mutation) are applied. However, xi will be converted 
(rounded) to a nearest integer value when decoding operation 
is performed. 

 
TABLE I 

CHROMOSOME CONSTRUCTION 
part type 1 2 3 4 5 6 7 8 

x 2772 7779 5129 7981 6215 977 9969 1654 
part type 
sequence 6 8 1 3 5 2 4 7 

sorted x 977 1654 2772 5129 6215 7779 7981 9969 
 
A smallest position value (SPV) rule is used to get part 

types sequence. By sorting x in ascending order, we obtain the 
sequence of part types that are selected for the current batch. 
To determine which machines are used to process part types’ 
operations, each element of X is decoded into a binary 
number. Suppose part type 8 has 3 operations, operation 1 can 
be processed on machines 2 or 3 or 5, operation 2 can be 
processed on machine 1 or 2 or 6 or 7, and operation 3 can be 
processed on machine 3 or 4. To choose machines used for 
processing of operations of part type 8, x2=1654 is converted 
into a binary number (11001110110)2. Suppose bitMac is 3. 
For the first operation, we use 3 bits at the right side (110)2 
which is equal to 6. As there are 3 possible machines (n=3), 
we apply the following formula: 

 
machine index = 6 mod n + 1 = 6 mod 3 +1 = 1 

 
mod is modulus operator which gives the remainder of a 
division. Therefore, the first operation of part type 8 is 
performed on the first possible machine that is machine 2. By 
using the next 3 bits and applying the same rule, we obtain 
that part type 8 is sequentially processed on machines 2, 6 and 
4. 

After determining the machines for operations, required 
tools are assigned to the machines. At this step, all the 
constraints such as availability of tools and empty slots on the 
machines are checked. For example, after choosing part types 
6, 8, 1 and 3 according to the part type sequence as shown in 
Table I, adding part type 5 to the solution violate the 
constraints. Therefore, the chromosome states that only part 
types 6, 8, 1 and 3 are selected for the current batch and the 
objective functions of the problem are calculated based on 
these selected part types. 

Note that the proposed representation produces only 
feasible solutions and guarantees that only required tools 
assigned to the machines. This effort will minimizes a 
computational time which usually needed by GAs to push its 
population toward a feasible search space or repeatedly repair 
infeasible chromosomes [37]. 

B. Fitness Function 
The objective functions of the optimization problem must 

be converted to a fitness function which is used to measure the 
goodness of the solution. For example, (2) is used to measure 
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system throughput, (2) should be converted into (13) to 
produce value between 0 and 1. 
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Furthermore, (5) is used to measure system unbalance. 

Here, length of scheduling period for each machine (SPm) is 
determined in advance and overloading of the machines is 
permitted. Minimizing (5) can be converted as maximizing 
(14) as follow: 
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Finally, the fitness function can be formulated as follow: 
 

parameters weigthed:,
:Maximize
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C. Initialization of Population 
pop_size of chromosomes are created as an initial 

population. Here, xi is generated randomly within its range. 

D. Reproduction 
On every generation, new chromosomes (offspring) are 

produced by using crossover operator and mutation operator. 
The number of new chromosomes produced is determined by 
crossover-rate (cr) and mutation-rate (mr) parameters. For 
example, if population size is pop_size then there are 
pop_size×cr offspring produced by crossover operator and 
pop_size×mr offspring produced by mutation operator for each 
generation. All offspring produced in this stage are placed in 
offspring pool. Parents for these reproduction operations are 
randomly and uniformly chosen from the population. 

This paper uses two crossover methods, flat-crossover [38] 
and extended-intermediate-crossover [39]. Let P1=(p1

1,…,pn
1) 

and P2=(p1
2,…,pn

2) are two selected chromosomes as parents 
for crossover. Flat-crossover produces offspring O=(o1,…,on) 
by generating a random number oi on interval [pi

1,…,pi
2]. 

Extended-intermediate-crossover uses a formula 
oi=pi

1+αi(pi
2−pi

1), where αi is randomly generated on interval 
[−0.25, 1.25]. These crossover methods are randomly chosen 
in each generation. 

Random exchange mutation which is usually applied in 
permutation representation is used. This mutation works by 
selecting two genes randomly and exchanging their positions. 
We also develop mutation method for real number 
representation, simple-random-mutation. If P=(p1,…,pn) is 
selected parent for mutation then offspring O=(o1,…,on) is 
produced by applying a formula oi=pi+αi , where αi is 
randomly generated on interval [−0.1, 0.1]. These mutation 
methods are randomly chosen in each generation. 

E.  Selection 
Selection procedure is used to select pop_size chromosomes 

from current population (parents) and offspring pool to 
perform the next generation. Four common selection methods 
will be examined to determine which method is most suitable 
for the RCGA. These selection methods are: 

1) Roulette Wheel Selection 
Each chromosome from current population (parents) and 

offspring pool has probability to be selected according to its 
fitness value. Here, a cumulative probability is calculated and 
a random number is generated to select the chromosome. 

2) Binary Tournament Selection 
One chromosome from current population and one 

chromosome from offspring pool are randomly chosen and 
compared. The best one will be selected. 

3) Elitist Selection 
All chromosomes from current population (parents) and 

offspring pool are placed in one pool and sorted according 
their fitness value. pop_size best chromosomes are selected. 

4) Replacement Selection 
Each chromosome in offspring pool will be selected to 

replace its parent if it has a better fitness value than its parent. 
If the child is produced by crossover operator (by using two 
parents) then the child will replaces the worst parent. 

Note that the binary tournament, elitist and replacement 
selection guarantee that the best chromosome is always passed 
to the next generation. 

F. Overall RCGA Cycle 
The overall RCGA cycle is shown as follow: 

Step 0. Setting GA parameters 
Parameters: population size pop_size, crossover rate cr, 

mutation rate mr, maximum number of generations max_gen, 
weighted parameters (α1 and α2) for fitness function. 
Step 1. Initialization 

Let generation gen=0. 
Generate pop_size of random chromosomes. 

Step 2. Reproduction 
Produce pop_size×cr offspring by using crossover operator 

and pop_size×mr offspring by using mutation operator. 
Step 3. Selection 

Select pop_size chromosomes from population and 
offspring pool for the next generation. 
Step 4. Let gen ← gen + 1. 

If gen=max_gen go to Step 2, else Stop. 

V. NUMERICAL EXAMPLE 
A simple problem set is given to demonstrate how the 

proposed RCGA solves the problem. There are 3 different 
machines which have tool slot capacity of 20, 15 and 20 
respectively. Length of scheduling period for each machine 
(SPm) is 4000 and overloading of the machines is allowed. 
Furthermore, as shown in Table II, there are 10 tool types 
where each tool type requires several tool slots on machines’ 
magazine. 
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TABLE II 
TOOL TYPES’ AVAILABILITY 

tool type 1 2 3 4 5 6 7 8 9 10 
availability 2 2 2 2 2 3 3 3 3 3 
number of 
slot needed 3 3 4 4 5 5 4 4 3 3 

 
Eight part types are ready to be produced as shown in Table 

III. Each part type has specific production requirements. For 
example, part type 1 has 3 operations. Operation 2 can be 
processed on machine 1 or 3. Machine 1 needs 20 unit times 
for processing and tools 4, 5 are required. Note that the 
problem has machine and tool flexibility. 

 
TABLE III 

PART TYPE PRODUCTION REQUIREMENT 
part 
type 

batch 
size 

value 
($) op mac time 

(seconds) tools 

1 30 5 1 1 30 1 2 3 
   2 1 20 4 5  
    3 20 2 3  
   3 3 30 3 4  

2 30 3 1 1 40 1 2  
   2 2 20 3 4  
   3 3 30 5 6 7 

3 30 2 1 1 30 6 7 8 
    3 40 8 9 10 
   2 2 40 1 10  
    3 30 1 10  
   3 1 20 1 2  

4 30 1 1 3 30 9 10  
    2 20 9 10  
   2 2 30 6 7  
    1 40 6 7  
   3 1 30 3 4  

5 40 4 1 1 40 1 2 3 
   2 2 40 4 5  
    3 40 4 5  

6 40 3 1 3 20 7 8  
   2 2 50 9 10  
   3 1 10 3   

7 40 2 1 2 20 3 4  
   2 2 30 1 2  
    3 40 8 9  

8 40 5 1 1 50 1 2 3 
    3 40 8 9 10 
   2 2 30 4 5  

op: operation, mac: machine, ntool: number of tools required 
 

As shown in Table III, maximum number of operations of 
each part type is 3 (opMax=3) and maximum number of 
alternative machines is 2 that requires 2 bits for a binary 
number (bitMac=2). Number of part types is eight that 
requires 4 bits for a binary number (bitPart=4). Therefore, the 
value of each element of chromosome is maintained between 0 
and 4232 +× . 

Several GAs parameters must be determined in advance as 
follows: population size is 100, crossover rate is 0.3, mutation 
rate is 0.1, maximum number of generations is 500 and 
weighted parameters (α1 and α2) are set equal to 1. Crossover 

rate of 0.3 means that 100x0.3=30 offspring are produced by 
crossover operator for each generation. Similarly, mutation 
rate of 0.1 means that 100x0.1=10 offspring are produced by 
mutation operator for each generation. Replacement selection 
is used. 

By using these parameters, the RCGA produces an 
optimum solution for the part type selection and loading 
problem in less than 1 second. The optimum solution is 
achieved after 23 generations. This optimum solution is 
checked by using branch-and-bound method. The best 
chromosome X=(793,603,439,1022,344,713,86,426) is 
converted to determine selected part types and its chosen 
machines for operations as shown in Table IV. Machines’ 
workload and tools assigned are shown in Table V. The 
increase of the best and average fitness value is depicted in 
Fig. 1 which shows a fast convergence of the RCGA to 
optimality.  

 

 

Fig. 1 The best and average fitness value 
 

TABLE IV 
SEQUENCE OF SELECTED PART TYPES  

part type value chosen machines 
7 80 3   3 
5 160 1   2 
8 200 1   2 
3 60 3   3   1 

Throughput 500  
 

TABLE V 
MACHINES WORKLOAD  

mac workload unbalance number 
of slots 

used 
slot 

tools 
assigned 

1 4200 200 20 10 1  2  3 
2 3600 400 15 13 3  4  5 
3 3700 300 20 13 1  8  9  10 

System unbalance 900    

VI. RESULT AND DISCUSSION 
To evaluate the performance of the RCGA, we generate 12 

test-bed problems as shown in Table VI. Problems 1 to 4 are 
considered as small size problems, problems 5 to 8 are 
medium size problems and problems 5 to 8 are large size 
problems. Lengths of scheduling period for all machines are 
same within each problem. The other randomly generated 
parameters are shown in Table VII.  
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TABLE VI 
TEST-BED PROBLEMS 

problem num. of 
part types 

num. of 
machines 

num. of 
tool types 

scheduling 
period 

1 8 4 20 4000 
2 8 5 25 4000 
3 10 4 20 4000 
4 10 5 25 4000 
5 16 4 20 7000 
6 16 5 25 7000 
7 18 4 20 7000 
8 18 5 25 7000 
9 24 4 20 10000 
10 24 5 25 10000 
11 26 4 20 10000 
12 26 5 25 10000 

 
TABLE VII 

RANDOMLY GENERATED PARAMETERS 
Parameters Range 
tool slot capacity of each machine 40-60 
number of copies of each tool type 2-(nMac-1) 
number of slots required for each tool type 3-7 
number of operations of each part type 2-(nMac) 
batch size of each part type 40-60 
value of each part type (dollar) 5-10 
number of possible machines for each operation 1-3 
processing time of each operation 20-40 
number of tool types required for each operation 2-5 

nMac: number of machines 
 
The RCGA is implemented in Java and experiment is 

carried out on personal computer equipped with Intel® Core™ 
i3-380 processor working at speed 2.53 GHz. The first step in 
our experiment is determining the most suitable selection 
method for the RCGA. Four common selection methods 
(roulette wheel, binary tournament, elitist, and replacement) 
are examined. The other parameters are set as follows: 
• Crossover rate is 0.25. 
• Mutation rate is 0.05 
• Population size is 500, 1000 and 1500 for small size 

problems, medium size problems and large size problems 
respectively. 

• The weighted parameters are α1=3 and α2=1.  
• GA iterations will be stopped after 5,000 successive 

generations no longer produces better results. 
By using these parameters and data from problem 7, we run 

the RCGA 10 times and obtain results of minimum (Fmin), 
maximum (Fmax), and average (Favg) of fitness values as shown 
in Table VIII. The average computation time (seconds) and 
number of iterations to obtain the best solution (itr best) are 
also presented. Here, the replacement selection method 
produces a higher of average of fitness value than other 
methods. Therefore, we use this selection method in the next 
step of the experiment. 

 
 
 
 
 
 

TABLE VIII 
COMPARISON AMONG SELECTION METHODS 

selection Fmin Fmax Favg time itr 
best 

roulette wheel 2.1264 2.3104 2.1875 58.5 3593 
binary tournament 2.2250 2.4175 2.3488 24.7 1980 
elitist 2.1962 2.4101 2.3344 26.7 1284 
replacement 2.3331 2.4178 2.3659 38.9 7181 

 
By using the replacement selection, the RCGA can maintain 

the population diversity and explore the search space better. It 
is indicated by its significantly higher number of iterations to 
obtain the best solution. In contrast, the other selection 
methods achieve their convergence faster which may indicate 
that they are trapped in local optimum areas and cannot obtain 
a better solution. Fig. 2 depicts a one run from each selection 
method. It shows the improvement of the best fitness value 
along generations. While all other selection methods achieve 
their convergence in less than 2000 generations, the 
replacement selection gradually improve its chromosomes to 
obtain higher fitness value. 

 

 
Fig. 2 The best fitness value for each selection method 

 
The second step in our experiment is determining the most 

suitable crossover rate and mutation rate for the RCGA. 
Appropriate crossover rate and mutation rate will help the 
RCGA to balance its exploration and exploitation ability and 
avoid the premature convergence [26]. In order to get a fair 
result, we vary the crossover rate (cr) from 0 to 0.4 and set the 
mutation rate (mr) in such way that cr+mr=0.4. Here, all runs 
produce 0.4x1000 offspring in each generation. Again, we run 
the RCGA 10 times using problem 7. The result is presented 
in Table IX. Apparently, the best result is produced by using 
crossover rate of 0.3 and mutation rate of 0.1. Here, by using a 
low value of crossover rate the RCGA will mostly depend on 
its mutation rate and tend acting as a random search method. 
In other hand, the RCGA will lose its ability to maintain 
population diversity if using a high crossover rate and a low 
mutation rate. Inability to maintain population diversity means 
that the RCGA cannot explore the search space effectively and 
will likely be trapped in local optimum area. 
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TABLE IX 
COMPARISON AMONG CROSSOVER RATES 

crossover rate mutation rate average of fitness value 

0.00 0.40 2.377 
0.05 0.35 2.376 
0.10 0.30 2.392 
0.15 0.25 2.388 
0.20 0.20 2.393 
0.25 0.15 2.384 
0.30 0.10 2.400 
0.35 0.05 2.366 
0.40 0.00 2.294 

 
After determining the most suitable crossover rate and 

mutation rate for the RCGA, we run the RCGA for all test-bed 
problems. To measure the performance of the RCGA we use 
frequency of achieving optimum solution (FOS) and deviation 
of objective values resulted by GA to its optimum values. The 
optimum solutions are obtained by using branch-and-bound 

method. It is should be noted that branch-and-bound method 
required computational time more than 10 hours to solve 
particular test bed problems which cannot be accepted on daily 
operation of the FMS. Equation (16) shows the deviation of 
average fitness values from 20 runs of GA to optimum fitness 
value. Fopt is fitness value obtained by branch-and-bound 
method. FGAr is fitness value obtained by GA in run r. 

 

( )( )
%100

2020

1 ×
−

= ∑ =

opt

r ropt
dev F

FGAF
F  (16) 

 
The computational results are presented in Table X. Column 

‘time’ shows average of computation time (seconds) from 20 
runs of the RCGA. Columns ‘F’, ‘TH’ and ‘SU’ below 
column ‘RCGA’ show the average of fitness value, throughput 
and system unbalance obtained from 20 runs of the RCGA. 

 
TABLE X 

COMPUTATIONAL RESULTS 

problem 
RCGA Optimum values 

Fdev(%) 
FOS Time (seconds) F TH SU F TH SU 

1 20 4.29 2.545 1,616.0 803.0 2.545 1616 803 0.00 
2 20 5.09 2.926 2,591.0 9,838.0 2.926 2591 9838 0.00 
3 20 5.24 2.972 3,058.0 6,858.0 2.972 3058 6858 0.00 
4 20 6.26 2.531 2,196.0 3,233.0 2.531 2196 3233 0.00 
5 12 16.47 2.133 2,604.0 3405.6 2.156 2,676 3,738 1.06 
6 13 23.63 1.936 2,587.9 7,951.6 1.968 2,605 7,126 1.59 
7 2 22.21 2.404 3,321.9 3,543.1 2.458 3,595 5,529 2.23 
8 17 19.86 2.077 2,861.4 4,997.4 2.088 2,871 4,768 0.51 
9 3 84.09 2.260 3,940.9 4,832.4 2.349 4,150 4,204 3.79 
10 8 59.06 1.803 3,179.6 10,666.6 1.809 3,212 10,879 0.34 
11 0 84.29 2.248 4,286.7 6,077.9 2.305 4,417 5,519 2.45 
12 1 92.36 1.971 3,893.3 10,956.0 2.018 3,937 9,291 2.31 

average  35.25       1.19 
 
Apparently for a small number of part types (8 and 10), the 

proposed real coded GA could achieve optimum solution in all 
runs (problems 1 to 4). These results are obtained in less than 
7 seconds. In the medium size problems (problems 5 to 8), the 
best result is obtained in problem 8 with Fdev of 0.51% and the 
worst solution is occurred in problem 6 with Fdev of 1.59%. 
Except for problem 7, the RCGA could produce optimum 
solutions in more than 10 runs for all problems. 

The RCGA also obtains optimum solutions in several runs 
in the large size problems (problems 9, 10, and 12), the best 
result is obtained in problem 10 with Fdev of 0.34% and the 
worst solution is occurred in problem 9 with Fdev of 3.79%. 
Overall, in larger problems, Fdev values tend to increase as the 
search space becomes very wide. Increasing the population 
size, crossover rate and mutation rate will reduce Fdev values 
but the computation time will rise. 

It should be noted that lower throughputs achieved by the 
RCGA is compensated by better (lower) system unbalances on 
problems 5, 7 and 10. All Fdev values are below 4% which may 
be regarded as good results considering these results are 
achieved in average of 35.25 seconds. 

Note that these promising results are achieved by using only 
simple genetic operators. The novel proposed chromosome 
representation produces feasible solutions which minimize a 
computational time needed by GA to explore the feasible 
search space efficiently [35], [40]. Other approaches may 
require sophisticated strategies to achieve good results which 
may require excessive computation time such as hybridizing 
tabu search with simulated annealing [12], hybridizing genetic 
algorithm with simulated annealing [21], [29] and equipping 
particle swarm optimization with local search methods [14]. 

VII. CONCLUSION 
The part type selection and loading problem with 

flexibilities of operations have been modeled in this paper. 
These NP-hard problems were solved by using real coded GA. 
Combination of proper representation and simple genetic 
operators could produce promising results in reasonable 
amount of time. By using 12 test bed problems, the proposed 
RCGA improves the FMS performance by considering two 
objectives, maximizing system throughput and maintaining the 
balance of the system (minimizing system unbalance). The 
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resulted objective values are compared to the optimum values 
produced by branch-and-bound method. The experiments 
show that the proposed RCGA could reach near optimum 
solutions in reasonable amount of time. 

Further work will address more complex problem which 
considers alternative production plans which refer to 
possibility of producing part on alternative operation 
sequence. Resource allocation problem which refers to 
allocation of limited number of pallets and fixtures to the part 
types is also integrated to the existing problems. Therefore, a 
more powerful of GA is required. Hybridizing the RCGA with 
other heuristics methods and developing new crossover and 
mutation methods will be considered. 
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