
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

675

Abstract—This paper deals with modeling and optimization of

two NP-hard problems in production planning of flexible
manufacturing system (FMS), part type selection problem and
loading problem. The part type selection problem and the loading
problem are strongly related and heavily influence the system’s
efficiency and productivity. These problems have been modeled and
solved simultaneously by using real coded genetic algorithms
(RCGA) which uses an array of real numbers as chromosome
representation. The novel proposed chromosome representation
produces only feasible solutions which minimize a computational
time needed by GA to push its population toward feasible search
space or repair infeasible chromosomes. The proposed RCGA
improves the FMS performance by considering two objectives,
maximizing system throughput and maintaining the balance of the
system (minimizing system unbalance). The resulted objective values
are compared to the optimum values produced by branch-and-bound
method. The experiments show that the proposed RCGA could reach
near optimum solutions in a reasonable amount of time.

Keywords—Flexible manufacturing system, production planning,

part type selection problem, loading problem, real-coded genetic
algorithm.

I. INTRODUCTION
APID market changes (changing customer needs), peaks
in demand for product quantity (e.g. new gadgets – tablet

PC, mobile phones, etc.), concerns for product quality, and
requirements to dramatically increase product mix have forced
manufacturing industries to enhance their flexibility. Flexible
manufacturing system (FMS) is designed to cope with these
conditions by using high technologies and automation in
transfer lines which enable factories to reconfigure rapidly to
produce a variety of products by using same resources [1]-[3].
Due to the high investment required, higher resources
utilization must be achieved and this issue can be resolved by
establishing a good production planning. This planning will
also increase productivity by maximizing system throughput
and enable early return on investment.

The planning problem in FMS is related with the

W. F. Mahmudy is a PhD student at School of Advanced Manufacturing &

Mechanical Engineering, University of South Australia and a lecturer at
Department of Computer Science, Brawijaya University (UB), Indonesia (e-
mail: wayan_firdaus.mahmudy@mymail.unisa.edu.au, wayanfm@ub.ac.id).

R. M. Marian, PhD is Senior Lecturer and Program Director at School of
Advanced Manufacturing & Mechanical Engineering, University of South
Australia, Australia (e-mail: romeo.marian@unisa.edu.au).

L. H. S. Luong is a professor at School of Advanced Manufacturing &
Mechanical Engineering, University of South Australia, Australia (e-mail:
lee.luong@unisa.edu.au).

arrangement of parts and technological equipments such as
tools, fixtures and pallets, and the determination of the type
and quantity of the products which are made before starting
production [4], [5]. The planning problems can be divided into
two sub problems, an aggregate production planning and a
short term planning (or a production planning) [6]. The
aggregate production planning produces a master schedule
containing part mix, production rates and lot sizes. The
production planning gives interface between aggregate
production planning and daily operation of the FMS. There are
several issues in the production planning stage such as part
type selection problem, machine grouping problem,
production ratio problem, resource allocation problem, and
loading problem [7], [8].

Depend on the specific characteristic of manufacturing
environments, various combination of some production
planning problems have been considered in the literatures. For
example, Bilgin & Azizoglu [9], Chan & Swarnkar [10], and
Chen & Ho [11] solved the machine loading problem.
Swarnkar & Tiwari [12], Choudhary, Tiwari & Harding [13],
Biswas & Mahapatra [14], Ponnambalam & Kiat [15], and
Prakash et al. [16] solved the part type selection and loading
problem simultaneously. Tabucanon, Batanov & Basu [17]
solved the part type selection and loading problem
simultaneously in the first stage and used the result on this
stage to determine the production ratio in the next stage.
However, the routing flexibility was not considered. Kim et al.
[18] solved the loading problem and the partial machine
grouping while considering tool life constraints. Seok Shin,
Park & Keun Kim [19] solved the loading problem while
considering a various flexibility such as machine, sequence,
tool and process routing. This paper focuses on the part type
selection and loading problem with machine and tool
flexibility.

The part type selection problem and the loading problem
are parts of the production planning problems which are
strongly related and heavily influence the system’s efficiency
[14], [20]. The part type selection problem deals with selection
of set of part types (products) which must be produced
immediately from a number of part types as there are different
due dates, limited number of machines, limited tool magazines
capacity of each machine and limited number of tools. The
loading problem is concerned with allocation of operations for
selected part types and loading appropriate tools to the
machines [7], [21]. Solving part type selection and machine
loading problem simultaneously will produce a better solution

Wayan F. Mahmudy, Romeo M. Marian, Lee H. S. Luong

Modeling and Optimization of Part Type Selection
and Loading Problem in Flexible Manufacturing
System Using Real Coded Genetic Algorithms

R

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

676

as higher throughput of the FMS is achieved while keeping the
balance of machines’ workload [3]. Here, the efficient
allocation of production resources will be achieved.

Solving the part type selection problem and the machine
loading problem simultaneously require a good approach to
achieve a good result on reasonable amount of time. Genetic
algorithms (GAs) are regarded as the powerful method to
solve a complex problem with a large search space [22]. GAs
have an ability to escape from local optima as they can jump
randomly from one sequence to another sequence [23]. The
power of GAs to solve various complex problems has attracted
a lot of researchers to do research in this area. However, a
simple GAs is insufficient to solve any complex problems in
engineering. A proper representation, developing appropriate
search operators and hybridizing it with other methods are an
important key for its successful implementation and becoming
challenging tasks [24], [25]. In addition, a good strategy to
avoid premature convergence which produces local optimum
solution should be developed [26]. This paper as an extension
of [27], [28] attempts to develop a new representation using an
array of real numbers which could produce good solutions
efficiently by using simple genetic operators. The novel
proposed chromosome representation is designed to produce
only feasible solutions which minimize a computational time
needed by GAs to push its population toward feasible search
space or repair infeasible chromosomes.

II. LITERATURE REVIEW
The part type selection problem and the loading problem in

the FMS environments have received significant attentions
from researchers who proposed a various approaches to solve
the optimization of the production planning problems such as
mathematical programming [17], Lagrangean relaxation
approach [9], genetic algorithms [11], [13], particle swarm
optimization [14], [15], ant colony optimization [10], immune
algorithm [16], two-stage heuristics based on a bin-packing
algorithms and a simple search technique [18], multi-agent
system [20], and symbiotic evolutionary algorithm [19]. A
combination of two methods was also used such as
hybridizing genetic algorithm with simulated annealing [21],
[29], and hybrid tabu search and simulated annealing-based
[12]. Here, heuristic methods is widely used since direct
methods which are based on mathematical programming and
smart enumeration are not practical to solve these complex
problems [22].

The extensive works were shown in several literatures. For
example, Tabucanon, Batanov & Basu [17] used simulation to
evaluate the solution of part type selection and loading
problem produced by batching approach. They formulated
mathematical programming method to maximize the number
of part types in each batch. Denizell & Sayin [30] developed a
mathematical programming model to solve the part type
selection problem that considering due dates. Choudhary,
Tiwari & Harding [13] addressed the problems by using a
GAs with chromosome differentiation. A sexual
differentiation of the chromosomes was applied to maintain a
diversity of the population and explore the search space

extensively. Tiwari et al. [21] proposed a constraints-based
fast simulated annealing algorithm to solve a combination of
part-type selection and operation allocation on machines.
Their proposed algorithm which was performed by a
combination of a GA and a simulated annealing (SA) had a
capability to escape from local optimum and provide good
solutions. Biswas & Mahapatra [14] proposed modified
particle swarm optimization (PSO) to solve machine loading
problems. This algorithm attempted to maintain the balance of
the system while regarding the occurrence of technological
constraints such as the availability of machining time and tool
slots. Ponnambalam & Kiat [15] also used PSO to solve
machine loading problems. This algorithm is equipped with
two local search method to improve the solution quality. They
applied two objectives, minimizing system unbalance and
maximizing system throughput, while satisfying the
technological constraints. Tiwari, Kumar Jha & Bardhan
Anand [20] developed a combinatorial auction-based heuristic
for multi-agent system to solve the problems. This approach
was used to deal with a huge search space of the part type
selection and machine loading problems. Even though all
these researchers reported promising results, several
simplicities were made to reduce the complexity of the
problems.

Part type selection and machine loading are NP-hard
problems [14]. The complexity of the problems is harder when
flexibilities of operations are considered. For example, each
part has alternative routes (routing flexibility) which refer to a
possibility of operation is processed on alternative machines
with alternative tools. For simplicity, Tabucanon, Batanov &
Basu [17] did not consider the routing flexibility. Denizell &
Sayin [30] and Pacciarelli [31] considered FMS that consists
of all general-purpose machines where the functionality of a
machine is only determined by the set of tools loaded in their
tool magazine. Here, each part is only processed by one
machine. Furthermore, Swarnkar & Tiwari [12], Choudhary,
Tiwari & Harding [13], Biswas & Mahapatra [14],
Ponnambalam & Kiat [15], Prakash et al. [16] and Tiwari,
Kumar Jha & Bardhan Anand [20] did not mention specific
tool types and its availability; they only mentioned the number
of slots needed by the tools. In contrast, this paper considers
machine and tool flexibility and also limited numbers of tool
types.

III. PROBLEM DESCRIPTION
This paper considers a FMS which consists of several

computers numerically controlled (CNC) machines equipped
with a tool magazine which has limited tool slot capacity. The
machines can perform different operations when they are
equipped with different tools. A limited number of tools are
available and each tool requires a number of slots when it is
assigned to a machine. When several jobs (part types) arrive,
the system must select a set of part types which must be
produced immediately as there is a limitation of machines and
its tool slot capacity and tools availability. This approach is
considered as batching approach as all part type should be
grouped into several production batches [17].

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

677

Each part type has a production requirement in form of
sequence of operations. Each operation can be processed on
several alternative machines with several alternative tools.
This paper also considers unrelated machines approach where
time needed for parts’ operations depend on the assigned
machine.

A. Subscripts
p = 1,…,P part type
o = 1,…,Op operation of part type p
t = 1,…,T tool type
m = 1,…,M machine type

B. Parameters
MSm = tool slot capacity of machine m
TNt = number of tools type t
TSt = number of slots required by tool type t
PSp = batch size of part type p
PVp = value (price) of part type p
MOPpo = set of possible machines on which operation o of
part type p can be performed

{ }0,1=pomtTM : 1 if tool t is required for processing operation

o of part type p on machine m
Tpom = processing time of operation o of part type p on
machine m

C. Decision variables
{ }0,1=pX : 1 if part type p is selected in the batch

{ }0,1=pomX : 1 if machine m is selected to process operation

o of part type p
{ }0,1=mtY : 1 if tool t is loaded to the machine m

D. Objectives
A various objectives had been considered in the references

such as maximizing system throughput [3], [12], [13], [15]-
[17], [21], [23], [29], [30], [32], maintaining the balance of the
system [3], [12]-[16], [19], [21], [23], [29], [32], minimizing
part movement [19], minimizing tool changeovers [19] and
minimizing production cost [33]. However, most of references
considered two common objectives, maximizing system
throughput and maintaining the balance of the system
(minimizing system unbalance). System throughput and
system unbalance can be calculated in different ways as
follows:

1) Maximizing System Throughput

∑
=

P

p
pX

1
:Maximize (1)

∑
=

P

p
ppp PVPSX

1
:Maximize (2)

Maximizing system throughput can be achieved by

maximizing the number of selected part types in each batch
which can be expressed as in (1). This objective means
minimizing a time lost for tools changeover. Tabucanon,
Batanov & Basu [17], Kumar & Shanker [3] used this

objective function. Another way to maximize system
throughput is by maximizing the value (price or profit) or the
sum of batch size (if all part types have equal price or profit)
of selected part types in each batch as shown in (2). Kumar &
Shanker [3], Choudhary, Tiwari & Harding [13], Prakash et al.
[16], Ponnambalam & Kiat [15], and Yogeswaran,
Ponnambalam & Tiwari [29] used this objective function.

2) Maintaining the Balance of the System

() MWW

TXW

WW

M

m m

P

p

O

o
pompomm

M

m
m

p

∑

∑ ∑

∑

=

= =

=

=

=

−

1

1 1

1

and

where

:Minimize

 (3)

⎭
⎬
⎫

⎩
⎨
⎧

= ∑ ∑
= =

P

p

O

o
pompom

p

TX
Mm 1 1,...,1

max
:Maximize (4)

∑
=

−
M

m
mm WSP

1
:Minimize (5)

()∑
=

−
M

m
mm WSP

1

:Minimize (6)

Maintaining the balance of the system can be achieved by

minimizing system unbalance as expressed in (3) where Wm is
workload of machine m and W is the average machine
workload. Seok Shin, Park & Keun Kim [19] used this
objective function. Another way to minimize system
unbalance is by minimizing a maximum machine’s load as in
(4). If length of scheduling period for each machine (SPm) is
determined in advance and overloading of the machines is
allowed, the system unbalance may be expressed as in (5).
Mukhopadhyay, Midha & Krishna [32], Biswas & Mahapatra
[14] used this objective function. However, if overloading of
the machines is not allowed, (6) is used. Here, length of
scheduling period becomes a maximum machine workload.
Choudhary, Tiwari & Harding [13], Biswas & & Mahapatra
[14] used this objective function.

E. Constraints
While minimizing system unbalance and maximizing

system throughput, several technological constraints must be
satisfied as follows:

PpXOX pp

O

o

M

m
pom

p

,...,1
1 1

==∑ ∑
= =

 (7)

ppMOPm pom OoPpXX
po

,...,1,...,1 ===∑ ∈
 (8)

TtMmOoPp

TMXY

p

pomtpommt

,...,1,...,1,...,1,...,1 ====

= (9)

TtXOTNY ppt

M

m
mt ,...,1

1
==≤∑

=

 (10)

MmXOMSTSY ppm

T

t
tmt ,...,1

1
==≤∑

=

 (11)

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

678

MmSPTX mpom

P

p

O

o
pom

p

,...,1
1 1

=<∑ ∑
= =

 (12)

Constraint (7) guarantees that if a part type is selected, all

its operations must be performed. This constraint states that
operation assignments are equal to the total operations
required. Constraint (8) states that each operation of selected
part types must be completed on one machine. As there is
possibility of operation can be processed on alternative
machines, the machine must be determined and the operation
must be processed by the chosen machine. Constraint (9)
guarantees that if a machine is selected to process an operation
of a part type, all the tools needed must be loaded to the
machine. Constraint (10) ensures that the number of tools
loaded to the machines must not exceed its availability.
Constraint (11) ensures that the number of tool slots used on a
machine must not exceed the machine’s tool slot capacity.
Constraint (12) is only used if length of scheduling period for
each machine (SPm) is determined in advance and overloading
of the machines is not permitted.

IV. MODELING USING GA
GAs are general purpose search algorithms which imitate a

natural evolution process. Candidate solutions are represented
by chromosomes which evolve over time (generations)
through reproduction and stochastic selection. Along
generations these chromosomes become better (with higher
fitness value) and at the final generation the best chromosome
can be decoded as a near optimum solution [34]. This section
describes how real-coded genetic algorithm is used to solve
part type selection and loading problem.

A. Chromosome Representation
A suitable chromosome representation determines the

successful implementation of genetic algorithms [35]. This
paper uses real number representation so GAs which uses this
representation can be called real-coded GAs (RCGA). A
chromosome is a vector of real number whose size is same
with the number of part types. This representation usually was
used to solve optimization problems on continuous domains
[36]. However, a simple implementation of its operators
(crossover and mutation) and possibility to decode one real
number into several values (part type’s index and its several
operations) become the main reason to use this representation
for solving part type selection and loading problem.

The construction of a chromosome in our RCGA is shown
in Table I. Each element of the chromosome X=(x1,x2,…,xp)
corresponds to the continuous position values for p number of
part-types. The value of xi is maintained between 0 and

bitPart+bitMac×opMax2 . opMax is maximum number of operations
of each part type. bitMac is number of bits required to
represent a binary number which has largest value of
maximum number of alternative machines of each operation.
For example, the maximum number of alternative machines of
each operation is 5. Therefore, the minimum bits required to
represent a binary number between 0 and 5 is 3. bitPart is

number of bits required to represent a binary number which
has largest value of number of part types. xi is stored and
treated as a real number when genetic operators (crossover and
mutation) are applied. However, xi will be converted
(rounded) to a nearest integer value when decoding operation
is performed.

TABLE I

CHROMOSOME CONSTRUCTION
part type 1 2 3 4 5 6 7 8

x 2772 7779 5129 7981 6215 977 9969 1654
part type
sequence 6 8 1 3 5 2 4 7

sorted x 977 1654 2772 5129 6215 7779 7981 9969

A smallest position value (SPV) rule is used to get part

types sequence. By sorting x in ascending order, we obtain the
sequence of part types that are selected for the current batch.
To determine which machines are used to process part types’
operations, each element of X is decoded into a binary
number. Suppose part type 8 has 3 operations, operation 1 can
be processed on machines 2 or 3 or 5, operation 2 can be
processed on machine 1 or 2 or 6 or 7, and operation 3 can be
processed on machine 3 or 4. To choose machines used for
processing of operations of part type 8, x2=1654 is converted
into a binary number (11001110110)2. Suppose bitMac is 3.
For the first operation, we use 3 bits at the right side (110)2
which is equal to 6. As there are 3 possible machines (n=3),
we apply the following formula:

machine index = 6 mod n + 1 = 6 mod 3 +1 = 1

mod is modulus operator which gives the remainder of a
division. Therefore, the first operation of part type 8 is
performed on the first possible machine that is machine 2. By
using the next 3 bits and applying the same rule, we obtain
that part type 8 is sequentially processed on machines 2, 6 and
4.

After determining the machines for operations, required
tools are assigned to the machines. At this step, all the
constraints such as availability of tools and empty slots on the
machines are checked. For example, after choosing part types
6, 8, 1 and 3 according to the part type sequence as shown in
Table I, adding part type 5 to the solution violate the
constraints. Therefore, the chromosome states that only part
types 6, 8, 1 and 3 are selected for the current batch and the
objective functions of the problem are calculated based on
these selected part types.

Note that the proposed representation produces only
feasible solutions and guarantees that only required tools
assigned to the machines. This effort will minimizes a
computational time which usually needed by GAs to push its
population toward a feasible search space or repeatedly repair
infeasible chromosomes [37].

B. Fitness Function
The objective functions of the optimization problem must

be converted to a fitness function which is used to measure the
goodness of the solution. For example, (2) is used to measure

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

679

system throughput, (2) should be converted into (13) to
produce value between 0 and 1.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑∑

==

P

p
pp

P

p
ppp PVPSPVPSXf

11
1

 (13)

Furthermore, (5) is used to measure system unbalance.

Here, length of scheduling period for each machine (SPm) is
determined in advance and overloading of the machines is
permitted. Minimizing (5) can be converted as maximizing
(14) as follow:

∑∑
==

⎟
⎠

⎞
⎜
⎝

⎛
−−=

M

m
m

M

m
mm SPWSPf

11
2 1 (14)

Finally, the fitness function can be formulated as follow:

parameters weigthed:,
:Maximize

11

211

αα
αα ffF += (15)

C. Initialization of Population
pop_size of chromosomes are created as an initial

population. Here, xi is generated randomly within its range.

D. Reproduction
On every generation, new chromosomes (offspring) are

produced by using crossover operator and mutation operator.
The number of new chromosomes produced is determined by
crossover-rate (cr) and mutation-rate (mr) parameters. For
example, if population size is pop_size then there are
pop_size×cr offspring produced by crossover operator and
pop_size×mr offspring produced by mutation operator for each
generation. All offspring produced in this stage are placed in
offspring pool. Parents for these reproduction operations are
randomly and uniformly chosen from the population.

This paper uses two crossover methods, flat-crossover [38]
and extended-intermediate-crossover [39]. Let P1=(p1

1,…,pn
1)

and P2=(p1
2,…,pn

2) are two selected chromosomes as parents
for crossover. Flat-crossover produces offspring O=(o1,…,on)
by generating a random number oi on interval [pi

1,…,pi
2].

Extended-intermediate-crossover uses a formula
oi=pi

1+αi(pi
2−pi

1), where αi is randomly generated on interval
[−0.25, 1.25]. These crossover methods are randomly chosen
in each generation.

Random exchange mutation which is usually applied in
permutation representation is used. This mutation works by
selecting two genes randomly and exchanging their positions.
We also develop mutation method for real number
representation, simple-random-mutation. If P=(p1,…,pn) is
selected parent for mutation then offspring O=(o1,…,on) is
produced by applying a formula oi=pi+αi , where αi is
randomly generated on interval [−0.1, 0.1]. These mutation
methods are randomly chosen in each generation.

E. Selection
Selection procedure is used to select pop_size chromosomes

from current population (parents) and offspring pool to
perform the next generation. Four common selection methods
will be examined to determine which method is most suitable
for the RCGA. These selection methods are:

1) Roulette Wheel Selection
Each chromosome from current population (parents) and

offspring pool has probability to be selected according to its
fitness value. Here, a cumulative probability is calculated and
a random number is generated to select the chromosome.

2) Binary Tournament Selection
One chromosome from current population and one

chromosome from offspring pool are randomly chosen and
compared. The best one will be selected.

3) Elitist Selection
All chromosomes from current population (parents) and

offspring pool are placed in one pool and sorted according
their fitness value. pop_size best chromosomes are selected.

4) Replacement Selection
Each chromosome in offspring pool will be selected to

replace its parent if it has a better fitness value than its parent.
If the child is produced by crossover operator (by using two
parents) then the child will replaces the worst parent.

Note that the binary tournament, elitist and replacement
selection guarantee that the best chromosome is always passed
to the next generation.

F. Overall RCGA Cycle
The overall RCGA cycle is shown as follow:

Step 0. Setting GA parameters
Parameters: population size pop_size, crossover rate cr,

mutation rate mr, maximum number of generations max_gen,
weighted parameters (α1 and α2) for fitness function.
Step 1. Initialization

Let generation gen=0.
Generate pop_size of random chromosomes.

Step 2. Reproduction
Produce pop_size×cr offspring by using crossover operator

and pop_size×mr offspring by using mutation operator.
Step 3. Selection

Select pop_size chromosomes from population and
offspring pool for the next generation.
Step 4. Let gen ← gen + 1.

If gen=max_gen go to Step 2, else Stop.

V. NUMERICAL EXAMPLE
A simple problem set is given to demonstrate how the

proposed RCGA solves the problem. There are 3 different
machines which have tool slot capacity of 20, 15 and 20
respectively. Length of scheduling period for each machine
(SPm) is 4000 and overloading of the machines is allowed.
Furthermore, as shown in Table II, there are 10 tool types
where each tool type requires several tool slots on machines’
magazine.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

680

TABLE II
TOOL TYPES’ AVAILABILITY

tool type 1 2 3 4 5 6 7 8 9 10
availability 2 2 2 2 2 3 3 3 3 3
number of
slot needed 3 3 4 4 5 5 4 4 3 3

Eight part types are ready to be produced as shown in Table

III. Each part type has specific production requirements. For
example, part type 1 has 3 operations. Operation 2 can be
processed on machine 1 or 3. Machine 1 needs 20 unit times
for processing and tools 4, 5 are required. Note that the
problem has machine and tool flexibility.

TABLE III

PART TYPE PRODUCTION REQUIREMENT
part
type

batch
size

value
($) op mac time

(seconds) tools

1 30 5 1 1 30 1 2 3
 2 1 20 4 5
 3 20 2 3
 3 3 30 3 4

2 30 3 1 1 40 1 2
 2 2 20 3 4
 3 3 30 5 6 7

3 30 2 1 1 30 6 7 8
 3 40 8 9 10
 2 2 40 1 10
 3 30 1 10
 3 1 20 1 2

4 30 1 1 3 30 9 10
 2 20 9 10
 2 2 30 6 7
 1 40 6 7
 3 1 30 3 4

5 40 4 1 1 40 1 2 3
 2 2 40 4 5
 3 40 4 5

6 40 3 1 3 20 7 8
 2 2 50 9 10
 3 1 10 3

7 40 2 1 2 20 3 4
 2 2 30 1 2
 3 40 8 9

8 40 5 1 1 50 1 2 3
 3 40 8 9 10
 2 2 30 4 5

op: operation, mac: machine, ntool: number of tools required

As shown in Table III, maximum number of operations of
each part type is 3 (opMax=3) and maximum number of
alternative machines is 2 that requires 2 bits for a binary
number (bitMac=2). Number of part types is eight that
requires 4 bits for a binary number (bitPart=4). Therefore, the
value of each element of chromosome is maintained between 0
and 4232 +× .

Several GAs parameters must be determined in advance as
follows: population size is 100, crossover rate is 0.3, mutation
rate is 0.1, maximum number of generations is 500 and
weighted parameters (α1 and α2) are set equal to 1. Crossover

rate of 0.3 means that 100x0.3=30 offspring are produced by
crossover operator for each generation. Similarly, mutation
rate of 0.1 means that 100x0.1=10 offspring are produced by
mutation operator for each generation. Replacement selection
is used.

By using these parameters, the RCGA produces an
optimum solution for the part type selection and loading
problem in less than 1 second. The optimum solution is
achieved after 23 generations. This optimum solution is
checked by using branch-and-bound method. The best
chromosome X=(793,603,439,1022,344,713,86,426) is
converted to determine selected part types and its chosen
machines for operations as shown in Table IV. Machines’
workload and tools assigned are shown in Table V. The
increase of the best and average fitness value is depicted in
Fig. 1 which shows a fast convergence of the RCGA to
optimality.

Fig. 1 The best and average fitness value

TABLE IV
SEQUENCE OF SELECTED PART TYPES

part type value chosen machines
7 80 3 3
5 160 1 2
8 200 1 2
3 60 3 3 1

Throughput 500

TABLE V
MACHINES WORKLOAD

mac workload unbalance number
of slots

used
slot

tools
assigned

1 4200 200 20 10 1 2 3
2 3600 400 15 13 3 4 5
3 3700 300 20 13 1 8 9 10

System unbalance 900

VI. RESULT AND DISCUSSION
To evaluate the performance of the RCGA, we generate 12

test-bed problems as shown in Table VI. Problems 1 to 4 are
considered as small size problems, problems 5 to 8 are
medium size problems and problems 5 to 8 are large size
problems. Lengths of scheduling period for all machines are
same within each problem. The other randomly generated
parameters are shown in Table VII.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

681

TABLE VI
TEST-BED PROBLEMS

problem num. of
part types

num. of
machines

num. of
tool types

scheduling
period

1 8 4 20 4000
2 8 5 25 4000
3 10 4 20 4000
4 10 5 25 4000
5 16 4 20 7000
6 16 5 25 7000
7 18 4 20 7000
8 18 5 25 7000
9 24 4 20 10000
10 24 5 25 10000
11 26 4 20 10000
12 26 5 25 10000

TABLE VII

RANDOMLY GENERATED PARAMETERS
Parameters Range
tool slot capacity of each machine 40-60
number of copies of each tool type 2-(nMac-1)
number of slots required for each tool type 3-7
number of operations of each part type 2-(nMac)
batch size of each part type 40-60
value of each part type (dollar) 5-10
number of possible machines for each operation 1-3
processing time of each operation 20-40
number of tool types required for each operation 2-5

nMac: number of machines

The RCGA is implemented in Java and experiment is

carried out on personal computer equipped with Intel® Core™
i3-380 processor working at speed 2.53 GHz. The first step in
our experiment is determining the most suitable selection
method for the RCGA. Four common selection methods
(roulette wheel, binary tournament, elitist, and replacement)
are examined. The other parameters are set as follows:
• Crossover rate is 0.25.
• Mutation rate is 0.05
• Population size is 500, 1000 and 1500 for small size

problems, medium size problems and large size problems
respectively.

• The weighted parameters are α1=3 and α2=1.
• GA iterations will be stopped after 5,000 successive

generations no longer produces better results.
By using these parameters and data from problem 7, we run

the RCGA 10 times and obtain results of minimum (Fmin),
maximum (Fmax), and average (Favg) of fitness values as shown
in Table VIII. The average computation time (seconds) and
number of iterations to obtain the best solution (itr best) are
also presented. Here, the replacement selection method
produces a higher of average of fitness value than other
methods. Therefore, we use this selection method in the next
step of the experiment.

TABLE VIII
COMPARISON AMONG SELECTION METHODS

selection Fmin Fmax Favg time itr
best

roulette wheel 2.1264 2.3104 2.1875 58.5 3593
binary tournament 2.2250 2.4175 2.3488 24.7 1980
elitist 2.1962 2.4101 2.3344 26.7 1284
replacement 2.3331 2.4178 2.3659 38.9 7181

By using the replacement selection, the RCGA can maintain

the population diversity and explore the search space better. It
is indicated by its significantly higher number of iterations to
obtain the best solution. In contrast, the other selection
methods achieve their convergence faster which may indicate
that they are trapped in local optimum areas and cannot obtain
a better solution. Fig. 2 depicts a one run from each selection
method. It shows the improvement of the best fitness value
along generations. While all other selection methods achieve
their convergence in less than 2000 generations, the
replacement selection gradually improve its chromosomes to
obtain higher fitness value.

Fig. 2 The best fitness value for each selection method

The second step in our experiment is determining the most

suitable crossover rate and mutation rate for the RCGA.
Appropriate crossover rate and mutation rate will help the
RCGA to balance its exploration and exploitation ability and
avoid the premature convergence [26]. In order to get a fair
result, we vary the crossover rate (cr) from 0 to 0.4 and set the
mutation rate (mr) in such way that cr+mr=0.4. Here, all runs
produce 0.4x1000 offspring in each generation. Again, we run
the RCGA 10 times using problem 7. The result is presented
in Table IX. Apparently, the best result is produced by using
crossover rate of 0.3 and mutation rate of 0.1. Here, by using a
low value of crossover rate the RCGA will mostly depend on
its mutation rate and tend acting as a random search method.
In other hand, the RCGA will lose its ability to maintain
population diversity if using a high crossover rate and a low
mutation rate. Inability to maintain population diversity means
that the RCGA cannot explore the search space effectively and
will likely be trapped in local optimum area.

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

682

TABLE IX
COMPARISON AMONG CROSSOVER RATES

crossover rate mutation rate average of fitness value

0.00 0.40 2.377
0.05 0.35 2.376
0.10 0.30 2.392
0.15 0.25 2.388
0.20 0.20 2.393
0.25 0.15 2.384
0.30 0.10 2.400
0.35 0.05 2.366
0.40 0.00 2.294

After determining the most suitable crossover rate and

mutation rate for the RCGA, we run the RCGA for all test-bed
problems. To measure the performance of the RCGA we use
frequency of achieving optimum solution (FOS) and deviation
of objective values resulted by GA to its optimum values. The
optimum solutions are obtained by using branch-and-bound

method. It is should be noted that branch-and-bound method
required computational time more than 10 hours to solve
particular test bed problems which cannot be accepted on daily
operation of the FMS. Equation (16) shows the deviation of
average fitness values from 20 runs of GA to optimum fitness
value. Fopt is fitness value obtained by branch-and-bound
method. FGAr is fitness value obtained by GA in run r.

()()
%100

2020

1 ×
−

= ∑ =

opt

r ropt
dev F

FGAF
F (16)

The computational results are presented in Table X. Column

‘time’ shows average of computation time (seconds) from 20
runs of the RCGA. Columns ‘F’, ‘TH’ and ‘SU’ below
column ‘RCGA’ show the average of fitness value, throughput
and system unbalance obtained from 20 runs of the RCGA.

TABLE X

COMPUTATIONAL RESULTS

problem
RCGA Optimum values

Fdev(%)
FOS Time (seconds) F TH SU F TH SU

1 20 4.29 2.545 1,616.0 803.0 2.545 1616 803 0.00
2 20 5.09 2.926 2,591.0 9,838.0 2.926 2591 9838 0.00
3 20 5.24 2.972 3,058.0 6,858.0 2.972 3058 6858 0.00
4 20 6.26 2.531 2,196.0 3,233.0 2.531 2196 3233 0.00
5 12 16.47 2.133 2,604.0 3405.6 2.156 2,676 3,738 1.06
6 13 23.63 1.936 2,587.9 7,951.6 1.968 2,605 7,126 1.59
7 2 22.21 2.404 3,321.9 3,543.1 2.458 3,595 5,529 2.23
8 17 19.86 2.077 2,861.4 4,997.4 2.088 2,871 4,768 0.51
9 3 84.09 2.260 3,940.9 4,832.4 2.349 4,150 4,204 3.79
10 8 59.06 1.803 3,179.6 10,666.6 1.809 3,212 10,879 0.34
11 0 84.29 2.248 4,286.7 6,077.9 2.305 4,417 5,519 2.45
12 1 92.36 1.971 3,893.3 10,956.0 2.018 3,937 9,291 2.31

average 35.25 1.19

Apparently for a small number of part types (8 and 10), the

proposed real coded GA could achieve optimum solution in all
runs (problems 1 to 4). These results are obtained in less than
7 seconds. In the medium size problems (problems 5 to 8), the
best result is obtained in problem 8 with Fdev of 0.51% and the
worst solution is occurred in problem 6 with Fdev of 1.59%.
Except for problem 7, the RCGA could produce optimum
solutions in more than 10 runs for all problems.

The RCGA also obtains optimum solutions in several runs
in the large size problems (problems 9, 10, and 12), the best
result is obtained in problem 10 with Fdev of 0.34% and the
worst solution is occurred in problem 9 with Fdev of 3.79%.
Overall, in larger problems, Fdev values tend to increase as the
search space becomes very wide. Increasing the population
size, crossover rate and mutation rate will reduce Fdev values
but the computation time will rise.

It should be noted that lower throughputs achieved by the
RCGA is compensated by better (lower) system unbalances on
problems 5, 7 and 10. All Fdev values are below 4% which may
be regarded as good results considering these results are
achieved in average of 35.25 seconds.

Note that these promising results are achieved by using only
simple genetic operators. The novel proposed chromosome
representation produces feasible solutions which minimize a
computational time needed by GA to explore the feasible
search space efficiently [35], [40]. Other approaches may
require sophisticated strategies to achieve good results which
may require excessive computation time such as hybridizing
tabu search with simulated annealing [12], hybridizing genetic
algorithm with simulated annealing [21], [29] and equipping
particle swarm optimization with local search methods [14].

VII. CONCLUSION
The part type selection and loading problem with

flexibilities of operations have been modeled in this paper.
These NP-hard problems were solved by using real coded GA.
Combination of proper representation and simple genetic
operators could produce promising results in reasonable
amount of time. By using 12 test bed problems, the proposed
RCGA improves the FMS performance by considering two
objectives, maximizing system throughput and maintaining the
balance of the system (minimizing system unbalance). The

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

683

resulted objective values are compared to the optimum values
produced by branch-and-bound method. The experiments
show that the proposed RCGA could reach near optimum
solutions in reasonable amount of time.

Further work will address more complex problem which
considers alternative production plans which refer to
possibility of producing part on alternative operation
sequence. Resource allocation problem which refers to
allocation of limited number of pallets and fixtures to the part
types is also integrated to the existing problems. Therefore, a
more powerful of GA is required. Hybridizing the RCGA with
other heuristics methods and developing new crossover and
mutation methods will be considered.

REFERENCES
[1] F.T.S. Chan and H.K. Chan, "A Comprehensive Survey and Future

Trend of Simulation Study on Fms Scheduling," Journal of Intelligent
Manufacturing, vol. 15, no. 1, pp. 87-102, 2004.

[2] I. Badr, "An Agent-Based Scheduling Framework for Flexible
Manufacturing Systems," International Journal of Computer,
Information, and Systems Science, and Engineering, vol. 2, no. 2, pp.
123-129, 2008.

[3] N. Kumar and K. Shanker, "A Genetic Algorithm for Fms Part Type
Selection and Machine Loading," International Journal of Production
Research, vol. 38, no. 16, pp. 3861-3887, 2000.

[4] Z. Binghai, X. Lifeng, and C. Yongshang, "A Heuristic Algorithm to
Batching and Loading Problems in a Flexible Manufacturing System,"
The International Journal of Advanced Manufacturing Technology, vol.
23, no. 11, pp. 903-908, 2004.

[5] J. Venkateswaran, Y.-J. Son, and A. Jones. "Hierarchical Production
Planning Using a Hybrid System Dynamic-Discrete Event Simulation
Architecture," in Proceedings of the 2004 Winter Simulation
Conference, 2004.

[6] M. Ben-Daya, "Fms Short Term Planning Problems: A Review," in
Manufacturing Research and Technology, A. Raouf and M. Ben-Daya,
Eds., Elsevier. p. 113-139, 1995.

[7] K.E. Stecke, "Design, Planning, Scheduling, and Control Problems of
Flexible Manufacturing Systems," Annals of Operations Research, vol.
3, no. 1, pp. 1-12, 1985.

[8] S. Özpeynirci and M. Azizoglu, "Bounding Approaches for Operation
Assignment and Capacity Allocation Problem in Flexible Manufacturing
Systems," Computers & Operations Research, vol. 36, no. 9, pp. 2531-
2540, 2009.

[9] S. Bilgin and M. Azizoglu, "Capacity and Tool Allocation Problem in
Flexible Manufacturing Systems," The Journal of the Operational
Research Society, vol. 57, no. 6, pp. 670-681, 2006.

[10] F.T.S. Chan and R. Swarnkar, "Ant Colony Optimization Approach to a
Fuzzy Goal Programming Model for a Machine Tool Selection and
Operation Allocation Problem in an Fms," Robotics and Computer-
Integrated Manufacturing, vol. 22, no. 4, pp. 353-362, 2006.

[11] J.-H. Chen and S.-Y. Ho, "A Novel Approach to Production Planning of
Flexible Manufacturing Systems Using an Efficient Multi-Objective
Genetic Algorithm," International Journal of Machine Tools and
Manufacture, vol. 45, no. 7–8, pp. 949-957, 2005.

[12] R. Swarnkar and M.K. Tiwari, "Modeling Machine Loading Problem of
Fmss and Its Solution Methodology Using a Hybrid Tabu Search and
Simulated Annealing-Based Heuristic Approach," Robotics and
Computer-Integrated Manufacturing, vol. 20, no. 3, pp. 199-209, 2004.

[13] A.K. Choudhary, M.K. Tiwari, and J.A. Harding, "Part Selection and
Operation-Machine Assignment in a Flexible Manufacturing System
Environment: A Genetic Algorithm with Chromosome Differentiation-
Based Methodology," Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, vol. 220, no. 5,
pp. 677-694, 2006.

[14] S. Biswas and S. Mahapatra, "Modified Particle Swarm Optimization for
Solving Machine-Loading Problems in Flexible Manufacturing
Systems," The International Journal of Advanced Manufacturing
Technology, vol. 39, no. 9, pp. 931-942, 2008.

[15] S.G. Ponnambalam and L.S. Kiat, "Solving Machine Loading Problem
in Flexible Manufacturing Systems Using Particle Swarm

Optimization," World Academy of Science, Engineering and
Technology, vol. 39, 2008.

[16] A. Prakash, N. Khilwani, M.K. Tiwari, and Y. Cohen, "Modified
Immune Algorithm for Job Selection and Operation Allocation Problem
in Flexible Manufacturing Systems," Adv. Eng. Softw., vol. 39, no. 3, pp.
219-232, 2008.

[17] M.T. Tabucanon, D.N. Batanov, and S. Basu, "Using Simulation to
Evaluate the Batching Approach to Part Type Selection in Flexible
Manufacturing Systems," Integrated Manufacturing Systems, vol. 9, no.
1, pp. 5-14, 1998.

[18] H.-W. Kim, J.-M. Yu, J.-S. Kim, H.-H. Doh, D.-H. Lee, and S.-H. Nam,
"Loading Algorithms for Flexible Manufacturing Systems with Partially
Grouped Unrelated Machines and Additional Tooling Constraints," The
International Journal of Advanced Manufacturing Technology, vol. 58,
no. 5, pp. 683-691, 2012.

[19] K. Seok Shin, J.O. Park, and Y. Keun Kim, "Multi-Objective Fms
Process Planning with Various Flexibilities Using a Symbiotic
Evolutionary Algorithm," Computers and Operations Research, vol. 38,
no. 3, pp. 702-712, 2011.

[20] M.K. Tiwari, S. Kumar Jha, and R. Bardhan Anand, "Operation
Allocation and Part Type Selection in E-Manufacturing: An Auction
Based Heuristic Supported by Agent Technology," Robotics and
Computer-Integrated Manufacturing, vol. 26, no. 4, pp. 312-324, 2010.

[21] M.K. Tiwari, S. Kumar, S. Kumar, Prakash, and R. Shankar, "Solving
Part-Type Selection and Operation Allocation Problems in an Fms: An
Approach Using Constraints-Based Fast Simulated Annealing
Algorithm," IEEE Transaction on Systems, Man, and Cybernetics—Part
A: Systems and Humans, vol. 36, no. 6, pp. 1170-1184, 2006.

[22] W. Shen, "Genetic Algorithms in Agent-Based Manufacturing
Scheduling Systems," Integr. Comput.-Aided Eng., vol. 9, no. 3, pp. 207-
217, 2002.

[23] M. Tiwari, J. Saha, and S. Mukhopadhyay, "Heuristic Solution
Approaches for Combined-Job Sequencing and Machine Loading
Problem in Flexible Manufacturing Systems," The International Journal
of Advanced Manufacturing Technology, vol. 31, no. 7, pp. 716-730,
2007.

[24] M. Gen and R. Cheng, Genetic Algorithms and Engineering
Optimization, New York: John Wiley & Sons, Inc., 2000.

[25] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms,
Berlin Heidelberg: Springer, 2006.

[26] M. Lozano and F. Herrera, "Fuzzy Adaptive Genetic Algorithms:
Design, Taxonomy," Soft Computing, vol. 7, pp. 545–562, 2003.

[27] W.F. Mahmudy, R.M. Marian, and L.H.S. Luong. "Solving Part Type
Selection and Loading Problem in Flexible Manufacturing System Using
Real Coded Genetic Algorithms – Part I: Modeling," in International
Conference on Control, Automation and Robotics. Singapore: World
Academy of Science, Engineering and Technology. 773-779, 2012.

[28] W.F. Mahmudy, R.M. Marian, and L.H.S. Luong. "Solving Part Type
Selection and Loading Problem in Flexible Manufacturing System Using
Real Coded Genetic Algorithms – Part Ii: Optimization," in
International Conference on Control, Automation and Robotics.
Singapore: World Academy of Science, Engineering and Technology.
778-782, 2012.

[29] M. Yogeswaran, S.G. Ponnambalam, and M.K. Tiwari, "An Efficient
Hybrid Evolutionary Heuristic Using Genetic Algorithm and Simulated
Annealing Algorithm to Solve Machine Loading Problem in Fms,"
International Journal of Production Research, vol. 47, no. 19, pp. 5421-
5448, 2009.

[30] M. Denizell and S. Sayin, "Part-Types Selection in Flexible
Manufacturings Systems: A Bicriteria Approach with Due Dates,"
Journal of the Operational Research Society, vol. 49, pp. 659-669, 1998.

[31] D. Pacciarelli. "Loading Parts and Tools in a Flexible Manufacturing
System," in Proceedings of the 6th IEEE Mediterranean Conference on
Control and Systems. Alghero, Italy, 1998.

[32] S.K. Mukhopadhyay, S. Midha, and V.M. Krishna, "A Heuristic
Procedure for Loading Problems in Flexible Manufacturing Systems,"
International Journal of Production Research, vol. 30, no. 9, pp. 2213,
1992.

[33] M. Liang, "Integrating Machining Speed, Part Selection and Machine
Loading Decisions in Flexible Manufacturing Systems," Computers &
Industrial Engineering, vol. 26, no. 3, pp. 599-608, 1994.

[34] M. Gen and R. Cheng, Genetic Algorithms and Engineering Design,
New York: John Wiley & Sons, Inc., 1997.

[35] R.M. Marian, L.H.S. Luong, and K. Abhary, "A Genetic Algorithm for
the Optimisation of Assembly Sequences," Comput. Ind. Eng., vol. 50,

International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:4, 2013

684

no. 4, pp. 503-527, 2006.
[36] F. Herrera, M. Lozano, and J.L. Verdegay, "Tackling Real-Coded

Genetic Algorithms: Operators and Tools for Behavioural Analysis,"
Artificial Intelligence Review, vol. 12, pp. 265–319, 1998.

[37] R.M. Marian, L. Luong, and S.D. Dao, "Hybrid Genetic Algorithm
Optimisation of Distribution Networks—a Comparative Study," in
Intelligent Control and Innovative Computing, S.I. Ao, O. Castillo, and
X. Huang, Eds., Springer US. p. 109-122, 2012.

[38] N.J. Radcliffe, "Equivalence Class Analysis of Genetic Algorithms,"
Complex Systems, vol. 5, no. 2, pp. 183–205, 1991.

[39] H. M¨uhlenbein and D. Schlierkamp-Voosen, "Predictive Models for the
Breeder Genetic Algorithm; Continuous Parameter Optimization,"
Evolutionary Computation vol. 1, pp. 25–49, 1993.

[40] R.M. Marian, L.H.S. Luong, and R. Akararungruangkul, "Optimisation
of Distribution Networks Using Genetic Algorithms. Part 2: The Genetic
Algorithm and Genetic Operators," International Journal of
Manufacturing Technology and Management, vol. 15, no. 1, pp. 84-101,
2008.

