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Derived from Bis-1, 2, 4 Triazoles as Anti-Tumor
Agents

Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract—In this paper we report the quantitative structure
activity relationship of novel bis-triazole derivatives for predicting
the activity profile. The full model encompassed a dataset of 46 Bis-
triazoles. Tripos Sybyl X 2.0 program was used to conduct COMSIA
QSAR modeling. The Partial Least-Squares (PLS) analysis method
was used to conduct statistical analysis and to derive a QSAR model
based on the field values of CoMSIA descriptor. The compounds
were divided into test and training set. The compounds were
evaluated by various COMSIA parameters to predict the best QSAR
model. An optimum numbers of components were first determined
separately by cross-validation regression for COMSIA model, which
were then applied in the final analysis. A series of parameters were
used for the study and the best fit model was obtained using donor,
partition coefficient and steric parameters. The CoMSIA models
demonstrated good statistical results with regression coefficient (r?)
and the cross-validated coefficient (g?) of 0.575 and 0.830
respectively. The standard error for the predicted model was 0.16322.
In the CoMSIA model, the steric descriptors make a marginally
larger contribution than the electrostatic descriptors. The finding that
the steric descriptor is the largest contributor for the COMSIA QSAR
models is consistent with the observation that more than half of the
binding site area is occupied by steric regions.
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I. INTRODUCTION

ANCER, the uncontrolled, rapid and pathological

proliferation of abnormal cells, is one of the most
formidable afflictions in the world [1]. Cancer continues to be
a worldwide Killer, despite the enormous amount of research
and rapid developments during the past decade. According to
research statistics [2], cancer accounts for about 23% of the
total deaths in the USA and is the second most common cause
of death after heart disease. Therefore, there is an increasing
need for new therapies, especially of cancer biology as well as
those taking advantage of the cancer cell phenotype, described
by Hanahan and Weinberg [3].

Over the last few years the increasing number of neoplastic
diseases together with the accompanied high mortality rates
has stimulated an unparalleled level of research directed
towards the development of new lead molecules that might be
of use in designing novel anti-neoplastic agents.
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Triazoles are known to have a large spectrum of potential
anticancer, antimitotic and antifungal properties [4]. With an
improved understanding of the genes and pathways
responsible for cancer initiation and progression, cancer drug
development has undergone a paradigm change in the recent
years, from predominantly cytotoxic agent based therapy to
therapy aimed at molecular and genetic targets. The
derivatives of 1, 2, 4 triazoles have high potential for
biological activity. The following 1, 2, 4 triazoles derivatives
are used in medicine: alprazolam (tranquiliser), estazolam
(hypnotic), benatradin  (diuretic) and trazodon (anti-
depressant). The derivatives of 1, 2, 4 triazole possess a wide
range of anti-microbial and anti-tumor properties. Recently,
the compounds containing 1, 2, 4 triazoles were discovered as
a novel class of potent tubulin polymerization inhibitors.

Quantitative structure—activity relationships (QSAR), an
important area of chemoinformatics have been widely utilized
to study the relationship between chemical structures and
biological or other functional activities. QSAR has become
increasingly helpful in understanding many aspects of
chemical-biological interactions in drug and pesticide
research as well as in many other areas [5]. The Schematic
representation of the QSAR model is shown in Fig. 1.

Fig. 1 Schematic Representation of 3D-QSAR model building and
validation

Il.MATERIALS AND METHODS

A. Data Set

The dataset of MIC related to antitumor activity was
collected from our earlier work, structures are shown in Table
I [6], [7] and converted into pICs, for convenience. COMSIA
(comparative molecular similarity index analysis) studies were
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carried out using SYBYL X 2.1 (CERTARA, Portugal).

The generation of consistent statistical models depends on
the proper selection of both training and test sets in terms of
structural diversity and property values distribution. From the
data 80% compounds were selected as members of the training
set for model construction, and the other 20% compounds as
members of the test set for external model validation. The
compounds of the training and test sets were selected by based
unity finger prints and dissimilarity, which is available in
sybyl X.2.1. A graphical representation confirmed that the
composition of both training and test sets is representative of
the whole data set.

B. Molecular Alignment

Since the results of 3D-QSAR studies are sensitive to
alignment of molecules, therefore, the alignment of 3D
structures plays a vital role during CoMSIA analysis [8]. The
lowest energy conformer of the most active molecule in the
data set (4b) was chosen as template structure for the data set
molecular alignment (Fig. 2). The molecules in their
respective lowest energy conformations were superimposed on
the template using the rigid-body fit option in SYBYL-X 2.1.

Fig. 2 3D-QSAR structure alignment and superposition of 46
compounds using compound 4b as the template

CoMSIA is a technique in which similarity indices are
calculated at different points on a regularly spaced grid for
pre-aligned molecules. In this approach, five different
similarity fields are calculated: Steric, Electrostatic,
Hydrophobic, Hydrogen bond Donor and Hydrogen bond
Acceptor. These fields are selected to cover the major
contributions to ligand binding. In CoMSIA fields,
singularities were avoided at atomic positions because a
Gaussian type distance dependence of each physicochemical
property was adopted and thus no arbitrary cutoffs were
necessary. The attenuation factor was set to the default value
of 0.3. Cross-validated regression coefficient (q%) values were
calculated by using partial least-squares (PLS) methodology
[11]-[13]. Leave-one-out (LOO) cross-validation was used to
obtain optimum number of components (ONC). The final non-
cross-validated model was developed with ONC to vyield
conventional regression coefficient (r?) value, statistical
significance value (F) and standard error of estimate (SEE).

C.Partial Least Square (PLS) Analysis and Validations
The standard CoMFA procedure, as implemented in

SYBYLX.2.1, was performed. A 3D cubic lattice with a grid
spacing of 2 A was created automatically in all X, Y and Z
directions by the program to encompass all the aligned
ligands. A default sp® C probe atom with a Van-Der Waals
radius of 1.52 A and a charge of p1.0 was used to generate
steric field energies and Electrostatic (Coulombic potential)
fields with a distance dependent dielectric at each lattice point.
The computed field energies were truncated to 30 kcal/ mol
for both Steric and electrostatic fields. COMSIA is a technique
in which similarity indices are calculated at different points on
a regularly spaced grid for pre-aligned molecules. In this
approach, five different similarity fields are calculated: Steric,
Electrostatic, Hydrophobic, Hydrogen bond Donor and
Hydrogen bond Acceptor. These fields are selected to cover
the major contributions to ligand binding. In CoMSIA fields,
singularities were avoided at atomic positions because a
Gaussian type distance dependence of each physicochemical
property was adopted and thus no arbitrary cutoffs were
necessary. The attenuation factor was set to the default value
of 0.3. Cross-validated regression coefficient (q°) values were
calculated by using partial least-squares (PLS) methodology
[9]-[11]. Leave-one-out (LOO) cross-validation was used to
obtain optimum number of components (ONC). The final non-
cross-validated model was developed with ONC to vyield
conventional regression coefficient (°) value, F value, and S
value (standard error of estimate).

D (Yo — Yi)?
g3 =1-——— (1)
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where Y,eq = predicted value, Yq, = experimental value,
Y mean = average value and N = number of objects (molecules)

D.CoMSIA Statistical Results

For the CoMSIA model, some possible combinations of
different fields were performed to determine the best COMSIA
model. The highest cross-validated g° was obtained by using
the combination of steric, H-bond donor and ClogP fields (q*-
0.575, r%-0.830, SEE-0.163) with six components. The
corresponding field contributions are 81.1%, 12.1%, and
6.9%, respectively. Residual values (the difference between
predicted and actual values) were shown in Table II. The
relationship between the predicted and the experimental plCs,
values for the CoMSIA model is depicted in Fig. 3. From the
cross-validation results, it can be seen that the CoMSIA model
has a good predictive ability, suggesting that a reliable
CoMSIA model is successfully constructed.
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Fig. 3 Calculated pMIC Vs. experimental pMIC values for the 36
training set molecules obtained by PLS analysis using COMSIA

TABLEI
MOLECULAR STRUCTURES TAKEN FOR THE STUDY
Cpd ID COMPOUND R Ry
la Phenyl -
1b p- tolyl -
R
lc SH m-tolyl -
1d N N<N ( N%s\/ﬁ%\ p-ethoxy ;lhenyl -
- \
le BL’?/\S% | N~N o Cyclohexyl -
1f hy N n-butyl -
1g R @ p-methoxy phenyl -
5 T
2b HE S p-tolyl -
2c T NN s NN p-methoxy phenyl -
NIV 7S
N N VQS )\'T'H
Q :
3a R a T 4-pyridyl
3b o [ -H 2-thienyl
3c — > Ny N -H 3-indolyl
3d N-NH 5= ) /*SLHQN’N& -3-CHj 4-pyridyl
3e — o] -3-CH3 2-thienyl
3f / 3CH, 3-indol
) y
R ....... — —
4da R N /R Phenyl
4b AN N p-tolyl 0
4c s | | )—s m-tolyl N
N NN R y _
4d d 1 p-ethoxy phenyl HyC CH,
4e Cyclohexyl
4f n-butyl
= = T e
- \
5h S %N ‘N NG R p-tolyl H}C% JCH3
5 / ‘ />*S 0
C 4 r‘\| Ny m-tolyl
5d R p-ethoxy phenyl
5e Cyclohexyl
5f n-butyl
6a R Phenyl 0
6b Ri Ny N p-tolyl H,C
5 - h
6c 4<NJ\///\I\[N/>7 \ m-tolyl /" HN-NH,
6d & Ry p-ethoxy phenyl
6e Cyclohexyl
6f n-butyl
Ta R N Ff Phenyl /N%
7b B — MN p-tolyl | —sH
S |
7c N r\LN% S\R m-tolyl \C)\ 0
7d R ' p-ethoxy phenyl H,
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Te Cyclohexyl
7f n-butyl
& . ey e
8b R%S{/N\{“ N p-tolyl A 0
8c Nw %S\ m-tolyl N%
d N R; \N/
8d p-ethoxy phenyl HC
8e Cyclohexyl
8f n-butyl
TABLEII I1l. DISCUSSION
EXPERIMENTAL, PREDICTED AND RESIDUAL VALUES OF THE COMSIA MODEL ) )
Cpd ID ICs DICs CoMSIA Residual To view the field effect on the target property, CoMSIA
Training Set contour maps were generated for the best predictive models.
1b 53.37 4.0727 45469 0.2742 The contour maps can indicate the important regions in 3D
7e 69.94 4.1553 4.1049 -0.0504 space around the molecules where any change in the steric
1d 14.73 4.8318 47476 -0.0842 field may affect the biological activity. The field energies of
7f 52.3 4.2815 4.0831 -0.1984 all fields were calculated with the weight of “stdev*coeff” (the
le 40.25 4.3952 4.3283 -0.0669 standard deviation and the coefficient). The contour maps
8a 35.25 44528 4.6346 0.1818 obtained from the CoMSIA are illustrated together with
if 25.19 4.5988 45192 -0.0796 template ligand 4b. The steric contour map of COMSIA model
1g 15.09 4.8213 4.5964 -0.2249 is displayed in Fig. 4. The green (sterically favorable) and
g 9.23 50348 4.7468 -0.288 yellow (sterically unfavorable) contours represent 80% and
22 61.26 4.2128 4.242 0.0292 20% contributions. The green contours characterized by tolyl
22 4‘27; 22222 i'zﬁgz _%0162?;86 groups are favorable for bulky steric modifications where as
: ‘ : : diethyl carbamoyl groups are unfavorable for the steric
8e 63.37 4.1981 4.2506 0.0525 A
2c 88.36 4.0537 4.0998 0.0461 modifications.
3a 51.81 4.2856 4.2456 -0.04
3b 23.88 4.622 4.4888 -0.1332
3d 56.19 4.2503 4.3577 0.1074
3e 45.81 4.339 4.601 0.262
3f 15.37 4.8133 4.8157 0.0024
4a 19.31 4.7142 47572 0.043
4b 3.23 5.4908 5.149 -0.3418
4c 15.25 4.8167 4.8694 0.0527
de 51.81 4.2856 4.4219 0.1363
4f 63.06 4.2002 4.4418 0.2416
5a 34.47 4.4626 4.4703 0.0077
5b 9.13 5.0395 4.862 -0.1775 Fig. 4 CoMSIA contour maps of compound 4b Steric contours:
5¢c 23.27 46332 45824 -0.0508 Green contours indicate regions where steric interaction is favored.
5d 9.3 5.0315 5.2246 0.1931 Yellow contours are areas where the steric interactions unfavored
5f 61.5 42111 4.1548 -0.0563
6a 63.16 4.1996 42216 0.022 IV. CONCLUSION
6 36.94 4.4325 4.6133 0.1808 The 3D QSAR study was carried out for a library of 46
6c 39.15 4.4073 4.3337 -0.0736 . - - ST
6d 9013 5 0395 49750 0.0636 molegule_s comprising of bis- 1, 2, 4 tr_lazole_.\s with different
6e 69.33 41501 40909 -0.0682 substitutions such as carbethoxy, hydrazine, diethyl carbamoyl
7a 49.01 43018 4.3985 0.0967 etc. ) )
1a 45.95 43444 44732 0.1288 CoMSIA (g*-0.575, r*-0.830, S-0.163) models gave good
Test Set statistical results in terms of g? and r® values when studied
7d 63.06 4.2002 51528 0.9526 along with donor, partition coefficient and steric parameters,
1c 49.23 4.3078 4.4528 0.145 and provided significant insights that could be used in further
8b 5.09 5.2933 5.0264 -0.2669 design of novel, potent and selective antitumor agents. Studies
8f 58.86 4.2302 4.3192 0.089 on the mechanism of action of these compounds are in
3c 23.27 4.6332 4.7036 0.0704 progress and will be reported in the future.
4d 51.87 4.2851 5.5115 1.2264
5e 51.87 4.2851 4.2091 -0.076 ACKNOWLEDGMENTS
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