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Abstract—The newest semiconductor devices on the market are 

MOSFET transistors based on the silicon carbide – SiC. This material 
has exclusive features thanks to which it becomes a better switch than 
Si – silicon semiconductor switch. There are some special features 
that need to be understood to enable the device’s use to its full 
potential. The advantages and differences of SiC MOSFETs in 
comparison with Si IGBT transistors have been described in first part 
of this article. Second part describes driver for SiC MOSFET 
transistor and last part of article represents SiC MOSFET in the 
application of buck converter (step-down) and design of simple RC 
snubber.  
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I. INTRODUCTION 
IC material for semiconductor devices manufacturing has 
been known since the 1930s. The starting disadvantage of 

this material was quality (initially limited to material stability 
and pollution), size and cost. These disadvantageous 
properties were substantially improved over just the several 
years and a rival for silicon semiconductors devices was 
created [1]. 

II.  MAIN FEATURES OF SIC 
SiC material has the following key features that make it a 

superior semiconductor material in comparison with previous 
Si materials: 
• The thermal conductivity in SiC is higher than in GaAs 

and more than three times higher than the conductivity of 
Si. At room temperature 4H SiC has a higher thermal 
conductivity than copper. 

• This semiconductor material operates in an extreme 
junction temperature up to 800°C (theoretically) but 
experimental results were obtained at temperatures up to 
600°C, verifying the dependence between temperature 
and motion minority carrier. Results are better for SiC 
than for its counterparts. Nowadays, the manufacturer 
faces a problem with case for these high temperature 
devices. 

• The bandgap is defined as energy difference between 
valence and conduction band in a material. The width of 
this band depends on the motion of minority carrier, 
respectively on thermal generation of current flow. This 
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current leakage is very low in comparison with silicon 
material. 

• The higher breakdown field of SiC is almost nine times 
thinner than the breakdown field of silicon. 

SiC diode technology has been in the market for more than 
one decade, and many switches have recently become 
available to enable “all-SiC” circuit solutions. SiC diode and 
transistor production on voltage type 600 V, 1200 V and 1700 
V and current rates up to 100 A [1]. 

III. COMPARISON SIC MOSFET AND SI IGBT TRANSISTOR 
The static and dynamic properties of SiC MOSFET 

transistor and Si IGBT transistor were compared in the sample 
with the same voltage and current levels. The comparison of 
SiC MOSFET (type CMF20120D - Fig. 1) to Si IGBT was 
chosen due to large popularity and frequency of IGBT 
transistor usage in power electronics solution and for new 
information on the properties of SiC semiconductor 
technology [1]. 
 

 
Fig. 1 SiC MOSFET transistor Cree CMF20120D in the general case 

TO-247 and schematic symbol 

A. The Comparison of Static and Dynamic Characteristics 
of SiC MOSFET and Si IGBT 

By the experimental measurements on SiC MOSFET 
transistor CMF20120D and Si IGBT transistor 
IRG4PH40UPbF the static and dynamic characteristics were 
obtained. Measurement was performed on the experimental 
stand for the measuring characteristics of transistors. Power 
transistors were mounted on an active air heat sink. Driver 
circuits of transistors have been placed in their immediate 
vicinity on the one PCB (Printed Circuit Board).  

The results of static measurements of both transistors are 
shown on Fig. 2. The waveforms for the MOSFET and IGBT 
can occur in the typical form of curves, also a higher voltage 
drop VCE is possible on IGBT. For better illustration and 
comparability both axes are placed in the same scale [1]. 
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• The gate voltage swing is almost 30 Vpp (+24 V to -
5.5 V). The recommended on state VGS is more than +20 
V and the off state VGS is between -2 V to -5 V. 

• The SiC MOSFET transistor needs to be driven with a 
higher gate voltage swing. 

• The gate voltage must have a fast dV/dt to achieve fast 
switching times which indicates that a very low 
impedance driver is necessary [1]. 

A.  The Realization of SiC Driver 
According to the requirements mentioned above, the driver 

was assembled in accordance with the recommendation of 
Cree, Inc. The driver is supplied by a single voltage +12 V DC 
which feeds two DC/DC converters. The first converter is for 
the positive polarity to the gate electrode and the second for 
the negative one. Input control signal is galvanically separated 
by fast optocoupler ACPL-4800-300E. The output signal from 
the optocoupler is amplified for high-speed gate driver 
IXDN609 (maximum output current 9 A, rise and fall times of 
less than 25 ns). For the experimental measurement of the 
SiC MOSFET transistor CMF20120D the single channel 
driver was realized (Fig. 7) on the two layers PCB with 
dimension 33 x 42 mm [2], [3]. 
 

 
Fig. 7 Realized SiC MOSFET driver with test points 

B. The Comparison of SiC and Si Driver 
The differences between Si and SiC drivers are obvious 

from the previous paragraphs. The basic difference is based on 
switch-on and switch-off voltage level, which is higher in the 
case of the SiC driver. Similarly, the slope of voltage VG is 
higher. The SiC and Si transistor driver features were 
compared by experimental measurements and by data from 
datasheets. The SiC MOSFET driver was built with high-
speed gate driver IXDN609, Si IGBT transistor was driven by 
SKHI22AH4 by Semikron. The comparison of basic 
properties of both drivers is displayed in Table II. 

 
 
 
 
 

 

TABLE II 
MAIN FEATURE SIC AND SI DRIVERS 

Symbol Conditions 

SiC 
MOSFET 

driver 
IXDN609 

Si IGBT 
driver 

SKHI22A 
Semikron 

VS Supply voltage primary side 12 V 15 V 

IS0 
Supply current primary side 
(no load) 50 mA 80 mA 

ISM Supply current primary side 
(max.) 350 mA 290 mA 

Vi Input signal voltage on/off 10 – 12V / 0V 15 V/ 0 V 
Rin Input resistance 1.2 MΩ 10 kΩ 
VG(on) Turn on gate voltage output +25 V +15 V 
VG(off) Turn off gate voltage output -5 V -7 V 

RGE Internal gate-emitter 
resistance 47 kΩ 22 kΩ 

td(on)IO Input-output turn-on 
propagation time 160 ns 1.4 µs 

td(off)IO Input-output turn-off 
propagation time 180 ns 1.8 µs 

td(err) 
Error input-output 
propagation time 

Not 
supported 0.6 µs 

tpERR Error reset time Not 
supported 9 µs 

VCEsat 
Reference voltage for VCE 
monitoring 

Not 
supported 5 V 

fSW Switching frequency 1 MHz 20 kHz 

 
The comparison of the parameters of both drivers (Table II) 

shows major differences in the values of output voltage levels 
VG, the length of delay of input-output signals, where SiC 
driver has more than six times smaller delays. The 
disadvantage of SiC transistor driver is the absence of over 
current or short-circuit protection of switching transistor. 

V. APPLICATION OF SIC MOSFET - BUCK CONVERTER 
Before the experimental measurement of SiC transistor a 

simulation scheme was created. The simulation model of the 
SiC MOSFET transistor and the SiC SBD diode was obtained 
on request from the manufacturer Cree, Inc. The simulation 
scheme of buck converter was created in LTspice program, 
which is freely available on the company website of Linear 
Technology [4]. The simulation scheme presents principal 
function of buck converter and function of RC snubber circuit 
(in Fig. 8 labeled as C1 and R1). 

 

 
Fig. 8 The simulation scheme of buck converter with RC snubber 

circuit 
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