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Abstract—The controller is used to improve the dynamic 

performance of DC-DC converter by achieving a robust output 
voltage against load disturbances. This paper presents the 
performance of PI and Fuzzy controller for a phase- shifted zero-
voltage switched full-bridge PWM (ZVS FB- PWM) converters with 
a closed loop control. The proposed converter is regulated with 
minimum overshoot and good stability. In this paper phase-shift 
control method is used as an effective tool to reduce switching losses 
and duty cycle losses. A 1kW/100KHz dc/dc converter is simulated 
and analyzed using MATLAB. The circuit is simulated for static and 
dynamic load (DC motor). It has been observed that performance of 
converter with fuzzy controller is better than that of PI controller. An 
efficiency comparison of the converter with a reported topology has 
also been carried out.  
 

Keywords—Full-bridge converter, phase-shifted, synchronous 
rectifier (SR), zero-voltage switching (ZVS). 

I. INTRODUCTION 
C-DC conversion technology has been developing very 
rapidly, and DC-DC converters have been widely used in 

industrial applications such as dc motor drives, computer 
systems and communication equipments. The output voltage 
of pulse width modulation (PWM) based DC-DC converters 
can be controlled by changing the duty cycle. In general, to 
minimize the size and weight of pulse width modulated 
(PWM) converters, it is required that the switching frequency 
must be increased. However, increasing the switching 
frequency leads to substantial switching losses, which causes 
deterioration in system efficiency. Therefore, the switching 
losses should be reduced in the case of high switching 
frequency operation. Various types of resonant converters 
have been reported to decrease the switching losses during the 
transient states [1]-[6]. Recently, numerous soft switching 
techniques for the switching power converters have been 
proposed [7]-[12]. These techniques reduce the switching 
losses, thus enabling high frequency operation and also reduce 
the overall system size. The features of soft switching 
converters are: 
• The resonant network can be composed either of only 

passive elements and/or it can also have additional 
auxiliary diode(s) and/or switch (es).  

• A high-frequency resonant network is added to the 
conventional hard-switching PWM dc/dc converters. 
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• The soft switching PWM converter is the combination of 
converter topologies and switching strategies that result in 
zero–voltage and/or zero–current switching  

• These soft-switched converters have switching waveforms 
similar to those of conventional PWM converters except 
that the rising and falling edges of the waveforms are 
‘smoothed’ and no transient spikes exist.  

• The resonant network is activated only during the 
switching transition intervals so as to create zero voltage 
switching (ZVS) and zero current switching (ZCS) 
conditions.  

Soft-switching conditions are: 
• Resonance circulating energy be as minimum as possible, 
• It is completely decoupled from the main power transfer 

to the load,  
• It should be enough to create the soft-switching 

conditions, irrespective of the variations in the load,  
and  

• When switching transition is completed, the converter 
should revert back to the familiar PWM mode of 
operation, so that the circulatory energy can be 
minimized.  

Among many new techniques [13-16] proposed for high 
frequency power conversion to reduce the switching loss in 
traditional PWM converters, the phase- shifted zero-voltage 
full-bridge pulse width modulation (ZVS FB- PWM) 
converters are most desirable since they reduce switching loss 
considerably without the penalty of a significant increase in 
conduction loss [17]-[20]. Furthermore, the converter operates 
with a fixed frequency, enabling the design optimization of the 
circuit with little trouble. The FB ZVS phase-shift DC-DC 
converter is preferred due to its remarkable features as below:  
• It uses the resonance between the switch capacitor and 

transformer leakage inductor to achieve the zero-voltage 
switching (ZVS) of the primary switches without the 
additional resonant components in order to eliminate the 
switching losses. 

• Switches in one leg of the FB inverter conduct with a 
phase delay with respect to the switches in the other leg. 
The leg which conducts first is called leading leg and the 
phase-shifted (PS) leg is called the lagging leg.  

It combines the advantages of quasi-resonant converters in 
respect to the turn on switching losses, and also the advantages 
of classical PWM converters related to conduction losses and 
operating frequency. These benefits can be summarized as: 
ZVS for all the bridge transistors, Reduction of the conduction 
losses as compared with quasi-resonant converters, Reduction 
of the electromagnetic noise, Utilization of the device output 
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capacitance and transformer leakage inductance, Fixed-
frequency operation. 

However, there are some drawbacks as high circulating 
currents, loss of duty cycle, ZVS is lost for light loads i.e. 
narrow ZVS range and load-dependent dc characteristics, also, 
it undergoes various influences by ringing between the 
parasitic capacitor of rectifying diodes and the leakage 
inductance, which cause switching losses and switching noise. 

For power levels up to 3 kW, the full-bridge converters 
employ MOSFET switches and use Phase-Shift Modulation 
(PSM) to regulate the output voltage. In most of these 
converters, zero voltage switching (ZVS) is achieved by 
placing a snubber capacitor across each of the switches and 
either by inserting an inductor in series with the transformer or 
by inserting an inductor in parallel to the power transformer 
[21]-[22]. In a practical full-bridge configuration, the snubber 
capacitor may be the internal drain-to-source capacitor of the 
MOSFET, the series inductor may be the leakage inductor and 
the parallel inductor may be the magnetizing inductor of the 
power transformer [23]-[25]. This makes the power circuit of 
these converters very simple. 

This paper presents phase-shift control method as an 
effective tool to reduce switching losses and duty cycle losses. 
The PI controller and fuzzy controller are used to improve the 
performance of the soft switched full bridge converter. The 
phase shift of the secondary active rectifier is controlled by the 
controllers are designed under the worst case condition of 
maximum load and minimum line condition. As power 
electronic converters are nonlinear, and also are prone to 
variations in its operating states over a wide range, the 
controllers are to be designed to provide optimal performance 
as the operating point changes. Simulation of converter 
subjected to load changes is performed to demonstrate the 
effectiveness of the proposed controllers. In this paper the 
operation of full bridge phase-shifted converter and then state 
space analysis of the converter is discussed in Chapter II. The 
simulation of converter with PI and fuzzy controllers are 
performed in the MATLAB/ Simulink to analyze the 
performance at different loading condition (static and dc 
motor load). An efficiency comparison of the converter with a 
reported topology has also been carried out and is shown in 
Fig. 11. 

II.  ANALYSIS OF CONVERTER CIRCUIT AND ITS OPERATION 

A. Circuit Description 
The circuit consists of FB phase-shifted ZVS DC/DC 

converter and their switching waveforms are shown in Fig. 1. 
In this conventional full- bridge inverter circuit is connected to 
the primary of the transformer, and two active switches are 
connected in the secondary of the transformer forming a 
synchronous rectifier. These two active switches are phase-
shifted with the switches of inverter circuit i.e. the leg with 
two active switches at the output bridge is phase-shifted from 
the input bridge. ZVS for these switches can be achieved in 
the whole load range. Due to the influence of inductor Lk, the 
reverse recovery currents of diodes in the rectifier are reduced 

dramatically. The inclusion of secondary-side switching 
achieves load independent ZVS range by utilizing the energy 
stored in the isolation transformer’s magnetizing inductance. 
 

 
(a) 

 

 
(b) 

Fig. 1 (a) FB phase-shifted ZVS DC/DC converter and (b) its 
switching waveform 

 
This secondary-side switching concept is used to control the 

output bus voltage, resulting in a considerable simplification 
in the methods used to maintain control and isolation of the 
DC bus. Furthermore, the maximum reverse recovery voltage 
will not exceed the output voltage. Here φ, is the phase shift 
given to the control pulse of secondary side w.r.t primary 
switch, is the phase angle of voltage current waveform, Vp and 
ip are the high frequency A.C. voltage and current in the 
primary of the transformer respectively. 

B. Equivalent Circuits 
As stated previously, the circuit operation seen from the 

secondary side has three distinct modes when the converter is 
in continuous conduction mode (CCM) [27]. Specifically in 
these three modes, the output stage sees, respectively: (i) a 
negative input voltage when both Q1 and Q4 are on in the 
primary side, and DR2 and Q5 are conducting; (ii) voltage 
supplied by the filter capacitor when Q5 still turns on, the 
secondary side of the transformer is shorted through Q5 and 
DR1; and (iii) a positive input voltage across R0 in the rest of 
the switching cycle. 

Transformer turns ratio is assumed as unity for convenience 
in the discussion initially. The equivalent circuit for different 
modes is shown in Figs. 2 (a)-(c). 
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(a)            (b) 

 

 
(c) 

Fig. 2 Equivalent circuits in three different modes of each switching 
cycle (a) CCM Mode 1(t0–t1) (b) CCM Mode 2 (t1–t2) & DCM Mode 

1 (t1–t2) (c) CCM Mode 3 (t2–t3) & DCM Mode 2 (t2–t3) 
 
Here Vin is the dc input voltage, Vo & Ro is the output 

voltage and load respectively, Co is the filter capacitor, Lk is 
the transformer leakage inductance. 

C. State Space Equations 
State space equations are derived on the basis of the 

equivalent circuit for different modes. 

1. Mode I 
The period of this mode is β (t2–t1). In this mode, both Q1 

and Q4 are on in the primary side, and DR2 and Q5 are 
conducting in the secondary of the transformer. Hence, power 
is transferred to the load via DR2 and Q5. Then, the network 
equation for the circuit shown in Fig. 2 (a) will be: 
 

in
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k VV
dt
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Thus the state space equations for this mode are obtained as 

follows: 
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2. Mode 2 
The period of this mode is Φ – β. When ip reaches zero, DR2 

and DR1 commutate naturally, so that the soft commutation of 
the diodes is achieved. As Q5 still turns on, the secondary side 
of the transformer is shorted through Q5 and DR1, as shown in 
Fig. 2 (b), and the input voltage directly applied on inductor Lk 
and ip increases linearly. In this period, no power is transferred 
from input to the load. Thus, the state space equations for this 
mode are defined by:  
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3. Mode 3 
The period of this mode (as shown in Fig. 2 (c)) is π – Φ. At 

t2, Q5 turns off and Q6 turns on at ZVS condition. The input 
power is delivered to the output via inductor Lk. The state 
space equations for this mode can be expressed as:    
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Hence the AC model is obtained as: 
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On solving above equation, the overall transfer function is 

calculated as [27]: 
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III. PI CONTROLLER DESIGN  
In order to design a PI controller, the linearized model of 

the converter has to be determined. Small signal analysis of 
the PSFB has been made in section II and overall transfer 
function of the system is determined. The voltage controlled 
closed loop system is generated. In this, the output voltage is 
compared with the reference to generate the error signal and 
this signal is given to the PI controller [28], [29] to obtain the 
desired phase- shift for the secondary rectifier side active 
switches. These switches are given phase – shifted pulse to 
control the output voltage. The block diagram of PI controller 
is shown in Fig. 3. Output voltage is measured with the 
voltage sensor and compared with the reference in the 
comparator. This output of PI controller creates the desired 
shift in the control pulses given to the switches of inverter and 
that of rectifier switches.  

 

 
Fig. 3 Voltage controlled PI controller 
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For the linear controller design, the converter mathematical 
model must be evaluated. The design of the PI controller poles 
and zeros are based on the converter frequency response. The 
value of coefficients of PI Controller depends on the transfer 
function of the system. The initial values of proportional 
controller, kp and integral controller, ki are taken as 0.1 and 20 
and are finely tuned thereafter.  

IV. FUZZY LOGIC CONTROLLER DESIGN 
PI controller is simple to implement and easy to design, but 

its performance generally depend on the working point, so that 
the presence of parasitic elements, time-varying loads and 
variable supply voltages can make selection of the control 
parameters difficult, which ensure a proper behavior in any 
operating conditions. Achieving large-signal stability often 
calls for a reduction of the useful bandwidth, so affecting 
converter performance. Fuzzy control is applied to control dc–
dc converters because of its simplicity, ease of design and ease 
of implementation. Fuzzy controllers are well suited to 
nonlinear time-variant systems and do not need an exact 
mathematical model for the system being controlled. The 
fuzzy logic controller determines the operating condition from 
the measured values and selects the appropriate control actions 
using the rule base created from the expert knowledge. 

Other advantages of FLC are: 1) It can work with less 
precise inputs; 2) it doesn’t need fast processors; 3) it needs 
less data storage in the form of membership functions and 
rules than conventional look up table for nonlinear controllers; 
and 4) it is more robust than other nonlinear controllers.  

The fuzzy controller provides a signal proportional to the 
converter duty-cycle, which is then applied to a standard 
PWM modulator. The control will work based on two input 
sets: the output voltage error (e(k) = Vref - Vdc (k)) and the 
change in error variations (de(k) = e(k) - e(k-l)) which are 
sampled every Tsv= 5µs. The k is the actual sampling 
sequence. The basic control structure is shown in Fig. 4.  

 

 
Fig. 4 Internal structure of FLC and closed-loop control of Converter 

The FLC has three functional blocks for calculation and two 
databases. The functional blocks in FLC are: 1) fuzzifier; 2) 
rule evaluator; and 3) defuzzifier. The two databases are Rule 
base and Database. Fuzzy logic uses linguistic variables 
instead of numerical variables. The process of converting a 
numerical variable (real number) into a linguistic variable 
(fuzzy number) is called fuzzification. The membership 
function for error, change in error and output is shown in Fig. 
5. 

 

 

 

 
Fig. 5 Membership function plot for error, change in error and output 

 
For a given crisp input, fuzzifier finds the degree of 

membership in every linguistic variable. Since, there are only 
two overlapping memberships in this specific case, all 
linguistic variables except two will have zero membership. In 
FLC, the equivalent term is rules and they are linguistic in 
nature. A fuzzy logic controller so designed is used to control 
the converter by sending the desired control signal to the 
PWM signal generator. 

V. RESULTS AND DISCUSSION 
The simulation of the 500 Watt, 100/50 Volt, 100 kHz full 

bridge phase- shifted DC/DC converter circuit is carried out in 
MATLAB/ SIMULINK. The values for different circuit 
parameters are as below: 

Input voltage: 100 Volt 
Output voltage: 50 Volt 
Filter capacitor: 1000 µF 
Load          :  a)    Static load         : R-L type load, 
                        b)    Dynamic load    : DC motor 
In this converter circuit MOSFET Q5 and Q6 are given 

phase shift. This angle is decided by closed – loop control 
scheme as shown in Fig. 3. The Phase –shifted gate pulses of 
100 kHz are produced by comparing saw-tooth waveform with 
the PI controller output. Control pulses given to various 
switches are shown in Fig. 6.  
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also measured and improvement in efficiency is found. The 
average efficiency obtained is approx. 95.6%. 
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