
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

543

 

 

  

Abstract—Mobile application development is different from 

regular application development due to the hardware resource 

limitations existed in the mobile platforms. In the mobile 

environment, the application needs to be optimized by the developer 

to produce optimal software with least overhead. This study 

discussed about performance optimization techniques that are 

employed in general application development, and how such 

techniques are performing on mobile platforms through some 

empirical evaluations on a mobile emulator, Nokia X3-02 and Nokia 

C5-03devices. The scope of the work is only confined to mobile 

platform based on Java Mobile edition architecture. The empirical 

results showed that techniques such as loop unrolling, dependency 

chain, and linearized getter and setter performed better by a factor of 

3 to 7. Whereas declaration and initialization on the same line or 

separate line did not improve the performance.  

 

Keywords—Optimization Techniques, Mobile Applications, 

Performance Evaluation, J2ME, Empirical Experiments. 

I. INTRODUCTION 

OW-A-DAYS, the mobile content industry is developing 

at a fast pace that almost all people using some kind of 

mobile based applications in their daily life. Many mobile 

application developers see this as an opportunity and a 

challenge. High performing mobile applications are important 

to engage user experience and to maintain market share and 

revenue streams of a company [15]. There exist several 

performance enhancement techniques normally employed in 

application development. This research address the curiosity if 

such optimization techniques would result in any performance 

loss or gain in the mobile platform where the machine 

architecture is with less resources compared to personal 

computers or workstations. Besides that the study also would 

like to measure the performance accuracy shown by the 

standard emulator to represent actual devices. The study is 

important to guide mobile application developers to select 

appropriate performance optimization techniques when 

developing java based mobile applications. The effectiveness 

of the standard emulators in measuring performance close to 

the devices would help in deciding reliance on the emulators 

or actual devices when measuring implementation 

optimizations.  

This particular study is important in image processing 

applications on mobile devices. Several commonly used 

operations in mobile applications like array extraction, 

increment, sum, shift, multiply, divide, less or equal, less, and 

 
Nathar Shah and Bu Kiat Seng are with Faculty of Computing and 

Informatics, Multimedia University, Cyberjaya, 63100, Malaysia (e-mail: 

nathar.packier@mmu.edu.my). 

equal are measured for their performance on mobile devices, 

and it was found that the division operation was the slowest 

among all in J2ME based operations, followed by the 

relational operations [6]. The same observation was also 

noticed on native Symbian application [7]. With just-in-time 

compilation, it is 4 – 6 times faster compared to interpretation 

on Intel XScale Technology [8]. Further, applications running 

on optimized J2ME virtual machine when compared to native 

C based applications are also inferior by 1.7 times.  

Several object-oriented features used in J2ME were also 

investigated for performance optimization. Limiting the level 

of inheritance, minimizing the number of object creation, 

using alternative synchronization approaches (than lock 

based), eliminating inner classes, avoiding string 

concatenation, using shorter method/class names, and using 

lazy class loading are among the approaches that can lead to 

better performance [9], [10]. 

Focus has also been made to improve performance by 

tailoring virtual machine to specific target 

environment/profile, and deployment level optimization that 

targets application to specific environment besides the runtime 

optimization described earlier [11]. Virtual machines, when it 

is customized for a certain profile (e.g. Foundation profile of 

J2ME or JCL Xtr, a custom profile) produced reduced 

application startup-time and also less memory footprint when 

compared to generic virtual machines which can handle any 

profiles. The deployment level optimization also targets to 

reduce the delay when launching an application besides 

lowering the resource usage of the virtual machine when 

loading Java classes. It was found that JXE format was 

efficient to cut the start-up time of applications than the 

default JAR format by resolving classes, addresses, and 

methods before runtime that the level of processing required 

by the virtual machine during the runtime is substantially 

reduced. Other techniques available for code optimization are 

in-lining methods [12], call site devirtualization [14], and pre-

compiling classes/methods to native code using ahead of time 

compilation [13].  

The objective of this study was to investigate variety of 

other optimization techniques like loop unrolling, dependency 

chain, reference type declaration vs. reference type declaration 

and initialization, if statement vs. switch statement, and 

removing getters and setters for performance enhancements on 

mobile applications. The study then empirically examines 

them on actual phones (Nokia X3-02 and Nokia C5-03) and 

emulator to compare their performance on the same set of 

inputs. A discussion ends the study highlighting important 

results. 

Empirical Evaluation of Performance Optimization 

Techniques Used in Mobile Applications 
Nathar Shah, Bu Kiat Seng 

N



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

544

 

 

II. METHODS FOR PERFORMANCE OPTIMIZATIONS 

Performance optimization methods such as code rewriting, 

loop unrolling, “switch” statement instead of sequential “if” 

statements, and getter and setter elimination are used in our 

empirical experiments [1], [3].  

A. Reference Type Declaration vs. Reference Type 

Declaration and Initialization 

An object which is initialized at declaration saves 

computation time compared to separate assignment (Fig. 1). 

 

 

Fig. 1 Object initialized during declaration 

B. Loop Unrolling and Dependency Chain 

For small sized iterations, unrolling the loop statements will 

provide better low machine level efficiency. Therefore, it is 

better to remove loops (i.e. loop unrolling) and repeat the body 

of the loop several times. The other approach is using 

dependency chain [1]. Dependency chain is a method to 

perform the intended operation several times in one loop and 

increase the loop variable by the number of times the 

operation was performed (see Fig. 2 for an illustration).  

 

. 

Fig. 2 Example of dependency chain 

C. If Statement vs. Switch Statement 

A sequentially ordered switch statement is faster than if 

statement in most case. However, there wasn’t a big difference 

in the computation time if the cases are arranged randomly 

(not in sequence).  

D. Removing Getters and Setters 

Additional overhead in calling getter and setter methods can 

be avoided if the data members are accessed directly 

especially in interpreted platforms like Android, J2ME, and 

Blackberry. However, this method is risky as it will break 

encapsulation.  

III. EXPERIMENT METHODS AND ANALYSIS 

A. Experiment Design 

The experiment was designed in such a way that a given 

technique was compared on different complexities. This was 

to study the performance pattern under different complexities. 

The complexities are specified differently based on the 

technique under study. For example in a technique that 

compares reference type declaration with another that does 

reference type declaration and initialization, the complexity is 

defined in terms of number of declaration and initialization 

lines. In the study, there are 4 ranges of complexities under 

study: simple, moderate, complex, and very complex. In other 

words, each technique will be measured for performance 

gain/loss in an increasing order of complexity. The rationale in 

doing so is to investigate if at different complexities, the 

performance will be affected by alpha components like 

caching efficiency, or overheads.  

The experiment setup was to investigate the neutrality of 

the performance enhancement techniques when executed on 

different hardware platforms: Nokia X3-02 and Nokia C5-03. 

The experiment was also executed on a standard Java ME 

WTK emulator to compare the differences in the emulator 

profiling with actual hardware’s profiling. Nokia X3-02 has 

680 MHz speed processor, with 64 MB of RAM; Nokia C5-03 

is with 600MHz ARM 11 processor and 128MB of RAM. The 

experiments were repeated 3 times to obtain the mean time 

and standard deviation. The standard deviation measurement 

indicates the degree of error in the experiments. 

The experiments are driven to answer the following 

questions: Is an emulator a true representation of a device’s 

performance? Which kind of optimization technique results in 

better performance? And is the optimization performance 

similar across the same platform mobile phones? 

B.  Statistical Analysis 

1. Optimization Technique: Reference Type Declaration vs. 

Reference Type Declaration and Initialization 

This technique was tested by increasing the complexity of 

the lines of code gradually from just five (scale: simple) to 

forty (scale: complex) variable declarations and initializations. 

Fig. 3 shows the mean and standard deviation readings for 

both approaches when experimented on different mobile 

devices. The graphs (Figs. 4-6) are the graphical visualizations 

of the mean time. Nokia X3-02 takes lesser time compared to 

Nokia C5-03 when the complexities of the declarations are 

increased. The 80MHz extra processing power of Nokia X3-

02 resulted in the performance increase. This can be seen at 

the uniform rate change in the processing time across different 

complexities for Nokia X3 and Nokia C5. Undeniably the 

emulator which was running on a standard personal computer 

performed faster due to its faster processors compared to the 

mobile devices. It can be deduced that under a faster CPU 

clock tick, same line initialization and declaration marginally 

performs less than initialization after declaration.  

These results signify that declaration and initialization on 

the same line or not does not influence much on the 

performance. Programmers do not need to worry on this order 

as its contribution to performance increase is negligible even 

at higher complexity. This observation is neutral to the device 

the study tested. 

for( int i = 19; i >= 0; i -= 4 ){ 

sum += a[i]; 

sum += a[i - 1]; 

sum += a[i - 2]; 

sum += a[i - 3];} 

 

 

MYCLASS OBJ = DATA; 

//INSTEAD OF  

MYCLASS OBJ; 

OBJ = DATA; 



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

545

 

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 3 (a)–(c) Mean and standard deviation time (in milliseconds) 

taken by declaration and initialization for different devices 

 

 

Fig. 4 Mean time on Nokia X3-02 

 

 

Fig. 5 Mean time on Emulator 

 

 

Fig. 6 Mean time on Nokia C5-03 

2. Optimization Technique: Loop Unrolling  

The complexity of this test was based on the number of 

loops unrolled. The number of loops was ranged from 5 

(simple) to 40 (very complex). Comparing the results 

presented in Figs. 7-9, Nokia C5-03 takes between 8 to 10 

times more time to process both rolled and unrolled loops as 

opposed to the time taken by Nokia X3-02 and the Emulator. 

Unrolling is an effective performance optimization technique 

across all the mobile devices. As can be seen in Figs. 10-12, 

Nokia X3-02

Initialization during declaration

Standard deviation mean Complexity

15.88 75.02 Simple

15.08 149.46 Moderate

15 308.87 Complex

18.89 620.65 Very complex

Initialization after declaration

Standard deviation mean Complexity

15.56 74.75 Simple

14.48 148.73 Moderate

15.13 308.06 Complex

20.04 619.67 Very complex

Emulator

Initialization during declaration

Standard deviation mean Complexity

4.48 13.19 Simple

4.69 24.01 Moderate

5.5 45.49 Complex

7.23 88.03 Very complex

Initialization after declaration

Standard deviation mean Complexity

2.4 12.25 Simple

2.33 21.33 Moderate

1.8 39.62 Complex

1.97 76.97 Very complex

Nokia C5-03

Initialization during declaration

Standard deviation mean Complexity

0.44 96.08 Simple

2.43 190.58 Moderate

2.25 385.61 Complex

1.88 805.42 Very complex

Initialization after declaration

Standard deviation mean Complexity

1.3 96.62 Simple

0.71 191.53 Moderate

3.47 363.92 Complex

2.21 810.95 Very complex

Mean of time taken to finish operation (ms)

0

100

200

300

400

500

600

700

Simple Moderate Complex Very

complex

Initialization

during

declaration

Initialization after

declaration

Mean of time taken to finish operation (ms)

0

10

20

30

40

50

60

70

80

90

100

Simple Moderate Complex Very

complex

Initialization

during

declaration

Initialization after

declaration

Mean of time taken to finish operation (ms)

0

100

200

300

400

500

600

700

800

900

Simple Moderate Complex Very

complex

Initialization

during

declaration

Initialization after

declaration



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

546

 

 

the margin of efficiency gets better on higher loop 

complexities. This can be seen through the spread between the 

blue (loop unrolling) line and the red (standard for loop) line 

in those graphs. Among all the graphs, the efficiency growth 

of loop unrolling (vs. standard for loop) between the complex 

and the very complex is by a factor 2 to 3.The margin of error 

shown by the standard deviation is small for this experiment. 

The high effectiveness of loop unrolling is due to no overhead 

of loop variable creation and destruction in the loop body.  

The results are significant to show that loop unrolling is an 

effective optimization technique on the mobile phones as the 

performance gain can be observed from multiple phones in the 

market. It is recommended to unroll loop constructs in mobile 

applications having dense loops/nested loops as the 

performance gain is worth the hassle of unrolling it. The 

emulator can be used as a relative measure of performance 

gain as the reading is consistent with the performance gain on 

the physical devices. 

 

 

Fig. 7 Loop unrolling on Nokia X3-02 

 

 

Fig. 8 Loop unrolling on an Emulator 

 

 

Fig. 9 Loop unrolling on Nokia C5-03 

 

 

Fig. 10 Loop unrolling on Nokia X3-02 

 

 

Fig. 11 Loop unrolling on an Emulator 

 

 

Fig. 12 Loop unrolling on Nokia C5-03 

loop unrolling

Standard deviation mean Complexity

0.63 1.14 Simple

0.49 1.42 Moderate

1.41 2.99 Complex

0.74 4.22 Very complex

standard for loop

Standard deviation mean Complexity

0.55 2.4 Simple

1.45 4.3 Moderate

1.33 6.88 Complex

4.12 11.71 Very complex

loop unrolling

Standard deviation mean Complexity

0.43 0.76 Simple

0.3 1.1 Moderate

0.5 1.45 Complex

0.52 2.32 Very complex

standard for loop

Standard deviation mean Complexity

0.52 2.23 Simple

0.42 4.04 Moderate

1.43 7.16 Complex

0.99 14.85 Very complex

loop unrolling

Standard deviation mean Complexity

0.6 3.75 Simple

0.59 5.31 Moderate

0.59 8.47 Complex

0.45 14.77 Very complex

standard for loop

Standard deviation mean Complexity

0.45 16.49 Simple

0.84 29.45 Moderate

0.49 55.12 Complex

0.72 106.8 Very complex

Mean of time taken to finish operation (ms)

0

2

4

6

8

10

12

14

Simple Moderate Complex Very

complex

loop

unrolling

standard

for loop

Mean of time taken to finish operation (ms)

0

2

4

6

8

10

12

14

16

Simple Moderate Complex Very complex

loop

unrolling

standard

for loop

Mean of time taken to finish operation (ms)

0

20

40

60

80

100

120

Simple Moderate Complex Very complex

loop

unrolling

standard

for loop



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

547

 

 

3.  Optimization Technique: Dependency Chain 

 The complexity of this test was based on the number of 

dependency unrolled. The number of loops was ranged from 

10 (simple) to 1000 (very complex). As shown in Figs. 16-18, 

looping using dependency chain performs better than the 

ordinary “for” loop. Though, the performance pattern is the 

same for both Nokia X3-02 and Nokia C5-03, however, there 

is a ten fold efficiency in Nokia X3-02. The performance 

efficiency is drastic when the complexity increases. The study 

observed low margin of error (i.e. standard deviation) in all 

the experiments as shown in Figs. 13-15. When run on an 

emulator, the results of conventional “for” loop and 

dependency chain loop was close and both was running at a 

higher efficiency than those on the mobile device.  

The results signify that at higher loop complexities, the 

programmers using the dependency chaining approach would 

be able to take advantage of the pipelining done in the 

processor [2] to increase the performance of their application. 

The emulator does not capture the same pattern of 

improvement due to the differences in the cache lines of the 

mobile and the desktop processors. In this instance, it is seen 

that the emulator is not a direct representative of performance 

improvements in the mobile phones. 

 

 

Fig. 13 Dependency unrolled measurements on Nokia X3-02 

 

 

Fig. 14 Dependency unrolled measurement on Emulator 

 

 

Fig. 15 Dependency unrolled measurements on Nokia C5-03 

 

 

Fig. 16 Dependency unrolled result on Nokia X3-02 

 

 

Fig. 17 Dependency unrolled result on Emulator 

 

 

Fig. 18 Dependency unrolled result on Nokia C5-03 

dependency chain

Standard deviation mean Complexity

0.75 2.71 Simple

2.92 8.11 Moderate

3.35 14.18 Complex

4.6 122.67 Very complex

standard for loop

Standard deviation mean Complexity

1.77 4.53 Simple

2.64 14.1 Moderate

4.15 26.99 Complex

4.67 252 Very complex

dependency chain

Standard deviation mean Complexity

0.7 3.33 Simple

2.15 11.39 Moderate

6.32 17.59 Complex

7.05 31.51 Very complex

standard for loop

Standard deviation mean Complexity

0.76 4.11 Simple

4.8 14.55 Moderate

6.79 29.49 Complex

14.51 37.04 Very complex

dependency chain

Standard deviation mean Complexity

0.87 17.4 Simple

0.54 72.47 Moderate

0.51 141.41 Complex

2.45 1389.4 Very complex

standard for loop

Standard deviation mean Complexity

0.59 29.36 Simple

0.57 132.49 Moderate

0.63 261.41 Complex

7.13 2615.47 Very complex

Mean of time taken to finish operation (ms)

0

50

100

150

200

250

300

Simple Moderate Complex Very complex

dependency

chain

standard for

loop

Mean of time taken to finish operation (ms)

0

5

10

15

20

25

30

35

40

Simple Moderate Complex Very

complex

dependency

chain

standard for

loop

Mean of time taken to finish operation (ms)

0

500

1000

1500

2000

2500

3000

Simple Moderate Complex Very complex

dependency

chain

standard for

loop



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

548

 

 

4. Optimization Technique: “If” Statement vs. “Switch” 

Statement 

The complexity of this test was based on the number of 

cases for the “If-else” and “Switch” statements. The 

determining condition was randomly generated to provide fair 

results. The number of conditions was ranged from 5 (simple) 

to 25 (very complex). As shown in Figs. 19-21, the time taken 

by “if-then-else” execution is comparatively larger than 

executing a “switch” statement. In Nokia C5-03, the “switch” 

performance was two fold compared to Nokia X3-02 at high 

complexity. At moderate complexity, as can be seen in Figs. 

22-24, the performance is the best for both the techniques 

across device platform. In Nokia X3-02, the “if-then-else” 

technique even managed to get better than the “switch” 

statement at moderate complexity. 

This experiment signifies what sort of programming pattern 

that would result in higher performance. The “switch” 

outperform “if-else” if the switch cases are arranged in a 

consecutive manner. This is because such order gets accessed 

in a table manner where the accesses complexity is by order of 

n, the number of elements. 

 

 

Fig. 19 “switch” vs. “if-then-else” measurements on Nokia X3-02 

 

 

Fig. 20 “switch” vs. “if-then-else” measurements on an Emulator 

 

Fig. 21 “switch” vs. “if-then-else” measurement on Nokia C5-03 

 

 

Fig. 22 “if” vs. “switch” performance on Nokia X3-02 

 

 

Fig. 23 “if” vs. “switch” performance on an emulator 

 

 

Fig. 24 “if” vs. “switch” performance on Nokia C5-03 

 

switch

Standard deviation mean Complexity

2.21 11.83 Simple

2.18 11.79 Moderate

2.84 12.21 Complex

3.18 12.26 Very complex

if then else

Standard deviation mean Complexity

3.07 12.13 Simple

2.25 11.6 Moderate

3.34 12.85 Complex

2.2 13.45 Very complex

switch

Standard deviation mean Complexity

0.56 4.73 Simple

0.64 4.63 Moderate

0.38 4.85 Complex

0.48 4.64 Very complex

if then else

Standard deviation mean Complexity

0.61 5.18 Simple

0.56 5.26 Moderate

0.51 5.76 Complex

0.59 6.56 Very complex

switch

Standard deviation mean Complexity

0.78 12.47 Simple

0.55 10.33 Moderate

0.89 12.51 Complex

0.91 12.61 Very complex

if then else

Standard deviation mean Complexity

1.02 15.5 Simple

0.94 13.54 Moderate

0.71 18.98 Complex

1.1 24.11 Very complex

Mean of time taken to finish operation (ms)

10.5

11

11.5

12

12.5

13

13.5

14

Simple Moderate Complex Very

complex

switch

if then else

Mean of time taken to finish operation (ms)

0

1

2

3

4

5

6

7

Simple Moderate ComplexVery complex

switch

if then else

Mean of time taken to finish operation (ms)

0

5

10

15

20

25

30

Simple Moderate Complex Very

complex

switch

if then else



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

549

 

 

5. Optimization Technique: Removing Getter and Setter 

When the getter and the setters are removed, the result is 

linear code without any encapsulation. This removes the 

overhead of method calls. Figs. 25-27 show the reading 

obtained for different complexities of getter/setter compared to 

without getter/setter. As can be seen in Figs. 28-30, regardless 

of the hardware platforms, the results unanimously show that 

without the getter and setter, the performance got better. For 

example, Nokia X3-02 and the emulator experienced many 

fold improvements. In Nokia C5-03, the performance got 

significantly better on increasing complexity. The margin of 

error (shown by the standard deviation) was significantly low 

in most cases.  

The results below signify many fold increase in the 

performance if encapsulation not used. A programmer should 

write mobile application in a plain flat manner without 

encapsulation to take the performance advantage. It is 

worthwhile to repeat some code over and over again for this 

purpose although it badly affects the maintenance of the code.  

 

 

Fig. 25 Performance with and without the assessors on Nokia X3-02 

 

 

Fig. 26 Performance with and without the assessors on Emulator 

 

 

Fig. 27 Performance with and without the assessors on Nokia C5-03 

 

 

Fig. 28 Performance with and without the assessors on Nokia X3-02 

 

 

Fig. 29 Performance with and without the assessors on Emulator 

 

 

Fig. 30 Performance with and without the assessors on Nokia C5-03 

without getter or setter

Standard mean Complexity

0.33 1.92 Simple

0.49 3.35 Moderate

1.13 5.81 Complex

2.89 10.41 Very complex

with getter or setter

Standard mean Complexity

0.39 1.84 Simple

1.82 3.86 Moderate

2.32 5.96 Complex

28.89 2376.47 Very complex

without getter or setter

Standard mean Complexity

0.65 2.8 Simple

0.61 4.14 Moderate

0.92 7.47 Complex

0.34 14.98 Very complex

with getter or setter

Standard mean Complexity

3.77 14.7 Simple

2.7 29.73 Moderate

5.21 30.28 Complex

2.81 28.69 Very complex

without getter or setter

Standard mean Complexity

0.6 13.95 Simple

1.1 25.96 Moderate

0.54 49.69 Complex

0.47 97.24 Very complex

with getter or setter

Standard mean Complexity

0.99 18.41 Simple

1.31 34.86 Moderate

1 67.63 Complex

1.19 133.1 Very complex

Mean of time taken to finish operation (ms)

0

500

1000

1500

2000

2500

Simple Moderate Complex Very

complex

without getter

or setter

with getter or

setter

Mean of time taken to finish operation (ms)

0

5

10

15

20

25

30

35

Simple Moderate Complex Very

complex

without getter

or setter

with getter or

setter

Mean of time taken to finish operation (ms)

0

20

40

60

80

100

120

140

Simple Moderate Complex Very

complex

without getter

or setter

with getter or

setter



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:4, 2013

550

 

 

IV. DISCUSSIONS 

The study lists several optimization techniques and their 

degree of improvements from the empirical experiments the 

study has conducted. As shown in the earlier graphs, 

initialization during declaration or later did not show 

difference in performance although there was difference 

during the testing on the emulator when tested on different 

complexities. It is taking longer for the operations to be 

performed on the actual devices than on the emulator. 

Logically, the initialization should take longer when 

performed with the declaration (done on the same line or 

separately), but on mobile devices, they are negligible 

compared to the total time to perform the operations.  

The loop unrolling technique shows a factor of 3 to 7 

improvements compared to the standard loop approach. The 

removal of the overheads in the standard loop contributed to 

such efficiency and it is recommended to repeat statements 

when they are a few to leverage on the performance than using 

looping constructs. The experiments on different platforms 

revealed the same pattern of improvements and the standard 

deviations between multiple experiments are very small, 

therefore it is reliable. If the loop is large there will be 

insufficient registers available to hold the variables’ values 

which will force the compiler to use the disk memory which in 

return will slow down execution [1], [2], [4]. 

Dependency chain optimization method performs best at 

higher complexity. Experiments show at higher complexity 

setting, the technique offers two times improvement compared 

to the standard looping approach. Similar to loop unrolling, 

chain dependency saves the compiler from loop overheads and 

keeps the execution pipeline full instead of being idle until the 

loop finishes [2].  

From the result, the study has proved that “switch” 

statement is faster than “if-else” statement. However, the 

“switch” statement need to be consecutively arranged for it to 

be faster than the “If-else” statement. A “switch” structure in 

general is cheaper execution-wise than “if-else” chains. 

However, there are cases where a “switch” performs as bad as 

“if-else”. If the case expressions in a switch statement are 

continuous or nearly continuous then the compiler translates 

them into a jump table instead of a comparison chain. A jump 

table improves performance because it reduces the number of 

branches to a single procedure call and shrinks the size of the 

control-flow code no matter how many cases there are. It will 

enable the processor to perform successful branch prediction 

which will reduce the jumping time and improve performance. 

On the other hand, if the cases are not continuous the compiler 

will spend time converting them into a comparison chain like 

if-else statements and this uses dense sequential conditional 

branching [5].  

When the getter and setter are linearized there is a 

noticeable improvement when the data is accessed directly 

without using the getter and setter. This was because the 

overhead of calling and returning of the getter and setter was 

removed. Although it removes the number of operations 

needed to get or set the data, it also removes the encapsulation 

from the object. Therefore, there is a tradeoff to make between 

performance and maintainability through encapsulation.  

V. CONCLUSION 

In conclusion, from the experiments that has been 

conducted in the study, variable declaration or declaration 

with initialization does not give any major performance 

efficiency. On the other hand, loop unrolling is an 

optimization technique that gives the highest magnitude of 

efficiency especially when the complexity increases. On the 

same note, the study also observed that the dependency chain 

approach gave two fold efficiency compared to the one which 

did not use the approach. However, the “switch” statement 

does not always give performance advantage compared to the 

“if–else” statement. The advantage of the “switch” statement 

is only when the “case” statements are consecutive in nature. 

Finally, removing the getter and the setter did give an 

improvement to the performance, but the trade-off is with the 

modularity and maintainability of such implementation. 

REFERENCES  

[1] Chehimi, F., P. Coulton and R.F. Edwards, 2006. C++ optimizations for 
mobile applications. In: Proceedings of the IEEE 10th International 

Symposium on Consumer Electronics, June 28-July 1, 2006, Russia, pp: 

1-6. 
[2] Hanson, J., 2006. Accelerating compute intensive functions using C. 

http://www.drdobbs.com/windows/184406483?pgno=2. 

[3] Jeffrey, S., 2009. Coding for life -- battery life, that is. San Francisco, 
CA, USA., http://www.google.com/events/io/2009/sessions/ 

CodingLifeBatteryLife.html 

[4] Kalev, D., 2001. The top 20 C++ tips of all time. 
http://www.devx.com/cplus/Article/16328  

[5] Zeichick, A., 2004. Optimizing Your C/C++ Applications, Part 1. 

http://developer.amd.com/documentation/articles/pages/6212004126.asp
x. 

[6] Tierno, J. and C. Campo, 2005. Smart Camera Phones: Limits and 
Applications. Pervasive Computing, IEEE, Vol 4, Issue 2, pp. 84-87. 

[7] Campo, C., C. Garcia-Rubio and A. Cortes, 2009. Performance 
Evaluation of J2ME and Symbian Applications in Smart Camera 
Phones, 3rd Symposium of Ubiquitous Computing and Ambient 

Intelligence 2008, Vol 51/2009, pp. 48-56.  

[8] Domer, J., M. Nanja, S. Srinivas and B. Keshavachar, 2004. 
Comparative performance analysis of mobile runtimes on Intel XScale 

technology. Proceedings of the 2004 Workshop on Interpreters, Virtual 

Machines and Emulators, June 7, 2004, Washington, DC., USA., pp: 51-
57. 

[9] Shirazi, J., 2003. Java Performance Tuning (2nd Edition), O’Reilly 

Media, USA., Pages: 570.  
[10] Wilson, S. and J. Kesselman, 2000. Java Platform Performance: 

Strategies and Tactics, Addison-Wesley, New York, ISBN: 

9780201709698, Pages: 230. 
[11] Mihailescu, P., H. Lee and J. Shepherdson, 2005. Optimization 

techniques for J2ME based mobile application. Proceedings of the 5th 

WSEAS International Confernce on Applied Informatics and 
Communication, September 15-17, 2005, Malta, pp: 181-186. 

[12] Tyma, P., 1996. Tuning Java Performance, Dr. Dobb’s Journal, Vol 21, 

No. 4, pp 52 – 58. 
[13] Muller, G., B. Moura, F. Bellard and C. Consel, 1996. Harissa: A 

flexible and efficient java environment mixing bytecode and compiled 

code. Proceedings of the 3rd USENIX Conference on Object-Oriented 
Technologies and Systems, June 17-21, 1996, Toronto, Ontario, Canada, 
pp: 1-20. 

[14] Ishizaki, K., M. Kawahito, T. Yasue, H. Komatsu and T. Nakatani, 
2000. A study of devirtualization techniques for a Java Just-In-Time 

compiler. Proceedings of the 15th ACM SIGPLANconference on 

Object-oriented programming,systems, languages and applications, 
October 15-19, 2000, Minneapolis, MN, USA., pp: 294-310. 

[15] Tomlinson, M., 2012. SOA world magazine. http://soa.sys-

con.com/node/2116107. 


