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Abstract—The objective in this work is to generate and discuss 

the stability results of fully-immersed end-milling process with 
parameters; tool mass m ൌ 0.0431kg, tool natural frequency 
߱୬ ൌ 5700 radsିଵ, damping factor ξ ൌ 0 . 0 2 and workpiece cutting 
coefficient C ൌ 3.5 ൈ 10଻Nmି଻ ସ⁄ . Different no of teeth is 
considered for the end-milling. Both 1-DOF and 2-DOF chatter 
models of the system are generated on the basis of non-linear force 
law. Chatter stability analysis is carried out using a modified form 
(generalized for both 1-DOF and 2-DOF models) of recently 
developed method called Full-discretization. The full-immersion 
three tooth end-milling together with higher toothed end-milling 
processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit 
one turning (minimum) point each. Each of such SHBL is 
demarcated by its minimum point into two portions; (i) the Lower 
Spindle Speed Portion (LSSP) in which bifurcations occur in the right 
half portion of the unit circle centred at the origin of the complex 
plane and (ii) the Higher Spindle Speed Portion (HSSP) in which 
bifurcations occur in the left half portion of the unit circle. Comments 
are made regarding why bifurcation lobes should generally get bigger 
and more visible with increase in spindle speed and why flip 
bifurcation lobes (FBL’s) could be invisible in the low-speed stability 
chart but visible in the high-speed stability chart of the fully-
immersed three-tooth miller. 
 

Keywords—Chatter, flip bifurcation, modified full-discretization 
map stability lobe, secondary Hopf bifurcation.  

I. INTRODUCTION 
OMPONENTS of high dimensional integrity are in ever 
increasing need. Machine tools such as Lathe and Milling 

machines are needed for production of such components. 
Machine tools would not perform effectively under highly 
disturbed situations thus the need for vibration control in such 
machines. Achieving good surface finish and high 
productivity are two opposed demands in machining 
operation. This means that ascertaining safe operation range 
for good product, improved tool life and design of machine 
tools is necessary. 
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A typical machining process of major importance is the 
end-milling in which a machined surface that is at right angle 
with the cutter axis results as shown Fig. 1. In end-milling, 
cutters equipped with shanks for mounting on the spindle are 
utilized.  
 

 
Fig. 1 End-milling 

 
Unstable regenerative machine tool vibration is basically 

called chatter. Chatter invariably results whenever there is 
dynamic interaction between the tool and the workpiece of a 
milling process under unstable cutting parameter combination. 
Forced, self-exited and damped natural vibrations combine to 
compound the dynamics of milling process. The forced 
vibration component is driven by a periodic force stemming 
from regular engagement and disengagement of tool and 
workpiece. Regenerative effect is underpinned as the major 
cause of the self-exited vibrations (mechanical chatter) in 
machining [1]. Arnold first suggested regenerative effects as 
the potential cause of chatter and is now arguably considered 
the cause of the most detrimental type of machine tool 
vibration [2]. Chatter occurring during machining operation 
thus results from cutting force variation caused by 
disturbance-induced surface waviness of regenerative effects.  

Effects of periodic chip thickness and delayed position on 
the present position of the tool result in periodic delay 
differential equation (DDE) models for regenerative vibrations 
of milling. Among the various advanced methods utilized in 
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tracking the approximate stability transition curve of 
regenerative milling are; the finite element in time [3], [4], 
Chebyshev Polynomials [4], [5], semi-discretization [6], 
Fargue-type approximation [7], [8]. The normal procedure is 
to generate a finite dimensional discrete approximation to the 
governing infinite dimensional periodic DDE and carrying out 
eigen-value analysis of resulting finite monodromy operator as 
cutting parameters vary. 

The semi-discretization concept as utilized in a recently 
developed method called Full-discretization [9] is utilized here 
in deriving an alternate finite map called modified full-
discretization map. The modified full-discretization map is 
generalized for both 1-DOF and 2-DOF end-milling. The 
system considered is a Perspex or wood end milling CNC 
machine considered in [8] to have the following modal 
parameters; mass ݉ ൌ 0.0431kg, Natural frequency ߱୬ ൌ
5700 radsିଵ, and damping factor ξ ൌ 0.02. The stability 
characterization of the system is in the form of stability charts 
in which parameter space of spindle speed and dept of cut are 
demarcated into stable and unstable domains by stability 
transition curves. In literature such charts are normally 
validated by comparing results of two different methods [3], 
[4] but in this work accurate MATLAB dde23 solution of 
several parameter points are used in validation of both cases of 
1-DOF and 2-DOF end-milling. Stability or instability of 
MATLAB dde23 solutions are seen to be independent of 
history of end-milling chatter model. This is a unique feature 
of this work. 

Parameter points are picked from the stability transition 
curves and substituted into the monodromy operator for 
extraction of critical characteristic multipliers. It results that in 
conformity with literature [10], either a pair of complex 
conjugate critical characteristic multipliers or a critical 
characteristic multiplier of -1 exists on the stability transition 
curves of end-milling. The three tooth fully-immersed 1-DOF 
end-milling together with higher toothed fully-immersed 1-
DOF end-milling has secondary Hopf bifurcation lobes 
(SHBL’s) that exhibit one minimum point each. Each of such 
SHBL is demarcated by its minimum point into Lower Spindle 
Speed Portion (LSSP) in which bifurcations occur in the right 
half portion of the unit circle centered at the origin of the 
complex plane and Higher Spindle Speed Portion (HSSP) in 
which bifurcations occur in the left half portion of the unit 
circle. The real part of the pair of critical characteristic 
multipliers varies from about 1 to about 0 as a critical point 
moves from start to end of a LSSP. When the critical point 
moves from start to end of a HSSP the real part of the pair of 
critical characteristic multipliers varies from about 0 to about -
1. This means that bifurcation gets towards flip towards the 
end of a SHBL. Comments are made regarding why 
bifurcation lobes should generally get bigger and more visible 
with increase in spindle speed. It is concluded in this work that 
even when flip bifurcation is not seen, it is expected to occur 
in the immediate vicinity of intersection of two SHBL’s. 
These form part of novelty of contribution of this work. 

II. MATHEMATICAL MODEL 

A. Single Degree of Freedom Model 
The dynamical model shown in Fig. 2 is a 1-DOF vibration 

model of an end-milling tool in which the tool is given a 
spindle speed Ω in revolutions per minute (rpm) while the 
workpiece has a prescribed feed velocity ݒ imparted on it via 
the worktable. The tool and workpiece are engaged at a radial 
immersion of ߩ ൌ ܤ ⁄ܦ  (ratio of radial depth of cut to tool 
diameter). The parameters of the milling process as depicted 
on the dynamical model are; ݉ mass of tool, ܿ the equivalent 
viscous damping coefficient modeling the hysteretic damping 
of the tool and ݇ the stiffness of the tool. 

 

 
Fig. 2 Dynamical model of 1-DOF end-milling 

 
The free-body diagram for the tool dynamics when the 

motion of the tool ݔሺݐሻ is considered to be a summation of 
feed motion and vibrations is as shown in Fig. 3. 

 

 
Fig. 3 Free-body diagram of tool dynamics 

 
The differential equation governing the motion of the tool 

as seen from the free-body diagram becomes 
 

ሻݐሷሺݔ݉ ൅ ܿሾݔሶሺݐሻ െ ሿݒ ൅ ݇ሾݔሺݐሻ െ ሿݐݒ ൅ ሻݐ௫ሺܨ ൌ 0        (1)  
 

A tool-workpiece disposition as shown in Fig. 4 is 
considered for the jth tooth of the tool. In Fig. 4 the cutting 
force is considered as having normal and tangential 
components designated ܨ୬୭୰୫,௝ሺݐሻ and ܨ୲ୟ୬,௝ሺݐሻ respectively. 
Axial component of cutting force is neglected because helix 
angle is considered zero. The ݔ െcomponent of cutting force 
for the tool thus becomes 
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ሻݐ௫ሺܨ ൌ ∑ ݃௝ሺݐሻൣܨ୬୭୰୫,௝ሺݐሻsinߠ௝ሺݐሻ ൅ ሻ൧ேݐ௝ሺߠሻcosݐ୲ୟ୬,௝ሺܨ
௝ୀଵ   (2) 

 
N is the number teeth on the milling tool indexed with the 
values ݆ ൌ1, 2, 3......ܰ. The instantaneous angular position of 
݆th tooth ߠ௝ሺݐሻ is measured clockwise relative to the negative 
ݕ െaxis to give 
 

ሻݐ௝ሺߠ ൌ ቀగஐ 
ଷ଴

ቁ ݐ ൅ ሺ݆ െ 1ሻ ଶగ
ே

൅  (3)         ߙ
 
where ߙ is the initial angular position of the tooth indexed 1. 
Screen or switching function ݃௝ሺݐሻ for the ݆th tooth either 
have the values 1 or 0 depending on whether the tooth is 
active or not. At full-radial immersion ߩ ൌ 1, the screen 
function is formulated to have the form 
 

݃௝ሺݐሻ ൌ ଵ
ଶ

൛1 ൅ sgnൣsin  ሻ൧ൟ.           (4)ݐ௝ሺߠ
 

 
Fig. 4 Milling tooth-workpiece disposition 

 
The cutting forces on ݆th tooth are given by the non-linear 

law  
 

ሻݐ୲ୟ୬,௝ሺܨ ൌ ൣݓ௧௔௡ܥ ୟ݂sinߠ௝ሺݐሻ൧ఊ
            (5a) 

 
ሻݐ୬୭୰୫,௝ሺܨ ൌ ൣݓ௡௢௥௠ܥ ୟ݂sinߠ௝ሺݐሻ൧ఊ ൌ  ሻ       (5b)ݐ୲ୟ୬,௝ሺܨࣲ

 
where ݓ is depth of cut, ܥ୲ୟ୬ and ܥ୬୭୰୫ are the tangential and 
normal cutting coefficients associated with the workpiece, ࣲ 
is the ratio ܥ୬୭୰୫ ⁄୲ୟ୬ܥ , ୟ݂ is the actual feed given as ݔሺݐሻ െ
ݐሺݔ െ ߬ሻ which is the difference between present and one 
period delayed position of tool and ߛ is an exponent that is 
usually less than one having a value of 3 4⁄  for the three-
quarter rule utilized here. Works of Balint, Bali and Tlusty are 
reported in [10] to popularize the value of 0.3 for ࣲ. 
Equations (2) and (5) taken together give  
 

ሻݐ௫ሺܨ ൌ ሻݐሺݔሻሾݐሺݍݓ െ ݐሺݔ െ ߬ሻሿఊ           (6) 
 

where ݍሺݐሻ ൌ ∑ ݃௝ሺݐሻܥsinఊߠ௝ሺݐሻൣࣲsinߠ௝ሺݐሻ ൅ cosߠ௝ሺݐሻ൧ே
௝ୀଵ  is 

a ߬ሺൌ 60 ܰΩ⁄ ሻ periodic function. The vibration of the tool has 
two components namely; the ߬-periodic response ݔ୲ሺݐሻ due to 
periodic force of tool/workpiece interaction and the 
regenerative perturbations ݖሺݐሻ. Then  
 

ሻݐሺݔ ൌ ݐݒ ൅ ሻݐ୲ሺݔ ൅  ሻ.          (7)ݐሺݖ
 

Substitution of (6) and (7) into (1) gives 
 

ሻݐሷ୲ሺݔ݉ ൅ ሻݐሶ୲ሺݔܿ ൅ ሻݐ୲ሺݔ݇ ൅ ሻݐሷሺݖ݉ ൅ ሻሶݐሺݖܿ ൅ ሻݐሺݖ݇ ൌ െݍݓሺݐሻሼ߬ݒ ൅ ሾݖሺݐሻ െ ݐሺݖ െ ߬ሻሿሽఊ(8) 
 

Without perturbation, (8) simplifies to 
 

ሻݐሷ୲ሺݔ݉ ൅ ሻݐሶ୲ሺݔܿ ൅ ሻݐ୲ሺݔ݇ ൌ െݍݓሺݐሻሺ߬ݒሻఊ          (9)  
 

Equation (9) governs the periodic motion of the system 
driven by a periodic force ܨ୮ሺݐሻ ൌ െݍݓሺݐሻሺ߬ݒሻఊ. Equation (9) 
means that (8) becomes  
 

ሻݐሷሺݖ݉ ൅ ሻሶݐሺݖܿ ൅ ሻݐሺݖ݇ ൌ ሻఊ߬ݒሻሺݐሺݍݓ െ ߬ݒሻሼݐሺݍݓ ൅ ሾݖሺݐሻ െ ݐሺݖ െ ߬ሻሿሽఊ(10) 
 

Put in Taylor series about ߬ݒ and linearizing, (10) becomes 
 

ሻݐሷሺݖ݉ ൅ ሻݐሶሺݖܿ ൅ ሻݐሺݖ݇ ൌ െ݄ݓሺݐሻሾݖሺݐሻ െ ݐሺݖ െ ߬ሻሿ      (11) 
 
where ݄ሺݐሻ ൌ  ሻ is the specific periodic cuttingݐሺݍሻఊିଵ߬ݒሺߛ
force variation. Equation (11) is re-written to give  
 

ሻݐሷሺݖ ൅ ሻݐሶሺݖ௡߱ߦ2 ൅ ቀ߱௡
ଶ ൅ ௪௛ሺ௧ሻ

௠
ቁ ሻݐሺݖ ൌ ௪௛ሺ௧ሻ

௠
ݐሺݖ െ ߬ሻ      (12) 

   
that governs regenerative vibration of linear 1-DOF milling 
systems. The natural frequency and damping ratio of the tool 
system are given in terms of modal parameters ݇, ݉ and ܿ 
respectively as ߱௡ ൌ ඥ݇ ݉⁄  and ߦ ൌ ܿ 2√݉݇⁄ . These modal 
parameters are easily extracted from experimental plot of the 
tool frequency response function ܴሺ߱ሻ ൌ ܺ ⁄ܨ ൌ
1 ඥሺ݇ െ ߱ଶ݉ሻଶ ൅ ߱ଶܿଶ⁄  for forced single degree of freedom 
vibration. 

With the substitutions ߦଵ
ሺଵሻሺݐሻ ൌ ଶߦ ሻ andݐሺݖ

ሺଵሻሺݐሻ ൌ  ሻݐሶሺݖ
made, (12) could be put in state differential equation form as 

 
ሶࣈ ሺଵሻሺݐሻ ൌ ሺଵሻሺtሻࣈሺଵሻ࡭ ൅ ሺଵሻሺtሻࣈሻݐሺଵሻሺ࡮ െ ݐሺଵሻሺࣈሻݐሺଵሻሺ࡮ െ ߬ሻ  (13) 

 

where ࣈሶ ሺଵሻሺݐሻ ൌ ൝
ሶߦ

ଵ
ሺଵሻሺݐሻ

ሶߦ
ଶ
ሺଵሻሺݐሻ

ൡ, ࣈሺଵሻሺݐ െ ߬ሻ ൌ ൝
ଵߦ

ሺଵሻሺݐ െ ߬ሻ

ଶߦ
ሺଵሻሺݐ െ ߬ሻ

ൡ, ࡭ሺଵሻ ൌ

൤ 0 1
െ߱௡

ଶ െ2߱ߦ௡
൨ and ࡮ሺଵሻሺݐሻ ൌ ቈ

0 0
െ ௪௛ሺ௧ሻ

௠
0቉. 

B. Two Degree of Freedom Model 
The dynamical model shown in Fig. 5 is a 2 DOF depiction 

of an end-milling tool that vibrates in the ݔ െ  plane ݕ
(horizontal plane). The modal parameters ݇௫, ݉௫ and ܿ௫ are 
for ݔ െvibration while ݇௬, ݉௬ and ܿ௬ are for ݕ െvibration. 
The tool is symmetric when the ݔ and ݕ modes of vibration 
have identical parameters.  
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Fig. 5 Dynamical model of end-milling 

 
The governing equations of motion becomes 
 

݉௫ݔሷሺݐሻ ൅ ܿ௫ሾݔሶ ሺݐሻ െ ሿݒ ൅ ݇௫ሾݔሺݐሻ െ ሿݐݒ ൅ ሻݐ௫ሺܨ ൌ 0 (14a) 
 

݉௬ݕሷሺݐሻ ൅ ܿ௬ݕሶ ሺݐሻ ൅ ݇௬ݕሺݐሻ ൅ ሻݐ௬ሺܨ ൌ 0.  (14b) 
 

It is seen from Fig. 4 that the ݔ and ݕ െcomponents of 
cutting force on the tool are 
 

ሻݐ௫ሺܨ ൌ ∑ ݃௝ሺݐሻൣܨ୬୭୰୫,௝ሺݐሻsinߠ௝ሺݐሻ ൅ ሻ൧ேݐ௝ሺߠሻcosݐ୲ୟ୬,௝ሺܨ
௝ୀଵ (15a) 

 
ሻݐ௬ሺܨ ൌ ∑ ݃௝ሺݐሻൣെܨ୬୭୰୫,௝ሺݐሻcosߠ௝ሺݐሻ ൅ ሻ൧ேݐ௝ሺߠሻsinݐ୲ୟ୬,௝ሺܨ

௝ୀଵ .(15b) 
 

The actual feed rate ୟ݂ of ݆th tooth at angular position ߠ௝ሺݐሻ 
is inferred from Fig. 4 to be 

 
ୟ݂ ൌ ሾݔሺݐሻ െ ݐሺݔ െ ߬ሻሿsinߠ௝ሺݐሻ ൅ ሾݕሺݐሻ െ ݐሺݕ െ ߬ሻሿcosߠ௝ሺݐሻ(16) 

 
where ݔሺݐሻ ൌ ݐݒ ൅ ሻݐ୲ሺݔ ൅ ሻݐሺݕ ,ሻݐ௫ሺݖ ൌ ሻݐ୲ሺݕ ൅  ሻ. Theݐ௬ሺݖ
quantities ݖ௫ሺݐሻ and ݖ௬ሺݐሻ are respective perturbations in ݔ 
and ݕ directions. The linearized Taylor series expansion of ୟ݂

ఊ 
about ߬ݒsinߠ௝ሺݐሻ then reads 
 

ୟ݂
ఊ ൌ ሻ൧ఊݐ௝ሺߠsin߬ݒൣ ൅ ሻݐ௫ሺݖሻ൧ఊିଵ൛ሾݐ௝ሺߠsin߬ݒൣߛ െ ݐ௫ሺݖ െ ߬ሻሿsinߠ௝ሺݐሻ ൅

ሻݐ௬ሺݖൣ െ ݐ௬ሺݖ െ ߬ሻ൧cosߠ௝ሺݐሻൟ (17) 
            

Setting ݖ௫ሺݐሻ and ݖ௬ሺݐሻ to zero in light of (17), (5) and (15) 
causes (14) to become 

 
݉௫ݔሷ୲ሺݐሻ ൅ ܿ௫ݔሶ୲ሺݐሻ ൅ ݇௫ݔ୲ሺݐሻ ൌ െܨ୮௫ሺݐሻ       (18a) 

 
݉௫ݕሷ୲ሺݐሻ ൅ ܿ௬ݕሶ୲ሺݐሻ ൅ ݇௬ݕ୲ሺݐሻ ൌ െܨ୮௬ሺݐሻ       (18b) 

 
where  
ሻݐ௣௫ሺܨ ൌ ሻఊ߬ݒሺݓܥ ∑ ݃௝ሺݐሻsinఊߠ௝ሺݐሻൣࣲsinߠ௝ሺݐሻ ൅ cosߠ௝ሺݐሻ൧ே

௝ୀଵ (19a) 
 

ሻݐ௣௬ሺܨ ൌ ሻఊ߬ݒሺݓܥ ∑ ݃௝ሺݐሻsinఊߠ௝ሺݐሻൣെࣲcosߠ௝ሺݐሻ ൅ sinߠ௝ሺݐሻ൧ே
௝ୀଵ      (19b) 

 
The periodic forces െܨ୮௫ሺݐሻ and െܨ୮௬ሺݐሻ respectively drive 
the two orthogonal ߬-periodic tool responses ݔ௧ሺݐሻ and ݕ୲ሺݐሻ. 
Putting (18) into (14) and simplifying leads to 
 

݉௫ݖሷ௫ሺݐሻ ൅ ܿ௫ݖሶ௫ሺݐሻ ൅ ݇௫ݖ௫ሺݐሻ ൌ െ݄௫௫ሺݐሻሾݖ௫ሺݐሻ െ ݐ௫ሺݖ െ ߬ሻሿ െ ݄௫௬ሺݐሻൣݖ௬ሺݐሻ െ ݐ௬ሺݖ െ ߬ሻ൧(20a) 
 

݉௫ݖሷ௬ሺݐሻ ൅ ܿ௬ݖሶ௬ሺݐሻ ൅ ݇௬ݖ௬ሺݐሻ ൌ െ݄௬௫ሺݐሻሾݖ௫ሺݐሻ െ ݐ௫ሺݖ െ ߬ሻሿ െ ݄௬௬ሺݐሻൣݖ௬ሺݐሻ െ ݐ௬ሺݖ െ ߬ሻ൧(20b) 
 

with the specific periodic cutting force variations 
 

݄௫௫ሺݐሻ ൌ ሻఊିଵ߬ݒሺߛܥ ∑ ݃௝ሺݐሻsinଶఊߠ௝ሺݐሻൣ sinߠ௝ሺݐሻ ൅ cosߠ௝ሺݐሻ൧ே
௝ୀଵ      (21a) 

 
݄௫௬ሺݐሻ ൌ ሻఊିଵ߬ݒሺߛܥ ∑ ݃௝ሺݐሻsinଶఊିଵߠ௝ሺݐሻcosߠ௝ሺݐሻൣ sinߠ௝ሺݐሻ ൅ cosߠ௝ሺݐሻ൧ே

௝ୀଵ    (21b) 
 

݄௬௫ሺݐሻ ൌ ሻఊିଵ߬ݒሺߛܥ ∑ ݃௝ሺݐሻsinଶఊߠ௝ሺݐሻൣെ cosߠ௝ሺݐሻ ൅ sinߠ௝ሺݐሻ൧ே
௝ୀଵ     (21c) 

 
݄௬௬ሺݐሻ ൌ ሻఊିଵ߬ݒሺߛܥ ∑ ݃௝ሺݐሻsinଶఊିଵߠ௝ሺݐሻcosߠ௝ሺݐሻൣെ cosߠ௝ሺݐሻ ൅ sinߠ௝ሺݐሻ൧ே

௝ୀଵ (21d) 
 
Equation (20) is put in matrix form to read 

 
ሻݐሷሺܢ ൅ ሻݐሶሺܢଵ۱ିۻ ൅ ሻݐሺܢଵ۹ିۻ ൌ ݐሺܢଵ۶ିۻ െ ߬ሻ (22) 

 
where  ܢሺݐሻ ൌ ሼݖ௫ሺݐሻ  ሻሽ் andݐ௬ሺݖ
 

ۻ ൌ ൤
݉௫ 0
0 ݉௬

൨, ۱ ൌ ൤
ܿ௫ 0
0 ܿ௬

൨, ۹ ൌ ൤
݇௫ 0
0 ݇௬

൨,  

۶ ൌ ቈ
െ݄ݓ௫௫ሺݐሻ െ݄ݓ௫௬ሺݐሻ
െ݄ݓ௬௫ሺݐሻ െ݄ݓ௬௬ሺݐሻ቉           (23) 

 
Making use of state variables ߦଵ

ሺଶሻሺݐሻ ൌ ଶߦ ,ሻݐ௫ሺݖ
ሺଶሻ ൌ  ,ሻݐሶ௫ሺݖ

ଷߦ
ሺଶሻሺݐሻ ൌ ସߦ ሻ andݐ௬ሺݖ

ሺଶሻሺݐሻ ൌ  ሻ results in the state spaceݐሶ௬ሺݖ
form 
 

૆ሶ ሺଶሻሺݐሻ ൌ ሺଶሻ૆ሺଶሻሺtሻۯ ൅ ۰ሺଶሻሺݐሻ૆ሺଶሻሺtሻ െ ۰ሺଶሻሺݐሻ૆ሺଶሻሺݐ െ ߬ሻ(24) 
 

where ࣈሺଶሻሺtሻ ൌ ൛ߦଵ
ሺଶሻሺݐሻ ଶߦ

ሺଶሻሺݐሻ ଷߦ
ሺଶሻሺݐሻ ସߦ

ሺଶሻሺݐሻൟ
்
 and 

 

ሺଶሻۯ ൌ ൦

0 1 0 0
െ߱௡௫

ଶ െ2߱ߞ௡௫ 0 0
0 0 0 1
0 0 െ߱௡௬

ଶ െ2߱ߞ௡௬

൪ , ۰ሺଶሻሺݐሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ

0 0 0 0
െ ௪௛ೣೣሺ௧ሻ

௠ೣ
0 െ ௪௛ೣ೤ሺ௧ሻ

௠ೣ
0

0 0 0 0
െ ௪௛೤ೣሺ௧ሻ

௠೤
0 െ ௪௛೤೤ሺ௧ሻ

௠೤
ے0

ۑ
ۑ
ۑ
ۑ
ې

 

(25) 
 

The natural frequencies and damping ratios of the tool are 
given in terms of modal parameters ݇௫, ݉௫, ܿ௫, ݇௬, ݉௬ and ܿ௬ 
respectively as ߱௡௫ ൌ ඥ݇௫ ݉௫⁄  , ߱௡௬ ൌ ඥ݇௬ ݉௬⁄ ௫ߞ  , ൌ
ܿ௫ 2ඥ݉௫݇௫⁄  and ߞ௬ ൌ ܿ௬ 2ඥ݉௬݇௬⁄ . 

III. CHATTER STABILITY ANALYSIS VIA MODIFIED FULL-
DISCRETIZATION MAP  

Equations (13) and (24) are combined in the equation 
 

ሶࣈ ሺୢሻሺݐሻ ൌ ሺୢሻ૆ሺୢሻሺtሻۯ ൅ ۰ሺୢሻሺݐሻ૆ሺୢሻሺtሻ െ ۰ሺୢሻሺݐሻ૆ሺୢሻሺݐ െ ߬ሻ(26) 
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where d ൌ 1 or 2 denotes the degree of freedom. It is written 
in [11] that the method of full-discretization developed by 
Ding et al [9] for study of milling stability starts with dividing 
the discrete delay τ of the system into ݇ equal time intervals 
ሾݐ௜, ݅ ௜ାଵሿ whereݐ ൌ 0, 1, 2, … … … ሺ݇ െ 1ሻ and approximating 
(26) as 
 

૆ሶ ሺୢሻሺݐሻ ൌ ሻݐሺୢሻ૆ሺୢሻሺ࡭ ൅ ۰෩ ሺୢሻሺݐሻ૆෨ሺୢሻሺݐሻ െ ۰෩ ሺୢሻሺݐሻ૆෨ሺୢሻሺݐ െ ߬ሻ, ,௜ݐሾ ߳ ݐ  ௜ାଵሿ(27)ݐ
 
where ݐ௜ ൌ ݅ ఛ

௞
ൌ   ,ݐ∆݅

۰෩ሺୢሻሺݐሻ ൌ ۰௜
ሺୢሻ ൅ ۰೔శభ

ሺౚሻ ି۰೔
ሺౚሻ

∆௧
ሺݐ െ ௜ሻݐ

૆෨ሺୢሻሺݐሻ ൌ ૆௜
ሺୢሻ ൅ ૆೔శభ

ሺౚሻ ି૆೔
ሺౚሻ

∆௧
ሺݐ െ ௜ሻݐ

૆෨ሺୢሻሺݐ െ ߬ሻ ൌ ૆௜ି௞
ሺୢሻ ൅ ૆೔శభషೖ

ሺౚሻ ି૆೔షೖ
ሺౚሻ

∆௧
ሺݐ െ ௜ሻݐ

     (28) 

  
and ૆௜

ሺୢሻ ൌ ૆ሺୢሻሺݐ௜ሻ. The basic idea of semi-discretization 
employed in arriving at (27) is that ۰ሺୢሻሺݐሻ૆ሺୢሻሺtሻ and 
۰ሺୢሻሺݐሻ૆ሺୢሻሺݐ െ ߬ሻ are discretized while ૆ሶ ሺୢሻሺݐሻ and ૆ሺୢሻሺݐሻ are 
left undiscretized. The derivation process hence follows the 
path to the modified full-discretization map (MFDM) that is 
generalized for both 1-DOF and 2-DOF end-milling processes. 
Definite integration of (27) in the discrete interval ሾݐ௜,  ௜ାଵሿ inݐ
light of the result ׬ ሺݐ െ ௧೔శభݐ௜ሻ௡dݐ

௧೔
ൌ ௡ାଵݐ∆ ሺ݊ ൅ 1ሻ⁄  leads to 

 

૆௜ାଵ
ሺୢሻ ൌ e࡭ሺౚሻ∆௧૆௜

ሺୢሻ ൅
ݐ∆
6

൫۰௜
ሺୢሻ ൅ 2۰௜ାଵ

ሺୢሻ ൯૆௜ାଵ
ሺୢሻ ൅

ݐ∆
6

൫۰௜ାଵ
ሺୢሻ ൅ 2۰௜

ሺୢሻ൯૆௜
ሺୢሻ

െ
ݐ∆
6

൫۰௜
ሺୢሻ ൅ 2۰௜ାଵ

ሺୢሻ ൯૆௜ାଵି௞
ሺୢሻ െ

ݐ∆
6

൫۰௜ାଵ
ሺୢሻ ൅ 2۰௜

ሺୢሻ൯૆௜ି௞
ሺୢሻ  

(29) 
 

Rearranged, (29) becomes  
 
૆௜ାଵ

ሺୢሻ ൌ ۵ିଵ ቂe࡭ሺౚሻ∆௧ ൅ ∆௧
଺

ቀ۰௜ାଵ
ሺୢሻ ൅ 2۰௜

ሺୢሻቁቃ ૆௜
ሺୢሻ െ ∆௧

଺
۵ିଵ ቀ۰௜

ሺୢሻ ൅

2۰௜ାଵ
ሺୢሻ ൯૆௜ାଵି௞

ሺୢሻ െ ∆௧
଺

۵ିଵ ቀ۰௜ାଵ
ሺୢሻ ൅ 2۰௜

ሺୢሻቁ ૆௜ି௞
ሺୢሻ   

(30) 
 

where ۵ ൌ ۷ െ ∆௧
଺

ቀ۰௜
ሺୢሻ ൅ 2۰௜ାଵ

ሺୢሻ ቁ and ۷ is a 2d ൈ 2d identity 
matrix. This is put in 2dሺk ൅ 1ሻ-dimensional matrix form 
 

ە
ۖۖ
۔

ۖۖ
ۓ ૆௜ାଵ

ሺୢሻ

૆௜
ሺୢሻ

૆௜ିଵ
ሺୢሻ

ڭ
૆௜ାଵି௞

ሺୢሻ ۙ
ۖۖ
ۘ

ۖۖ
ۗ

=

ۏ
ێ
ێ
ێ
ଵଵۻۍ

௜ ૙ ڮ ૙ ଵ௞ۻ
௜ ଵ,௞ାଵۻ

௜

۷ ૙ ڮ ૙ ૙ ૙
૙ ۷ ڮ ૙ ૙ ૙
ڭ ڭ ڭ ڭ ڭ ڭ
૙ ૙ ૙ ૙ ۷ ૙ ے

ۑ
ۑ
ۑ
ې

ە
ۖۖ
۔

ۖۖ
૆௜ۓ

ሺୢሻ

૆௜ିଵ
ሺୢሻ

૆௜ିଶ
ሺୢሻ

ڭ
૆௜ି௞

ሺୢሻ ۙ
ۖۖ
ۘ

ۖۖ
ۗ

   (31) 

 

where ۻଵଵ
௜ ൌ ۵ିଵ ቂe࡭ሺౚሻ∆௧ ൅ ∆௧

଺
ቀ۰௜ାଵ

ሺୢሻ ൅ 2۰௜
ሺୢሻቁቃ, ۻଵ௞

௜ ൌ

െ ∆௧
଺

۵ିଵቀ۰௜
ሺୢሻ ൅ 2۰௜ାଵ

ሺୢሻ ቁ and ۻଵ,௞ାଵ
௜ ൌ െ ∆௧

଺
۵ିଵቀ۰௜ାଵ

ሺୢሻ ൅

2۰௜
ሺୢሻ൯. If (31) is designated as ܠ௜ାଵ ൌ  ௜ then the MFDMܠ௜ۻ

for the system becomes 
 

௞ܠ ൌ ௞ିଶۻ௞ିଵۻ … … .  ଴.  (32)ܠ଴ۻ
 

The finite monodromy operator becomes  
 

ૐ ൌ ௞ିଶۻ௞ିଵۻ … … .  ଴.    (33)ۻ
 

Equation (32) is a 2dሺ݇ ൅ 1ሻ-dimensional discrete time 
map of the system with ૐ acting as a linear operator that 
transforms the delayed state ܠ଴ to the present state ܠ௞. 

Suppose by a suitable model transformation method, (26) is 
completely transformed into an infinite dimensional periodic 
ordinary differential equation ܟሶ ሺݐሻ ൌ ۱ሺݐሻܟሺݐሻ with solution 
ሻݐሺ࢝ ൌ શሺݐሻ࢝ሺ0ሻ. The extended Floquet theory gives that 
the state transition matrix શሺݐሻ is given by શሺݐሻ ൌ  ሻ݁۰௧ݐሺ۾
where ۰ is a constant infinite square matrix, ۾ሺݐሻ is ߬-periodic 
and has initial condition of identity matrix. Use made of 
similarity transformation of second rank tensors results in the 
solution ࢝ሺݐሻ having the form ࢝ሺݐሻ ൌ  ሺ0ሻ࢝ଵି܄۲௧݁܄ሻݐሺ۾
where ܄ is the matrix of eigen-vectors of ۰ and ۲ is a 
diagonal matrix with eigen-values of ۰ as non-zero elements. 
The condition for asymptotic stability of ࢝ሺݐሻ thus becomes 
that each of the infinitely many eigen-values of ۰ has a 
negative real part. The monodromy matrix now becomes 
શሺ߬ሻ ൌ  ଵ. Since the eigenvectors of monodromyି܄۲ఛ݁܄
matrix શሺ߬ሻ are identical with those of B, similarity 
transformation results in 

 
ۻ ൌ ݁۲ఛ          (34) 

 
where ۻ is a diagonal matrix with eigen-values of શሺ߬ሻ as 
elements. It can be seen from (34) that the relationship 
between eigen-values of શሺ߬ሻ designated ߤ௜ and eigen-values 
of ۰ designated ߣ௜ is 
 

௜ߤ ൌ ݁ఒ೔ఛ          (35) 
 
If ߣ௜ ൌ ߪ ൅ ݆߱ then |ߤ௜| ൌ ݁ఙఛ. This means that the 

necessary and sufficient condition for asymptotic stability of 
the system is that each of the eigenvalues of શሺ߬ሻ has a 
magnitude that is less than one. In other words, all the eigen-
values of the matrix શሺ߬ሻ must exist within a unit circle 
centred at the origin of the complex plane. If the eigenvalue of 
શሺ߬ሻ with highest magnitude is designated ߤ୫ୟ୶ the stability 
transition curve of (26) is tracked by locating the critical 
parameter combinations that allow |ߤ୫ୟ୶| ൌ 1. Most the 
eigenvalues of શሺ߬ሻ are clustered around the origin of the unit 
circle [12] enabling the finite monodromy operator ૐ (given 
by (33)) to capture ߤ୫ୟ୶ when approximation parameter ݇ is 
big enough. Realistic condition for asymptotic stability of the 
system now becomes that each of the 2dሺ݇ ൅ 1ሻ eigenvalues 
of ૐ has a magnitude that is less than one.  

IV. RESULTS, VALIDATION AND DISCUSSIONS 
Stability charts are generated for both 1-DOF and 

symmetric 2-DOF chatter of full-immersion end-milling 
processes with parameters; 
݉ ൌ 0.431kg, ߱୬ ൌ 5700 radsିଵ, ߦ ൌ 0.02 , ܥ ൌ 3.5 ൈ
10଻Nmି଻ ସ⁄ , ݒ ൌ 0.0025msିଵ and ࣲ ൌ 0.3. These are shown 
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Fig. 13 MATLAB dde23 solutions of fully-immersed 2-DOF three 
tooth end-miller with history ሼߦଵ
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Some selected critical parameter combinations are inserted 
into the monodromy matrix of 1-DOF full-immersion end-
milling and the critical characteristic multipliers ߤୡ extracted. 
All the secondary Hopf bifurcation lobes (SHBL’s) of full-
immersion end-milling with simultaneous teeth engagement 
(end-millers with number of teeth ܰ ൒ 3) exhibit a simple but 
unique behaviour. Each of such SHBL’s has a single 
minimum point (point M of the SHBL labeled ABCD in Fig. 8 
(a.i) for example) at which ߤୡ are almost pure imaginary. The 
lower spindle speed portion (LSSP) of each such SHBL is the 
portion at the left of the minimum point while the higher 
spindle speed portion (HSSP) is the portion at the right of the 
minimum point. It is seen that secondary Hopf bifurcation 
occurs in the right-half plane of the unit circle centred at the 
origin of the complex plane at any point in the LSSP (Fig. 14 
(a)). Secondary Hopf bifurcation occurs in the left-half plane 
of the unit circle at any point in the HSSP (Fig. 14 (b)). The 
positive real part of ߤୡ decreases in size from about unity to 
about zero as critical parameter combination moves from start 
of the LSSP towards the minimum point. The negative real 
part of ߤୡ increases in magnitude from about zero to about 
unity as critical parameter combination moves away from the 
minimum point along the HSSP. The SHBL marked ABCD on 
the stability chart of low-speed three tooth end-miller (Fig. 8 
(a.i)) has the LSSP portion studded with crosses with the 
positive Reሺߤୡሻ monotonically decreasing from A to B. The 
portion studded with circles is the HSSP that exhibits negative 
Reሺߤୡሻ that monotonically increases in magnitude from C to 
D. 

 
(a)     (b) 

Fig. 14 For ܰ ൒ 3 (a) secondary Hopf bifurcation occurs in the right-
half portion of the unit circle at any point in the LSSP of each SHBL 
(b) secondary Hopf bifurcation occurs in the left-half portion of the 

unit circle at any point in the HSSP of each SHBL. 
 
From (36) results that bifurcations occur according to the 

equation 
 

ୡߤ ൌ ݁୨ఠ೎ఛ ൌ cos ߱௖߬ ൅ j sin ߱௖߬  (37) 
 

The quantity ߱௖߬ can be considered as an angle that varies 
as critical parameter combination changes from the start to the 
end of a SHBL. For example the variation of ߱௖߬ as critical 
parameter combination moves from A to D along the marked 
SHBL of three tooth miller shown in Fig. 8 (a.i) is as follows; 
߱௖߬ ൌ ݊ߨ2 േ ߳ at the inception of the lobe (point A) with 
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߳ ൐ 0 and ݊ ൌ 0, 1, 2, …. The small positive quantity ߳ is 
introduced to uphold the condition that period one bifurcation 
does not occur in milling process. It then varies to ߱௖߬ ൌ
ሺ݊ߨ2 േ 1 4⁄ ሻ in the neighbourhood of the minimum point M. 
Variation finally occurs from ߱௖߬ ൌ ሺ݊ߨ2 േ 1 4⁄ ሻ close to M 
to about ߱௖߬ ൌ ሺ݊ߨ2 േ 1 2⁄ ሻ at the end of the lobe (point D) 
where flip bifurcation is expected to occur. Same trend in ߱௖߬ 
occurs in the next SHBL. This trend means that a flip 
bifurcation lobe (FBL) is expected to connect two adjacent 
SHBL’s. Invisibility of a connecting FBL may not necessarily 
mean that it is non-existent but could mean that it is too small 
in size to be seen. Since ߱௖ ൌ ߱௖ሺ߬,  ሻ the quantity ߱௖߬ isݓ
also a function of ߬ and ݓ. Stability charts are normally 
generated on a data grid of constant mesh size. Suppose the 
distance between two adjacent mesh points in Ω direction is 
∆Ω then the fractional change incurred in ߬ due to fractional 
change in spindle speed ஐ݂ ൌ ∆Ω Ω⁄  is ఛ݂ ൌ ∆߬ ߬⁄ ൌ
ሺ1 ൅ ஐ݂ሻିଵ െ 1. In the limit when Ω ՜ ∞, the ratio ఛ݂ ՜ 0. If 
for the three tooth miller, variation in ߱௖߬ derives 
predominantly from variation in ߬ then more ∆Ω’s will be 
needed to cause ߱௖߬ traverse about ߨ radians need for 
generation of a SHBL. This could be part of the reasons why 
bifurcation lobes get bigger and more visible as Ω rises. A 
FBL could be too small to be seen when Ω is too small such 
that single ∆Ω change in Ω could cause too much change in 
߱௖߬ that the condition for flip bifurcation ߱௖߬ ൌ ݊ߨ2 േ  ߨ
(which is a very restrictive condition when compared with the 
restriction for secondary Hopf Bifurcation 0 ൏ |߱௖߬| ൏
݊ߨ2| േ  is not allowed to be met. If Ω is high enough the (|ߨ
condition for flip bifurcation could approximately be met in 
the event of multiple ∆Ω change in Ω. These could be part of 
the reasons why FBL is invisible in the low speed chart but 
visible in the high speed chart of the fully-immersed three-
tooth miller (see Figs. 8 (a.i) and (b.i)).  

One special thing the about fully-immersed three-tooth 
miller is that it acts as a boundary case because when ܰ ൏ 3 
some SHBL’s exhibit more than one turning point. An 
example of such a curve is marked EFGHI in the high-speed 
stability chart of fully immersed one tooth miller (Fig. 6 (b.i)). 
Sample points are marked with cross or circle depending on 
whether Reሺߤୡሻ is positive or negative. Increasing in ܰ of full-
immersion end-milling causes decrease in the range of specific 
cutting force variation ݄ሺݐሻ ൌ  ሻ. The implicationݐሺݍሻఊିଵ߬ݒሺߛ
is that periodic DDE governing end-milling processes 
approaches autonomous DDE governing the turning processes 
as ܰ increases (milling with infinite number of cutting edges 
is dynamically equivalent with the turning process). Thus flip 
Bifurcation, which does not have any meaning in turning 
process is expected to disappear in full-immersion end-milling 
when ܰ gets higher. This could be the reason why flip 
bifurcation lobes are not seen in the stability charts of six, 
eight and ten tooth 1-DOF end-miller as seen in Figs. 9 (a.i), 
(b.i); 10 (a.i), (b.i); 11 (a.i), and (b.i). 

V. CONCLUSION 
Stability analysis of a full-immersion end-milling with the 

parameters; tool mass ݉ ൌ 0.0431kg, tool natural frequency 
߱௡ ൌ 5700 radsିଵ, damping factor ߦ ൌ 0.02 and workpiece 
cutting coefficient ܥ ൌ 3.5 ൈ 10଻Nmି଻ ସ⁄  results in transition 
curves that demarcate parameter planes of spindle speed and 
depth of cut into stable and unstable sub-domains . A modified 
map of full-discretization method that is generalized for both 
1-DOF and 2-DOF end-milling is utilized. Both 1-DOF and 2-
DOF cases are considered for each of one, two, three, six, 
eight and ten tooth end-millers. Stability chart of each 2-DOF 
case is generally seen to be much more conservative (has 
much smaller stable sub-space) than the corresponding 1-DOF 
case. The validity of the charts is based on agreement with 
MATLAB dde23 analysis of governing periodic DDE at 
selected points of the parameter space. It is noted that the 
agreement between the stability charts and MATLAB dde23 
solutions is not affected by the choice of initial history of 
governing periodic DDE. 

It is found that when the number of teeth ܰ ൒ 3, fully 
immersed 1-DOF end-milling has secondary Hopf bifurcation 
lobes (SHBL’s) that exhibit one minimum point each. At each 
minimum point, critical characteristic multipliers are almost 
pure imaginary. Each of such SHBL has two distinguished 
parts, namely; the Lower Spindle Speed Portion (LSSP) 
placed left of the minimum point and Higher Spindle Speed 
Portion (HSSP) placed right of the minimum point. Secondary 
Hopf bifurcation occurs only in the right-half side of the unit 
circle in the LSSP and occurs only in the left-half side of the 
unit circle in HSSP. It is found that bifurcation lobes generally 
get bigger and more visible with increase in spindle speed 
because bigger spindle speed range is need for generation of a 
complete SHBL as spindle speed increases. It is discovered 
that the real part of critical characteristic multipliers varies 
from about 1 to about 0 as a critical point moves from start of 
LSSP towards the minimum point. When the critical point 
moves along HSSP away from the minimum point the real 
part of critical characteristic multipliers varies from about 0 to 
about -1. This means that bifurcation gets towards flip towards 
the end of a SHBL. It is concluded in this work that even 
when flip bifurcation is not seen, it is expected to occur in the 
immediate vicinity of intersection of two SHBL’s.  
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