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the Full-Discretization Method, Part 1: Validation of
Results and Study of Stability Lobes by Numerical
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Abstract—The objective in this work is to generate and discuss
the stability results of fully-immersed end-milling process with
parameters; tool mass m = 0.0431kg, tool natural frequency
wyp = 5700 rads™!, damping factor £ = 0 . Gad workpiece cutting
coefficient C = 3.5 x 10’Nm~7/%. Different no of teeth is
considered for the end-milling. Both 1-DOF and 2-DOF chatter
models of the system are generated on the basis of non-linear force
law. Chatter stability analysis is carried out using a modified form
(generalized for both 1-DOF and 2-DOF models) of recently
developed method called Full-discretization. The full-immersion
three tooth end-milling together with higher toothed end-milling
processes has secondary Hopf bifurcation lobes (SHBL’s) that exhibit
one turning (minimum) point each. Each of such SHBL is
demarcated by its minimum point into two portions; (i) the Lower
Spindle Speed Portion (LSSP) in which bifurcations occur in the right
half portion of the unit circle centred at the origin of the complex
plane and (ii) the Higher Spindle Speed Portion (HSSP) in which
bifurcations occur in the left half portion of the unit circle. Comments
are made regarding why bifurcation lobes should generally get bigger
and more visible with increase in spindle speed and why flip
bifurcation lobes (FBL’s) could be invisible in the low-speed stability
chart but visible in the high-speed stability chart of the fully-
immersed three-tooth miller.

Keywords—Chatter, flip bifurcation, modified full-discretization
map stability lobe, secondary Hopf bifurcation.

[. INTRODUCTION

OMPONENTS of high dimensional integrity are in ever

increasing need. Machine tools such as Lathe and Milling
machines are needed for production of such components.
Machine tools would not perform effectively under highly
disturbed situations thus the need for vibration control in such
machines. Achieving good surface finish and high
productivity are two opposed demands in machining
operation. This means that ascertaining safe operation range
for good product, improved tool life and design of machine
tools is necessary.
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A typical machining process of major importance is the
end-milling in which a machined surface that is at right angle
with the cutter axis results as shown Fig. 1. In end-milling,
cutters equipped with shanks for mounting on the spindle are
utilized.
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Fig. 1 End-milling

Unstable regenerative machine tool vibration is basically
called chatter. Chatter invariably results whenever there is
dynamic interaction between the tool and the workpiece of a
milling process under unstable cutting parameter combination.
Forced, self-exited and damped natural vibrations combine to
compound the dynamics of milling process. The forced
vibration component is driven by a periodic force stemming
from regular engagement and disengagement of tool and
workpiece. Regenerative effect is underpinned as the major
cause of the self-exited vibrations (mechanical chatter) in
machining [1]. Arnold first suggested regenerative effects as
the potential cause of chatter and is now arguably considered
the cause of the most detrimental type of machine tool
vibration [2]. Chatter occurring during machining operation
thus results from cutting force variation caused by
disturbance-induced surface waviness of regenerative effects.

Effects of periodic chip thickness and delayed position on
the present position of the tool result in periodic delay
differential equation (DDE) models for regenerative vibrations
of milling. Among the various advanced methods utilized in
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tracking the approximate stability transition curve of
regenerative milling are; the finite element in time [3], [4],
Chebyshev Polynomials [4], [5], semi-discretization [6],
Fargue-type approximation [7], [8]. The normal procedure is
to generate a finite dimensional discrete approximation to the
governing infinite dimensional periodic DDE and carrying out
eigen-value analysis of resulting finite monodromy operator as
cutting parameters vary.

The semi-discretization concept as utilized in a recently
developed method called Full-discretization [9] is utilized here
in deriving an alternate finite map called modified full-
discretization map. The modified full-discretization map is
generalized for both 1-DOF and 2-DOF end-milling. The
system considered is a Perspex or wood end milling CNC
machine considered in [8] to have the following modal
parameters; mass m = 0.0431kg, Natural frequency w, =
5700 rads™!, and damping factor € = 0.02. The stability
characterization of the system is in the form of stability charts
in which parameter space of spindle speed and dept of cut are
demarcated into stable and unstable domains by stability
transition curves. In literature such charts are normally
validated by comparing results of two different methods [3],
[4] but in this work accurate MATLAB dde23 solution of
several parameter points are used in validation of both cases of
I-DOF and 2-DOF end-milling. Stability or instability of
MATLAB dde23 solutions are seen to be independent of
history of end-milling chatter model. This is a unique feature
of this work.

Parameter points are picked from the stability transition
curves and substituted into the monodromy operator for
extraction of critical characteristic multipliers. It results that in
conformity with literature [10], either a pair of complex
conjugate critical characteristic multipliers or a critical
characteristic multiplier of -1 exists on the stability transition
curves of end-milling. The three tooth fully-immersed 1-DOF
end-milling together with higher toothed fully-immersed 1-
DOF end-milling has secondary Hopf bifurcation lobes
(SHBL’s) that exhibit one minimum point each. Each of such
SHBL is demarcated by its minimum point into Lower Spindle
Speed Portion (LSSP) in which bifurcations occur in the right
half portion of the unit circle centered at the origin of the
complex plane and Higher Spindle Speed Portion (HSSP) in
which bifurcations occur in the left half portion of the unit
circle. The real part of the pair of critical characteristic
multipliers varies from about 1 to about 0 as a critical point
moves from start to end of a LSSP. When the critical point
moves from start to end of a HSSP the real part of the pair of
critical characteristic multipliers varies from about 0 to about -
1. This means that bifurcation gets towards flip towards the
end of a SHBL. Comments are made regarding why
bifurcation lobes should generally get bigger and more visible
with increase in spindle speed. It is concluded in this work that
even when flip bifurcation is not seen, it is expected to occur
in the immediate vicinity of intersection of two SHBL’s.
These form part of novelty of contribution of this work.

II. MATHEMATICAL MODEL

A. Single Degree of Freedom Model

The dynamical model shown in Fig. 2 is a 1-DOF vibration
model of an end-milling tool in which the tool is given a
spindle speed Q in revolutions per minute (rpm) while the
workpiece has a prescribed feed velocity v imparted on it via
the worktable. The tool and workpiece are engaged at a radial
immersion of p = B/D (ratio of radial depth of cut to tool
diameter). The parameters of the milling process as depicted
on the dynamical model are; m mass of tool, ¢ the equivalent
viscous damping coefficient modeling the hysteretic damping
of the tool and k the stiffness of the tool.

Fig. 2 Dynamical model of 1-DOF end-milling

The free-body diagram for the tool dynamics when the
motion of the tool x(t) is considered to be a summation of
feed motion and vibrations is as shown in Fig. 3.
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Fig. 3 Free-body diagram of tool dynamics

The differential equation governing the motion of the tool
as seen from the free-body diagram becomes

mi(t) + c[x(t) —v] + k[x(t) —vt] + E,(t) =0 €))

A tool-workpiece disposition as shown in Fig. 4 is
considered for the jth tooth of the tool. In Fig. 4 the cutting
force is considered as having normal and tangential
components designated Fy,orm j(t) and Fyap ;(t) respectively.
Axial component of cutting force is neglected because helix
angle is considered zero. The x —component of cutting force
for the tool thus becomes
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Fx (t) = Z?:l 9gj (t) [Fnorm,/' (t)Sinej (t) + Ftan,j (t)COSHj (t)] (2)

N is the number teeth on the milling tool indexed with the
values j =1, 2, 3......N. The instantaneous angular position of
jth tooth 0;(t) is measured clockwise relative to the negative
y —axis to give

60 =(2)t+(-DZ+a 3)

where « is the initial angular position of the tooth indexed 1.
Screen or switching function g;(t) for the jth tooth either
have the values 1 or 0 depending on whether the tooth is
active or not. At full-radial immersion p = 1, the screen
function is formulated to have the form

g9;®) = %{1 + sgn[sin 6;(0)]}. 4)

Ftan.j(t)

e
5

Fig. 4 Milling tooth-workpiece disposition

The cutting forces on jth tooth are given by the non-linear
law

Fianj () = Cranw[fasing;(t)]” (5a)

Fnorm,j ®) = Cnormw[ﬁlSingj (t)]y = XFtan,j(t) (5b)

where w is depth of cut, Ci,, and Cpory are the tangential and
normal cutting coefficients associated with the workpiece, X'
is the ratio C,orm/Cran, fa is the actual feed given as x(t) —
x(t — ) which is the difference between present and one
period delayed position of tool and y is an exponent that is
usually less than one having a value of 3/4 for the three-
quarter rule utilized here. Works of Balint, Bali and Tlusty are
reported in [10] to popularize the value of 0.3 for X.
Equations (2) and (5) taken together give

E. () = wq@®)[x(8) —x(t = D" (6)

where q(t) = Z;":lg]- (t)Csin” 6;(t) [Xsint‘)j (t) + cos#; (t)] is
a t(= 60/NQ) periodic function. The vibration of the tool has
two components namely; the t-periodic response x:(t) due to
periodic force of tool/workpiece interaction and the
regenerative perturbations z(t). Then

x(t) = vt + x.(t) + z(¢t). 7
Substitution of (6) and (7) into (1) gives
My (6) + e (8) + kxy(8) + mE(E) + cz(t) + kz(t) = —wq(®) (e + [2(8) — 2(¢ - D(8)
Without perturbation, (8) simplifies to
m¥(t) + cxe(t) + kxi(6) = —wq(O) (v)Y )

Equation (9) governs the periodic motion of the system
driven by a periodic force F,(t) = —wq(t)(vt)". Equation (9)
means that (8) becomes

mz(t) + cz(t) + kz(t) = wq(t) (W)’ — wq®){vt + [z(t) — z(t — ©)]}(10)
Put in Taylor series about vt and linearizing, (10) becomes
mzZ(t) + cz(t) + kz(t) = —wh(@)[z(t) —z(t—71)] (1)

where h(t) = y(vt)" 1q(t) is the specific periodic cutting
force variation. Equation (11) is re-written to give

() + 28w,2(8) + (w0 +52) 2(t) = 02(t — 1) (12)
m m

that governs regenerative vibration of linear 1-DOF milling
systems. The natural frequency and damping ratio of the tool
system are given in terms of modal parameters k,m andc
respectively as w, = /k/m and & = ¢/2v/mk. These modal
parameters are easily extracted from experimental plot of the
tool  frequency  response  function R(w)=X/F =
1/J(k — w?m)? + w?c? for forced single degree of freedom
vibration.

With the substitutions 51(1) (®) = z(t) and f;l)(t) = z(t)
made, (12) could be put in state differential equation form as

V() = ADED () + BOOEFV () - BO)ED (£ —1) (13)

(1) &)
where §1(t) = { ) (t)], ED(t—1) = { 1 (- T)}, AW =

IR0 eV
0 1 dBD() = Oh , 0
_wrzl —wan] an ) = _wnf) ol

B. Two Degree of Freedom Model

The dynamical model shown in Fig. 5 is a 2 DOF depiction
of an end-milling tool that vibrates in the x —y plane
(horizontal plane). The modal parameters k., m, and c, are
for x —vibration while k,,m, and c, are for y —vibration.
The tool is symmetric when the x and y modes of vibration
have identical parameters.
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Fig. 5 Dynamical model of end-milling

The governing equations of motion becomes
myX(t) + c, [x(t) — v] + k[x(t) — vt] + E.(t) = 0(14a)
m,y(t) + ¢, y(t) + ky,y(t) + E,(t) = 0.  (14b)

It is seen from Fig. 4 that the x and y —components of
cutting force on the tool are

Fx(t) = Z?I=1 gj(t) [Fnorm,j (t)Singj (t) + Ftan,j (t)COSH]-(t)](lsa)
Fy(t) = 211 9;()[~Fnorm,j (£)c0s8;(t) + Fiap,;(£)sin;(£)].(15b)

The actual feed rate f, of jth tooth at angular position 6;(t)
is inferred from Fig. 4 to be

fa = [x() — x(t — T)]sinb;(t) + [y(t) — y(t — 1)]cos8; (t)(16)

where x(t) = vt + x(t) + z,(t), y(t) = y(t) + 2, (t). The
quantities z,(t) and z,(t) are respective perturbations in x
and y directions. The linearized Taylor series expansion of f,”
about vsing;(t) then reads

f.¥ = [vrsing; (t) g y|vtsing; (t) v [z, (t) — 2z, (t — T)]sind;(¢) +
j j j
[2,® — z,(t — D)]cost; (D)} (17)

Setting z,(t) and z, (t) to zero in light of (17), (5) and (15)
causes (14) to become

mxjc.t(t) + Cxxt(t) + kxxt(t) = _pr (t) (183)
myJe(t) + cyye(t) + kyye(£) = —F,y (£) (18b)

where
Fox(t) = Cw(vr)” Z?’:lgj(t)sinyej(t) [Xsin@l-(t) + cosHj(t)](19a)

() = Cw(ur)Y T, g;(£)sin? 6;(6) [~ X cosb; (t) + sind;(1)]  (19b)
The periodic forces —F,,(t) and —F,,,(t) respectively drive
the two orthogonal T-periodic tool responses x;(t) and y,(t).
Putting (18) into (14) and simplifying leads to

M) + €2, () + iz () = —hp (O2,(0) — 2,8 = D] = by O)]2,0) — 2, — 1](20a)

My (€) + €2y (0) + Ky 2, (£) = ~hyu (D2, (8) = 2t = D] = by (D)2, () = 2, — ] (20b)
with the specific periodic cutting force variations

Ry (£) = Cy(wD)V 1 T, g;(8)sin®6;(t)[sind; () + cos6;(1)]  (21a)

By () = Cy(r)Y TI, g;()sin?~16;(¢)cos8; (¢)[sing; () + cos6; ()]  (21Db)

hy(£) = Cy(wn)Y 1 T, g;(0)sin?6;(6)[—cosb; () + sind;(©)]  (21c)

hyy (8) = Cy(wr)’ "1 X1, g;(©)sin? =16, (t)cos8; (t)[—cos8; () + sing;(1)](21d)

Equation (20) is put in matrix form to read

Z(t) + M71Cz(t) + M~Kz(t) =M 'Hz(t — 1) (22)
where z(t) = {z,(t) z,(t)}7 and
e e T i L |

_ [_thx(t) _thy(t)

—why,(t) —wh,,(t) (23)

Making use of state variables fl(z) (t) =z, (), 552) = z,(1),

53(2)(1:) = z,(t) and Eiz)(t) = 2,,(t) results in the state space
form

§2 (1) = A®ED (1) + BO()E? (1) — BO(0)ED (¢ — 1)(24)

where E@(t) = (P (1) €P@) 2 ff)(t)}T and

0 0 0 0]
02 1 0 0 Wh(t) 0 Whyy () 0
- 20w 0 0 T 0 T T ‘

@) — | " @nx nx @ _ x x
AT =1 0 0 1 |BPO= o 0 o0
0 0 —wd —2{w, _why® o why® OJ

my my
(25)

The natural frequencies and damping ratios of the tool are
given in terms of modal parameters k,, my, ¢y, ky, m, and c,

respectively as wpy = Ky/My , wny =4k /my, (=
Cx/2+/myky and §,, = ¢, /2, /myk,,.

III. CHATTER STABILITY ANALYSIS VIA MODIFIED FULL-
DISCRETIZATION MAP

Equations (13) and (24) are combined in the equation

ED(6) = ADED () + BD(0)ED (1) — BODED (£ — 1)(26)
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where d = 1 or 2 denotes the degree of freedom. It is written
n [11] that the method of full-discretization developed by
Ding et al [9] for study of milling stability starts with dividing
the discrete delay T of the system into k equal time intervals
[ti, tig1] where i =0,1,2,.........(k — 1) and approximating
(26) as

() = ADFD(E) + BOWED () - BOMFD(t — 1), t e[ty t,,1(27)

where t; = L = iAt,

B(d)(t) B(d) Bl M 1+1 (t — ¢t )
i(d) ) = i(d) Ei+1 §i (t - ti) (28)
ED(t—-1) = E(d) + & k EL X t—1t)

and El@ = ED(¢;). The basic idea of semi-discretization

employed in arriving at (27) is that B@()¥D(t) and
B@D(£)§D (¢ — 1) are discretized while €D (t) and €D (¢) are
left undiscretized. The derivation process hence follows the
path to the modified full-discretization map (MFDM) that is
generalized for both 1-DOF and 2-DOF end-milling processes.
Definite integration of (27) in the discrete interval [t;, t;1] in

light of the result ftt‘iJ'l(t —t)"dt = At™1/(n + 1) leads to

(@) _ ga@arg(d 4 (d) (@) \g(d) (@ (@yg(d)
EH—l A At{ (Bi + ZBl+1)§l+1 (Bi+1 + ZB' )E
At
(d) (d) \g(d) (@ (d)yz(d)
- ?(Bi + ZBi+1)§i+1—k - Z(Biu +2B; )f
(29

Rearranged, (29) becomes

@ ADNe | B (@) | on@)] 5@ _ At o1 (@)
gD = [ c+Z (B +2B) |5 - T 6 (B +
@)@ At @, Hp@) @
Bl )81 =5 67 (B +2B; )E

(30)

where G =1— (B(d) + 2BW

i+1

) and Lis a 2d x 2d identity

matrix. This is put in 2d(k + 1)-dimensional matrix form

(d) (d)
Ei+1 i 0 - 0 i i Ei

@ 11 1k 1k+1 @

& I 0 0 0 0 i1

@ = o I 0 o 0 @ » (31)
St L ) g | i

(d) 0O 0 0 O I 0 (d)
Sivik §ik

where M, = G~ [ ADae 4 A (Bl(f)1 + ZB(d))] M, =

At _ d d _ d
~261(B” +2B{;) and M, =-26"(B{, +
ZBi(d)). If (31) is designated as X;,; = M;X; then the MFDM
for the system becomes

X = My_ My_y ....... MyX,. (32)

The finite monodromy operator becomes
g =M_M_,.... Mg (33)

Equation (32) is a 2d(k + 1)-dimensional discrete time
map of the system with yr acting as a linear operator that
transforms the delayed state X, to the present state x,.

Suppose by a suitable model transformation method, (26) is
completely transformed into an infinite dimensional periodic
ordinary differential equation w(t) = C(t)w(t) with solution
w(t) = P(t)w(0). The extended Floquet theory gives that
the state transition matrix W(t) is given by W(t) = P(t)eB*
where B is a constant infinite square matrix, P(t) is t-periodic
and has initial condition of identity matrix. Use made of
similarity transformation of second rank tensors results in the
solution w(t) having the form w(t) = P(t)VeP'V-1w(0)
where V is the matrix of eigen-vectors of B and D is a
diagonal matrix with eigen-values of B as non-zero elements.
The condition for asymptotic stability of w(t) thus becomes
that each of the infinitely many eigen-values of B has a
negative real part. The monodromy matrix now becomes
P(r) = VeP*V~1. Since the eigenvectors of monodromy
matrix W(r) are identical with those of B, similarity
transformation results in

M = Pt (34)

where M is a diagonal matrix with eigen-values of W(t) as
elements. It can be seen from (34) that the relationship
between eigen-values of W(t) designated y; and eigen-values
of B designated 4; is

= eMr (35)

If 4 =0+ jw then |y|=e°. This means that the
necessary and sufficient condition for asymptotic stability of
the system is that each of the eigenvalues of W(7) has a
magnitude that is less than one. In other words, all the eigen-
values of the matrix W(7) must exist within a unit circle
centred at the origin of the complex plane. If the eigenvalue of
W(t) with highest magnitude is designated . the stability
transition curve of (26) is tracked by locating the critical
parameter combinations that allow |@pmax| = 1. Most the
eigenvalues of W(7) are clustered around the origin of the unit
circle [12] enabling the finite monodromy operator Y (given
by (33)) to capture Uyax When approximation parameter k is
big enough. Realistic condition for asymptotic stability of the
system now becomes that each of the 2d(k + 1) eigenvalues
of Y has a magnitude that is less than one.

IV.RESULTS, VALIDATION AND DISCUSSIONS

Stability charts are generated for both 1-DOF and
symmetric 2-DOF chatter of full-immersion end-milling
processes with parameters;
m = 0.431kg, w, = 5700 rads™%,& = 0.02,C = 3.5 X
10’Nm~7/4,v = 0.0025ms ! and X = 0.3. These are shown
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in Fig. 6 for one tooth end-miller, Fig. 7 for two tooth end-
miller, Fig. 8 for three tooth end-miller, Fig. 9 for six tooth
end-miller, Fig. 10 for eight tooth end-miller, and Fig. 11 for
ten tooth end-miller. Eigen-values of { are calculated for the
low-speed charts with k = 50 on a 200 by 25 data grid with
spindle speed steps AQ = 50rpm and depth of cut steps
Aw = 0.0003m. The high speed charts utilized k = 35 on a
200 by 25 data grid with AQ = 210.5rpm and Aw =
0.0003m. The stability transition curves connect points that
satisfy condition |tmax| = 1. The sub-domain of asymptotic
stability is grey in each of the stability charts while that of
instability is dark. Stability chart for 1-DOF chatter is placed
adjacent to that of 2-DOF chatter of each miller for direct
comparison. Both low speed range 100rpm <Q <
10100rpm and high-speed range 8000rpm <Q <
50100rpm are considered for each miller. 2-DOF analysis
seems to give a much more conservative result since its stable
domain is always much smaller than that of 1-DOF analysis.
This observation is clearer from looking at the vertical scales
of any two adjacent charts. Flip bifurcation lobes are seen for
one, two and three tooth fully-immersed 1-DOF end-milling
but not for the corresponding 2-DOF cases.

The validity of these charts is based on MATLAB dde23
solution of (26) at selected points of the parameter space.
Stable MATLAB dde23 solutions for the fully-immersed three
tooth end-miller exhibit converging orbits at points marked
with star while the unstable (chatter) solutions exhibit
diverging orbits at points marked with diamond in Fig. 8. It is
thus seen that a very good agreement exists between
MATLAB dde23 analysis and the generated charts. MATLAB
dde23 solutions of two sample points of 1-DOF chatter of
three tooth miller are presented in Fig. 12 while those of 2-
DOF system are presented in Fig. 13. MATLAB dde23
solutions of each of the sample points is generated as both a
trajectory and an orbit and placed side by side. Each of the
trajectories clearly reflects stability or instability of
perturbation velocity but with erroneous impression that
perturbation displacement is coincident with time axis. Each
of the orbits complements judgment by correcting this visual
error. Since no consideration is given to perturbation history in
the discrete mapping that led to P, any choice of history (even
stochastic perturbation history of real milling processes) is not
expected to affect stability. This explains why MATLAB
dde23 solutions of (26) that are based on the arbitrarily chosen
constant perturbation history
Ew g0 =00"m 10°ms 1}, te[-7,0] agree
with the stability charts of 1-DOF three tooth end-miller while

solutions based on the history
i) o o Gy =
{107m 10™°ms™* 107m 10 °ms~1}", te[~,0]

agree with stability charts of 2-DOF three tooth end-miller.
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Fig. 6 Stability charts of full-immersion one tooth end-milling, grey
and dark subdomains are for stable and chatter operations
respectively. (a.i) Low speed chart of 1-DOF end-milling (a.ii) Low
speed chart of 2-DOF end-milling (b.i) High speed chart of 1-DOF
end-milling (b.ii) High speed chart of 2-DOF end-milling
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Fig. 7 Stability charts of full-immersion two tooth end-milling, grey
and dark subdomains are for stable and chatter operations
respectively. (a.i) Low speed chart of 1-DOF end-milling (a.ii) Low

speed chart of 2-DOF end-milling (b.i) High speed chart of 1-DOF
end-milling (b.ii) High speed chart of 2-DOF end-milling
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Fig. 8 Stability charts of full-immersion three tooth end-milling, grey
and dark subdomains are for stable and chatter operations
respectively. Star and diamond are marks for stable and unstable
MATLAB dde23 solutions respectively. (a.i) Low speed chart of 1-
DOF end-milling (a.ii) Low speed chart of 2-DOF end-milling (b.1)
High speed chart of 1-DOF end-milling (b.ii) High speed chart of 2-
DOF end-milling
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Fig. 10 Stability charts of full-immersion eight tooth end-milling,
grey and dark subdomains are for stable and chatter operations
respectively. (a.i) Low speed chart of 1-DOF end-milling (a.ii) Low
speed chart of 2-DOF end-milling (b.i) High speed chart of 1-DOF
end-milling (b.ii) High speed chart of 2-DOF end-milling
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speed chart of 2-DOF end-milling (b.i) High speed chart of 1-DOF Fig. 12 MATLAB dde23 solutions of fully-immersed 1-DOF three
end-milling (b.ii) High speed chart of 2-DOF end-milling tooth end-miller with history

&) &M ={10"m 10-°ms~1}7, te[—7,0] is (a) stable at
(Q, w)= (4500rpm, 0.0008m) (a.i) solution as a trajectory (a.ii)
solution as an orbit. (b) unstable at (€, w)= (35000rpm, 0.003m) Q=
35000rpm (b.i) solution as a trajectory (b.ii) solution as an orbit
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Fig. 13 MATLAB dde23 solutions of fully-immersed 2-DOF three
tooth end-miller with history {£2(t) &2(t) é&2(t) &)} =

{107m 107

ms~! 107m 10~®ms~1}7, te[—7, 0] is (a) stable

at (Q, w)=(6000rpm, 0.0004m) (a.i) solution as a trajectories (a.ii)
solution as an orbits (b) unstable at (Q, w)= (30000rpm, 0.0005m)
(b.1) solution as a trajectories (b.ii) solution as an orbits

Some selected critical parameter combinations are inserted
into the monodromy matrix of 1-DOF full-immersion end-
milling and the critical characteristic multipliers . extracted.
All the secondary Hopf bifurcation lobes (SHBL’s) of full-
immersion end-milling with simultaneous teeth engagement
(end-millers with number of teeth N > 3) exhibit a simple but
unique behaviour. Each of such SHBL’s has a single
minimum point (point M of the SHBL labeled ABCD in Fig. 8
(a.i) for example) at which p. are almost pure imaginary. The
lower spindle speed portion (LSSP) of each such SHBL is the
portion at the left of the minimum point while the higher
spindle speed portion (HSSP) is the portion at the right of the
minimum point. It is seen that secondary Hopf bifurcation
occurs in the right-half plane of the unit circle centred at the
origin of the complex plane at any point in the LSSP (Fig. 14
(a)). Secondary Hopf bifurcation occurs in the left-half plane
of the unit circle at any point in the HSSP (Fig. 14 (b)). The
positive real part of y. decreases in size from about unity to
about zero as critical parameter combination moves from start
of the LSSP towards the minimum point. The negative real
part of p. increases in magnitude from about zero to about
unity as critical parameter combination moves away from the
minimum point along the HSSP. The SHBL marked ABCD on
the stability chart of low-speed three tooth end-miller (Fig. 8
(a.i)) has the LSSP portion studded with crosses with the
positive Re(u.) monotonically decreasing from A to B. The
portion studded with circles is the HSSP that exhibits negative
Re(u,) that monotonically increases in magnitude from C to
D.

Im Im A
I e )

0 Re 0 |

—
ol 4

(a) (b)

Fig. 14 For N = 3 (a) secondary Hopf bifurcation occurs in the right-
half portion of the unit circle at any point in the LSSP of each SHBL
(b) secondary Hopf bifurcation occurs in the left-half portion of the
unit circle at any point in the HSSP of each SHBL.

From (36) results that bifurcations occur according to the
equation

Ue = /9T = cos w,T + jsin w,T (37

The quantity w7 can be considered as an angle that varies
as critical parameter combination changes from the start to the
end of a SHBL. For example the variation of w7 as critical
parameter combination moves from A to D along the marked
SHBL of three tooth miller shown in Fig. 8 (a.i) is as follows;
w.T = 2nn + € at the inception of the lobe (point A) with
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€>0 and n=0,1,2,... The small positive quantity € is
introduced to uphold the condition that period one bifurcation
does not occur in milling process. It then varies to w,t =
2m(n + 1/4) in the neighbourhood of the minimum point M.
Variation finally occurs from w,t = 2m(n + 1/4) close to M
to about w,T = 2m(n + 1/2) at the end of the lobe (point D)
where flip bifurcation is expected to occur. Same trend in w,T
occurs in the next SHBL. This trend means that a flip
bifurcation lobe (FBL) is expected to connect two adjacent
SHBL'’s. Invisibility of a connecting FBL may not necessarily
mean that it is non-existent but could mean that it is too small
in size to be seen. Since w, = w.(t,w) the quantity w.T is
also a function of v and w. Stability charts are normally
generated on a data grid of constant mesh size. Suppose the
distance between two adjacent mesh points in Q direction is
AQ then the fractional change incurred in 7 due to fractional
change in spindle speed fo =AQ/Q is f, =At/Tt=
(1 + fo)™! — 1. In the limit when Q — oo, the ratio f; - 0. If
for the three tooth miller, variation in w,T derives
predominantly from variation in 7 then more AQ’s will be
needed to cause w.T traverse about m radians need for
generation of a SHBL. This could be part of the reasons why
bifurcation lobes get bigger and more visible as Q rises. A
FBL could be too small to be seen when (1 is too small such
that single AQ change in Q could cause too much change in
w7 that the condition for flip bifurcation w,t=2nn+tnx
(which is a very restrictive condition when compared with the
restriction for secondary Hopf Bifurcation 0 < |w.7| <
|27tn + 7|) is not allowed to be met. If Q is high enough the
condition for flip bifurcation could approximately be met in
the event of multiple AQ change in Q. These could be part of
the reasons why FBL is invisible in the low speed chart but
visible in the high speed chart of the fully-immersed three-
tooth miller (see Figs. 8 (a.i) and (b.1)).

One special thing the about fully-immersed three-tooth
miller is that it acts as a boundary case because when N < 3
some SHBL’s exhibit more than one turning point. An
example of such a curve is marked EFGHI in the high-speed
stability chart of fully immersed one tooth miller (Fig. 6 (b.i)).
Sample points are marked with cross or circle depending on
whether Re(u,) is positive or negative. Increasing in N of full-
immersion end-milling causes decrease in the range of specific
cutting force variation h(t) = y(vt)?~1q(t). The implication
is that periodic DDE governing end-milling processes
approaches autonomous DDE governing the turning processes
as N increases (milling with infinite number of cutting edges
is dynamically equivalent with the turning process). Thus flip
Bifurcation, which does not have any meaning in turning
process is expected to disappear in full-immersion end-milling
when N gets higher. This could be the reason why flip
bifurcation lobes are not seen in the stability charts of six,
eight and ten tooth 1-DOF end-miller as seen in Figs. 9 (a.i),
(b.1); 10 (a.i), (b.i); 11 (a.i), and (b.i).

V. CONCLUSION

Stability analysis of a full-immersion end-milling with the
parameters; tool mass m = 0.0431kg, tool natural frequency
w, = 5700 rads™?, damping factor & = 0.02 and workpiece
cutting coefficient C = 3.5 X 107Nm~"/# results in transition
curves that demarcate parameter planes of spindle speed and
depth of cut into stable and unstable sub-domains . A modified
map of full-discretization method that is generalized for both
1-DOF and 2-DOF end-milling is utilized. Both 1-DOF and 2-
DOF cases are considered for each of one, two, three, six,
eight and ten tooth end-millers. Stability chart of each 2-DOF
case is generally seen to be much more conservative (has
much smaller stable sub-space) than the corresponding 1-DOF
case. The validity of the charts is based on agreement with
MATLAB dde23 analysis of governing periodic DDE at
selected points of the parameter space. It is noted that the
agreement between the stability charts and MATLAB dde23
solutions is not affected by the choice of initial history of
governing periodic DDE.

It is found that when the number of teeth N > 3, fully
immersed 1-DOF end-milling has secondary Hopf bifurcation
lobes (SHBL’s) that exhibit one minimum point each. At each
minimum point, critical characteristic multipliers are almost
pure imaginary. Each of such SHBL has two distinguished
parts, namely; the Lower Spindle Speed Portion (LSSP)
placed left of the minimum point and Higher Spindle Speed
Portion (HSSP) placed right of the minimum point. Secondary
Hopf bifurcation occurs only in the right-half side of the unit
circle in the LSSP and occurs only in the left-half side of the
unit circle in HSSP. It is found that bifurcation lobes generally
get bigger and more visible with increase in spindle speed
because bigger spindle speed range is need for generation of a
complete SHBL as spindle speed increases. It is discovered
that the real part of critical characteristic multipliers varies
from about 1 to about 0 as a critical point moves from start of
LSSP towards the minimum point. When the critical point
moves along HSSP away from the minimum point the real
part of critical characteristic multipliers varies from about 0 to
about -1. This means that bifurcation gets towards flip towards
the end of a SHBL. It is concluded in this work that even
when flip bifurcation is not seen, it is expected to occur in the
immediate vicinity of intersection of two SHBL’s.
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