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Abstract—The author proposes an extension of genetic algorithm 

(GA) for solving fuzzy-valued optimization problems. In the proposed 
GA, values in the genotypes are not real numbers but fuzzy numbers. 
Evolutionary processes in GA are extended so that GA can handle 
genotype instances with fuzzy numbers. The proposed method is 
applied to evolving neural networks with fuzzy weights and biases. 
Experimental results showed that fuzzy neural networks evolved by 
the fuzzy GA could model hidden target fuzzy functions well despite 
the fact that no training data was explicitly provided. 
 

Keywords—Evolutionary algorithm, genetic algorithm, fuzzy 
number, neural network, neuroevolution. 

I. INTRODUCTION 
multi-layered feedforward neural network (NN) with 
fuzzy-valued weights and biases was proposed in 

literature [1]. The FNN approximately models a fuzzy function 
, where  is a fuzzy number and  is a real vector, by 

learning data , , q 1,2, …. The FNN can learn the data 
in which { , , …} include both of real numbers and fuzzy 
numbers, because a real number can be specified as a fuzzy 
number with zero width (i.e., with the same value of upper and 
lower limits). As the learning method for the FNNs, a 
supervised learning method was also proposed [1] which is an 
extension of the traditional back propagation (BP), but no 
unsupervised one has been proposed.  

Besides, evolutionary algorithms (EAs) have recently been 
applied to the reinforcement learning of NNs, known as 
neuroevolution (NE) [2]-[5]. In NE, weights and biases are 
tuned by evolutionary operations, not by the BP algorithm. 
Because NE does not utilize BP, NE does not require errors 
between NN output values and their target signals. Thus, NE is 
applicable for problems in which the error function is difficult 
or impossible to be determined. EAs have been applied to NE 
of traditional NNs with real-valued weights and biases, where 
the genotypes (chromosomes) consist of real numbers or bit 
strings that encode real numbers. The ordinary EAs have not 
employed fuzzy numbers as their genotype values because their 
evolutionary operators are designed to handle genotypes with 
crisp values.  

This paper proposes an extension of genetic algorithm (GA) 
for handling fuzzy-valued genotypes. The extended GA can be 
applied directly to fuzzy optimization problems by employing 
fuzzy variables in a fuzzy optimization problem as genotype 
values. The author evaluates the proposed GA by applying it to 
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evolution of FNNs.  

II. NEURAL NETWORKS WITH FUZZY WEIGHTS AND BIASES 
The FNN employed in our research is the same as in the 

literature [1], which is a three-layered feedforward NN with 
fuzzy weights and biases. Fig. 1 shows its structure. An FNN 
receives an input real vector  and calculates its output fuzzy 
number O (for the sake of simplicity, the output layer includes a 
single unit) as follows.  
 
Input Layer: 

. (1)
Hidden Layer: 

, , (2)
 

. (3)
Output Layer: 

, (4)
 

. (5)
 

In (1)-(5), and are real numbers, while , , , , 
, , ,  and are fuzzy numbers. is the unit activation 

function which is typically the sigmoidal one: 1/ 1
. The feedforward calculation of the FNN is based on the 

extension principle [6] and the interval arithmetic [7] (for more 
detail, see the literature [1]). The sigmoidal function maps an 
input fuzzy number to an output fuzzy number as shown in Fig. 
2.  

The FNN includes weights (i.e.,  weights 
between  input units and  hidden units, and  weights 
between  hidden units and an output unit) and 1 biases (= 
the total number of units in the hidden and output layers). Thus, 
the FNN includes 2 1 fuzzy variables in total.  

 

 
Fig. 1 Neural network with fuzzy weights and biases [1] 
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Fig. 2 Input-output relation of each unit in the hidden and output layers 

[1] 
 

The fuzzy GA (FGA) handles these fuzzy variables as a 
genotype , , … , where is a fuzzy number and 

2 1.  
Suppose the values of the weights and biases are symmetric 

triangular fuzzy numbers, as in the literature [1]. A symmetric 
triangular fuzzy number can be specified by two parameters: its 
lower limit (L) and upper limit (U) or its center (c) and width 
(w). Fig. 3 shows these parameters. In this case, we can denote 
each by either of the two parameters: ,  or 

,  where , ,  and  denote the lower, 
upper, center and width of  respectively. In this paper, the 
author denotes the former (latter) as LU (CW) model.  

III. GENETIC ALGORITHM WITH FUZZY-VALUED GENOTYPES 
The FGA includes the same processes as those in the 

ordinary GA (Fig. 4). Processes of initialization of population, 
fitness evaluation, crossover and mutation are extended so that 
these processes can handle fuzzy-valued genotypes.  

A. Initialization of Population 
In the initialization process, , , … , are randomly 

initialized where  is the population size. Because the elements 
in  (i.e., , , , , … , , ) are weights and biases in anFNN 
in this research, smaller absolute values are preferable as initial 
values for , . Thus, the initial values are randomly sampled 
from the normal distribution 0, or uniformly from an 
interval ,  where is a small positive number. In the case of 
employing the LU model, two values are sampled per , : the 
smaller (larger) one is set to ,  , . In the case of 
employing the CW model, two values are sampled per , : one 
of the two values is set to ,  and the absolute value of the other 
is set to , . 

 

 
Fig. 3 Symmetric triangular fuzzy number 

 

 
Fig. 4 Processes in the proposed fuzzy GA 

B. Fitness Evaluation 
To evaluate fitness of an FNN as a phenotype instance of the 

corresponding genotype instance , , , , … , ,  
where , , … , , the FNN is supplied with several 
samples of input real vectors and calculates output values. The 
input values are sampled within the variable domain of 
application problem. Fitness of the genotype instance  is 
evaluated based on the output values. The method for scoring 
the fitness based on the output values depends on the problem 
to which the FNN is applied. For example, in a case where the 
FNN is applied to controlling an automated system, some 
performance measure of the system can be used as the fitness 
score of the genotype instance corresponding to the FNN.  

C. Crossover 
Let us denote genotypes of two parents as ,  and an 

offspring genotype as .  and  can be sampled from the 
population in the same manner as the ordinary GA.  

In the case of employing the LU model,  
 

, , , , … , , , , , , , , (6)
 

, , , , … , , , , , , , , (7)
 

, , , , … , , , , , , , . (8)
 

Values of ,  and ,  in the offspring can be determined 
by applying a crossover operator for the ordinary real GA. 
Suppose the operator is the blend crossover [8]. In this case, ,  
is uniformly randomly sampled from the interval 

, , , , , , , , , | ,

, | , where ,  and ,  is the smaller and the 
larger of ,  respectively. Similarly, ,  is uniformly 
randomly sampled from the interval , , ,

, , , , , , | , , | . denotes the 
positive scaling factor which is usually set to 0.5. Note that ,  
must not be smaller than ,  because ,  and ,  are the lower 
and upper limits of the support interval of , . If ,  becomes 
smaller than ,  as the result of applying the blend crossover, 
then ,  and ,  must be repaired so that ,  is valid. The 
repair method can be either of the followings:  

 the value of ,  is assigned to , , 
 the value of ,  is assigned to , , 
 the mean value of ,  and ,  is calculated and assigned to 
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both of ,  and , , or  
 the two values for ,  and ,  are switched.  
In the case of employing the CW model,  

 
, , , , … , , , , , , , , (9)

 
, , , , … , , , , , , , , (10)

 
, , , , … , , , , , , , . (11)

 
Values of ,  and ,  in the offspring can be determined 

in the same manner as those for the LU model: ,  is uniformly 
randomly sampled from the interval , , ,

, , , , , , | , , | . Similarly, ,  
is uniformly randomly sampled from the interval 

, , , , , , , , , | ,

, | . Note again that ,  must not be negative because ,  is 
the width of the support interval of , . If ,  becomes 
negative as the result of applying the blend crossover, then ,  
must be repaired so that ,  is valid. The repair method can be 
either of the followings:  

 the value of ,  is assigned to 0, or 
 the absolute value of ,  is assigned to , .  

D. Mutation 
Values in the offspring genotypes are mutated under the 

predetermined mutation probability. In the FGA, each offspring 
 is a vector , , , , … , ,  where ,  is a fuzzy number 

specified by the two real parameters: , , , , or 
, , , , . The two parameter values of ,  which is 

selected under the probability are mutated by being added (or 
replaced) with random real numbers to the current values. The 
random numbers are sampled from the normal distribution 

0,  or uniformly from an interval , , where  is alsoa 
small positive number as ε. After the mutation of , , ,  may 
become smaller than ,  with the LU model or ,  may 
become negative with the CW model. Such invalid fuzzy 
numbers are repaired by the same method applied in the 
crossover process. 

IV. APPLICATION TO EVOLVING FUZZY NEURAL NETWORKS 
The author experimentally evaluates the ability of the 

FGAby applying it to evolution of FNNs. The FNNs are 
challenged to accurately model hidden fuzzy functions. The 
accuracy is evaluated in Section IV. Aby using three target 
functions. Besides, the LU and CW models are compared in 
subsection IV.B to investigate which model better contributes 
to the FGA in evolving FNNs.  

A. Accuracy in Modeling Fuzzy Functions 
In the experiment, the author designs three functions and 

employs them as the modeling targets for FNNs. For simplicity, 
the input of the functions is not a real vector but a real scalar 
(so that the FNN includes only a single input unit) and 

0 1, as in the literature [1]. The output values of the 
functions are symmetric triangular fuzzy numbers. The three 
functions: 

 
, , , , and 

,  
 
are as follows:   
 

0.2 sin 2 0.1 0.4, 
 

(12)

0.2 sin 2 0.1 0.6, 
 

(13)

0.2 sin 2 0.2 0.2. 
 

(14)

0.2 sin 2 0.2 0.7, 
 

(15)

0.15 sin 2 0.3, 
 

(16)

0.1 sin 3 0.1 0.7. (17)
 

Figs. 5-7 show these three functions, where:  
 F0.0L and F0.0U denote  and , i.e., the lower 

and upper limits of the support interval of , 
 F0.5L and F0.5U denote the lower and upper limits of the 

0.5-level interval of , i.e., | . , and 
 F1.0 denotes the peak of , i.e., | . . 
The FNN and the FGA are designed as follows. 
 FNN: 

 #units: 1 input, 10 hidden, 1 output. 
 Initial values for , , , , , : uniformly random 
within 0.01, 0.01 . 
 Initial values for , : uniformly random within 

0.0, 0.01 . 
 10.0 , , , , , 10.0. 
 0.0 ,  10.0. 

 FGA: 
 #Total FNNs evolved: 1,000,000. 
 Population size and #generation: (100 and 10,000) or 
(500 and 2,000). 
 αfor the blend crossover: 0.5. 
 Mutation probability: 0.01 for each of the elements 

, , , , … , ,  in a genotype instance . 
 Random values for mutation: N 0,1  for , , , , ,  
and |N 0,1 |for , . 
 Elitism: the best 10 genotype instances are copied to the 
next generation. 
 Tournament size for sampling two parent genotype 
instances: 5% of the population size. 

The number of generations is 10,000 (or 2,000) for the FGA 
with 100 (or 500) solutions so that the total number of FNNs 
evolved is consistently 1,000,000.  

Genotype instances , , … , are ranked by utilizing the 
same cost function as that in literature [1]. As the values for the 
h-level intervals of fuzzy numbers, the author employs h {0.2, 
0.4, ..., 1.0} in this experiment. An FNN which corresponds to a 
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genotype instance is supplied with a real input value  and 
calculates its output fuzzy number . is sampled within the 
input domain [0, 1] as = {0.0, 0.01, 0.02, ..., 1.0}. Besides, 
each value of is supplied to the target function and the 
output fuzzy number  is obtained. Then, the error  for 
the input is calculated as:  
 

, , , , , (18)
 
where,  

 ,  and ,  are the lower and upper limits of the h-level 
interval of , i.e., | , , , , and 
 , and ,  are the lower and upper limits of the h-level 
interval of , i.e., | , , , . 
For each genotype instance ,  is calculated 101 times 
, , … ,  for the 101 input values 

0.0, 0.01, 0.02, … ,1.0 , and the sum of  is used for 
ranking . An instance with a smaller sum of  is ranked 
better. Note that  scores are not utilized for calculating the 
values of updating the weights and biases but only for ranking 
the genotype instances: any output value of the target functions 
is completely hidden from the FGA reproduction process.  

Figs. 8-13 show the results of this experiment. Fig. 8 shows 
the output fuzzy function of the best FNN among the total 
20,000,000 FNNs (= [1,000,000 FNNs in each run]   [five 
runs]  [two variations for population sizes]  [two variations 
for the interval model]) evolved by the FGA for 
modeling .Figs. 9 and 10 shows those for modeling  
and  respectively in the same manner as Fig. 8. In Figs. 
8-10,  

 F0.0L, F0.0U, F0.5L, F0.5U and F1.0 are the same as those 
in Figs. 5-7,  
 NN0.0L and NN0.0U denote the lower and upper limits of 
the support interval of the FNN output fuzzy number, 
 NN0.5L and NN0.5U denote the lower and upper limits of 
the 0.5-level interval of the FNN output fuzzy number, and  
 NN1.0 denotes the peak of the FNN output fuzzy number.  
Fig. 11 shows the membership functions of  and for 

the input values 0.2and 0.8, where  is the output 
fuzzy number of the best FNN. In this figure,  

 NN(0.2) and NN(0.8)showthe membership function of the 
output fuzzy number of the best FNN for the input values 0.2 
and 0.8, while  
 F(0.2) and F(0.8) show the membership function of  
for the input values 0.2 and 0.8. 

 

 
Fig. 8 Output fuzzy function of the best FNN evolved by FGA for 

modeling  where the error score was 4.4E-3 
 

 
Fig. 9 Output fuzzy function of the best FNN evolved by FGA for 

modeling where the error score was 9.2E-3 
 

 
Fig. 10 Output fuzzy function of the best FNN evolved by FGA for 

modeling where the error score was 9.6E-3 
 

 

Fig. 11 Output fuzzy numbers of the best FNN evolved by FGA and 
target fuzzy numbers  for the inputs values of 0.2 and 0.8 
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Fig. 12 Output fuzzy numbers of the best FNN evolved by FGA and 

target fuzzy numbers  for the inputs values of 0.3 and 0.7 
 

 
Fig. 13 Output fuzzy numbers of the best FNN evolved by FGA and 

target fuzzy numbers  for the inputs values of 0.2 and 0.8 
 

Figs. 12 and 13 show those for  and  
respectively, in the same manner as Fig. 11. The shapes of the 
FNN output fuzzy numbers (the solid curves in Figs. 11-13) are 
similar to those of the target fuzzy numbers (the dotted lines in 
the same figures). These results shown in Figs. 8-13 reveal that 
the best FNNs evolved by the FGA approximate their target 
functions well, despite the fact that no training data is explicitly 
provided.  

B. Comparison of Two Models for Fuzzy Genotype Values 
As described in Subsection III C, the constraints for the two 

real parameters of a symmetric triangular fuzzy number (i.e., 
the lower and upper limits or the center and width) are different: 
only the widths must not be negative, while the other three 
parameters can be negative. Because of the difference in the 
constraints, the search space for the FGA with the LU model is 
not the same as that with the CW model even for the same task. 
The difference in the search spaces between the two models 
may affect the performance of the FGA in searching for 
solutions. In this section, the author compares the two models 
to investigate which model contributes better for the FGA to 
find better solutions, based on the result of numerical 
experiments in the last section.  

Fig. 14 shows the error values of the best FNN for  
among each number of FNNs evolved (e.g., 500,000 FNNs are 
evolved in total at the 5,000th generation with the population 
size of 100). In this figure, “LU (100)” denotes the result with 
the LU model and the population size of 100. “LU (500)”, “CW 

(100)” and “CW (500)” denote their results in the same manner 
as “LU (100)”. The error values are the averaged ones over the 
five runs. Figs. 15 and 16 show the error values for  and 

 respectively, in the same manner as Fig.14. 
Figs. 14-16 reveal that, for all of the three target functions, 

the CW model contributed slightly better than the LU model 
did with the population sizes of both 100 and 500, i.e., after the 
evolution of 1,000,000 FNNs, the dotted curves for the CW 
model went below the solid curves for the LU model. This 
finding suggest that the CW model is better for the FGA to 
employ as the model for specifying symmetric triangular fuzzy 
numbers as genotype values.  

To investigate the reason why the FGA could evolve better 
FNNs with the CW model, the author counts the number of 
repairs for the invalid genotype values. As described in 
Subsections III C, ,  must not be smaller than ,  with the LU 
model and ,  must not be negative with the CW model. In the 
crossover and mutation processes, if new values of , , ,  or 

, violate the constraints then the new values are repaired. 
Such repairs may interfere with the evolution of FNNs because 
the repairs restrict modification of weights and biases. Thus, a 
smaller number of repairs will be better in evolving INNs. 
Table I shows the numbers of repairs where the values in the 
table are the averaged ones over the five runs under each 
condition. For example, the FGA with the LU model and the 
population size of 100 required 1.29E+6 (1.29 10 ) repairs 
for , while the FGA with the CW model and the 
population size of 100 required 2.77E+5 repairs for . 
Table I clearly shows that the CW model required less repairs 
than the LU model did, which will be a reason for the fact that 
the CW model could contribute to evolve better FNNs.  

V. CONCLUSION 
In this paper, the author proposed the fuzzy-valued GA 

(FGA), an extension of GA, and applied it to the 
neuroevolution of fuzzy-valued neural networks. In the 
proposed FGA, values in the genotypes are not real numbers 
but fuzzy numbers. To handle the fuzzy-valued genotypes, the 
FGA extends its processes of initialization of population, 
crossover and mutation.  

 

 

Fig. 14 Error value of the best FNN at each number of FNNs evolved 
for the target function  
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Fig. 15 Error value of the best FNN at each number of FNNs evolved 

for the target function  
 

 
Fig. 16 Error value of the best FNN at each number of FNNs evolved 

for the target function  
 

TABLE I 
NUMBER OF REPAIRS FOR GENOTYPE FUZZY NUMBERS 

   
LU (100) 1.29E+06 2.38E+06 2.21E+06 
LU (500) 1.98E+06 3.57E+06 2.58E+06 
CW (100) 2.77E+05 3.69E+05 3.49E+05 
CW (500) 3.63E+05 5.34E+05 5.45E+05 

The numbers in this table are the mean values over five runs 
 

The FGA was challenged to evolve FNNs which model 
hidden fuzzy functions. The experimental results showed that 
the best neural networks evolved by the FGA approximated the 
target functions well, despite the fact that no training data was 
explicitly provided. In addition, the results revealed that the 
CW model contributed slightly better to the FGA than the LU 
model did. The reason would be because the FGA with the CW 
model required less number of repairs for invalid genotype 
values than the FGA with the LU model did.  

In the future work, the author will further evaluate the ability 
of the FGA by applying it to problems other than 
neuroevolution, e.g., evolving fuzzy if-then rules for fuzzy 
inference systems.  

ACKNOWLEDGMENT 
This research was supported by Kyoto Sangyo University 

Research Grant. 

REFERENCES 
[1] H. Ishibuchi, H. Tanaka, and H. Okada, “Fuzzy neural networks with 

fuzzy weights and fuzzy biases,” Proc. of IEEE International 
Conferences on Neural Networks, pp.1650–1655, 1993. 

[2] D.B. Fogel, L.J. Fogel, and V.W. Porto, “Evolving neural networks,” 
Biological Cybernetics, vol.63, issue 6, pp.487–493, 1990. 

[3] X. Yao, “Evolving artificial neural networks,” Proc. of the IEEE, vol.87, 
no.9, pp.1423–1447, 1999. 

[4] K.O. Stanley, and R. Miikkulainen, “Evolving neural networks through 
augmenting topologies,” Evolutionary Computation, vol.10, no.2, 
pp.99–127, 2002. 

[5] D. Floreano, P. Durr, and C. Mattiussi, “Neuroevolution: from 
architectures to learning,” Evolutionary Intelligence, vol.1, no.1, 
pp.47–62, 2008. 

[6] L.A. Zadeh, “The concept of a linguistic variable and its application to 
approximate reasoning - I, II, and III,” Information Sciences, vol.8, 
pp.199–249, pp.301–357, and vol.9, pp.43–80, 1975. 

[7] G. Alefeld, and J. Herzberger, Introduction to Interval Computation, 
Academic Press, 1983. 

[8] L.J. Eshelman, and J.D. Schaffer, “Real-coded genetic algorithms and 
interval-schemata,” in D. L. Whitley (ed.), Foundation of Genetic 
Algorithms 2, pp.187–202, 1993. 

 
 
 
Hidehiko Okada is currently a Professor with the Department of Computer 
Science and Engineering, Kyoto Sangyo University, Kyoto, Japan. He received 
the B.S. degree in industrial engineering and the Ph.D. degree in engineering 
from Osaka Prefecture University in 1992 and 2003, respectively. He had been 
a researcher with NEC Corporation from 1992 to 2003, and since 2004 he has 
been with the university. His current research interests include computational 
intelligence and human-computer interaction. He is a member of Information 
Processing Society of Japan, Institute of Electronics, Information and 
Communication Engineers, Society of Instrument and Control Engineers, 
Japanese Society for Artificial Intelligence, Japan Society for Fuzzy Theory 
and Intelligent Informatics and Human Interface Society. He received the best 
paper award in the 1st International Conference on Industrial Application 
Engineering 2013. 

0.01

0.1

1

10

0 200000 400000 600000 800000 1000000

E
rr
o
r 
V
a
lu
e

# IN N s evo lved

LU  (100) C W  (100) LU  (500) C W  (500)

0.01

0.1

1

10

0 200000 400000 600000 800000 1000000

E
rr
o
r 
V
a
lu
e

# IN N s evo lved

LU  (100) C W  (100) LU  (500) C W  (500)


