
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

8

Abstract—The author proposes an extension of genetic algorithm

(GA) for solving fuzzy-valued optimization problems. In the proposed
GA, values in the genotypes are not real numbers but fuzzy numbers.
Evolutionary processes in GA are extended so that GA can handle
genotype instances with fuzzy numbers. The proposed method is
applied to evolving neural networks with fuzzy weights and biases.
Experimental results showed that fuzzy neural networks evolved by
the fuzzy GA could model hidden target fuzzy functions well despite
the fact that no training data was explicitly provided.

Keywords—Evolutionary algorithm, genetic algorithm, fuzzy
number, neural network, neuroevolution.

I. INTRODUCTION
multi-layered feedforward neural network (NN) with
fuzzy-valued weights and biases was proposed in

literature [1]. The FNN approximately models a fuzzy function
, where is a fuzzy number and is a real vector, by

learning data , , q 1,2, …. The FNN can learn the data
in which { , , …} include both of real numbers and fuzzy
numbers, because a real number can be specified as a fuzzy
number with zero width (i.e., with the same value of upper and
lower limits). As the learning method for the FNNs, a
supervised learning method was also proposed [1] which is an
extension of the traditional back propagation (BP), but no
unsupervised one has been proposed.

Besides, evolutionary algorithms (EAs) have recently been
applied to the reinforcement learning of NNs, known as
neuroevolution (NE) [2]-[5]. In NE, weights and biases are
tuned by evolutionary operations, not by the BP algorithm.
Because NE does not utilize BP, NE does not require errors
between NN output values and their target signals. Thus, NE is
applicable for problems in which the error function is difficult
or impossible to be determined. EAs have been applied to NE
of traditional NNs with real-valued weights and biases, where
the genotypes (chromosomes) consist of real numbers or bit
strings that encode real numbers. The ordinary EAs have not
employed fuzzy numbers as their genotype values because their
evolutionary operators are designed to handle genotypes with
crisp values.

This paper proposes an extension of genetic algorithm (GA)
for handling fuzzy-valued genotypes. The extended GA can be
applied directly to fuzzy optimization problems by employing
fuzzy variables in a fuzzy optimization problem as genotype
values. The author evaluates the proposed GA by applying it to

Hidehiko Okada is with Faculty of Computer Science and Engineering,

Kyoto Sangyo University, Kamigamo Motoyama, Kita-ku, Kyoto 603-8555,
Japan (e-mail: hidehiko@cc.kyoto-su.ac.jp).

evolution of FNNs.

II. NEURAL NETWORKS WITH FUZZY WEIGHTS AND BIASES
The FNN employed in our research is the same as in the

literature [1], which is a three-layered feedforward NN with
fuzzy weights and biases. Fig. 1 shows its structure. An FNN
receives an input real vector and calculates its output fuzzy
number O (for the sake of simplicity, the output layer includes a
single unit) as follows.

Input Layer:

. (1)
Hidden Layer:

, , (2)

. (3)
Output Layer:

, (4)

. (5)

In (1)-(5), and are real numbers, while , , , ,
, , , and are fuzzy numbers. is the unit activation

function which is typically the sigmoidal one: 1/ 1
. The feedforward calculation of the FNN is based on the

extension principle [6] and the interval arithmetic [7] (for more
detail, see the literature [1]). The sigmoidal function maps an
input fuzzy number to an output fuzzy number as shown in Fig.
2.

The FNN includes weights (i.e., weights
between input units and hidden units, and weights
between hidden units and an output unit) and 1 biases (=
the total number of units in the hidden and output layers). Thus,
the FNN includes 2 1 fuzzy variables in total.

Fig. 1 Neural network with fuzzy weights and biases [1]

...

...

x i

...

...

O

Input
Layer

Hidden
Layer

Output
Layer

Wj,i

W j

Hidehiko Okada

Genetic Algorithm with Fuzzy Genotype Values and
Its Application to Neuroevolution

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

9

Fig. 2 Input-output relation of each unit in the hidden and output layers

[1]

The fuzzy GA (FGA) handles these fuzzy variables as a
genotype , , … , where is a fuzzy number and

2 1.
Suppose the values of the weights and biases are symmetric

triangular fuzzy numbers, as in the literature [1]. A symmetric
triangular fuzzy number can be specified by two parameters: its
lower limit (L) and upper limit (U) or its center (c) and width
(w). Fig. 3 shows these parameters. In this case, we can denote
each by either of the two parameters: , or

, where , , and denote the lower,
upper, center and width of respectively. In this paper, the
author denotes the former (latter) as LU (CW) model.

III. GENETIC ALGORITHM WITH FUZZY-VALUED GENOTYPES
The FGA includes the same processes as those in the

ordinary GA (Fig. 4). Processes of initialization of population,
fitness evaluation, crossover and mutation are extended so that
these processes can handle fuzzy-valued genotypes.

A. Initialization of Population
In the initialization process, , , … , are randomly

initialized where is the population size. Because the elements
in (i.e., , , , , … , ,) are weights and biases in anFNN
in this research, smaller absolute values are preferable as initial
values for , . Thus, the initial values are randomly sampled
from the normal distribution 0, or uniformly from an
interval , where is a small positive number. In the case of
employing the LU model, two values are sampled per , : the
smaller (larger) one is set to , , . In the case of
employing the CW model, two values are sampled per , : one
of the two values is set to , and the absolute value of the other
is set to , .

Fig. 3 Symmetric triangular fuzzy number

Fig. 4 Processes in the proposed fuzzy GA

B. Fitness Evaluation
To evaluate fitness of an FNN as a phenotype instance of the

corresponding genotype instance , , , , … , ,
where , , … , , the FNN is supplied with several
samples of input real vectors and calculates output values. The
input values are sampled within the variable domain of
application problem. Fitness of the genotype instance is
evaluated based on the output values. The method for scoring
the fitness based on the output values depends on the problem
to which the FNN is applied. For example, in a case where the
FNN is applied to controlling an automated system, some
performance measure of the system can be used as the fitness
score of the genotype instance corresponding to the FNN.

C. Crossover
Let us denote genotypes of two parents as , and an

offspring genotype as . and can be sampled from the
population in the same manner as the ordinary GA.

In the case of employing the LU model,

, , , , … , , , , , , , , (6)

, , , , … , , , , , , , , (7)

, , , , … , , , , , , , . (8)

Values of , and , in the offspring can be determined
by applying a crossover operator for the ordinary real GA.
Suppose the operator is the blend crossover [8]. In this case, ,
is uniformly randomly sampled from the interval

, , , , , , , , , | ,

, | , where , and , is the smaller and the
larger of , respectively. Similarly, , is uniformly
randomly sampled from the interval , , ,

, , , , , , | , , | . denotes the
positive scaling factor which is usually set to 0.5. Note that ,
must not be smaller than , because , and , are the lower
and upper limits of the support interval of , . If , becomes
smaller than , as the result of applying the blend crossover,
then , and , must be repaired so that , is valid. The
repair method can be either of the followings:

 the value of , is assigned to , ,
 the value of , is assigned to , ,
 the mean value of , and , is calculated and assigned to

1

0 c

w

Me
mb
er
sh
ip

L U

Termination Condition

Initialization of Population

Fitness Evaluation

Reproduction
(Crossover, Mutation)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

10

both of , and , , or
 the two values for , and , are switched.
In the case of employing the CW model,

, , , , … , , , , , , , , (9)

, , , , … , , , , , , , , (10)

, , , , … , , , , , , , . (11)

Values of , and , in the offspring can be determined

in the same manner as those for the LU model: , is uniformly
randomly sampled from the interval , , ,

, , , , , , | , , | . Similarly, ,
is uniformly randomly sampled from the interval

, , , , , , , , , | ,

, | . Note again that , must not be negative because , is
the width of the support interval of , . If , becomes
negative as the result of applying the blend crossover, then ,
must be repaired so that , is valid. The repair method can be
either of the followings:

 the value of , is assigned to 0, or
 the absolute value of , is assigned to , .

D. Mutation
Values in the offspring genotypes are mutated under the

predetermined mutation probability. In the FGA, each offspring
 is a vector , , , , … , , where , is a fuzzy number

specified by the two real parameters: , , , , or
, , , , . The two parameter values of , which is

selected under the probability are mutated by being added (or
replaced) with random real numbers to the current values. The
random numbers are sampled from the normal distribution

0, or uniformly from an interval , , where is alsoa
small positive number as ε. After the mutation of , , , may
become smaller than , with the LU model or , may
become negative with the CW model. Such invalid fuzzy
numbers are repaired by the same method applied in the
crossover process.

IV. APPLICATION TO EVOLVING FUZZY NEURAL NETWORKS
The author experimentally evaluates the ability of the

FGAby applying it to evolution of FNNs. The FNNs are
challenged to accurately model hidden fuzzy functions. The
accuracy is evaluated in Section IV. Aby using three target
functions. Besides, the LU and CW models are compared in
subsection IV.B to investigate which model better contributes
to the FGA in evolving FNNs.

A. Accuracy in Modeling Fuzzy Functions
In the experiment, the author designs three functions and

employs them as the modeling targets for FNNs. For simplicity,
the input of the functions is not a real vector but a real scalar
(so that the FNN includes only a single input unit) and

0 1, as in the literature [1]. The output values of the
functions are symmetric triangular fuzzy numbers. The three
functions:

, , , , and

,

are as follows:

0.2 sin 2 0.1 0.4,

(12)

0.2 sin 2 0.1 0.6,

(13)

0.2 sin 2 0.2 0.2.

(14)

0.2 sin 2 0.2 0.7,

(15)

0.15 sin 2 0.3,

(16)

0.1 sin 3 0.1 0.7. (17)

Figs. 5-7 show these three functions, where:
 F0.0L and F0.0U denote and , i.e., the lower

and upper limits of the support interval of ,
 F0.5L and F0.5U denote the lower and upper limits of the

0.5-level interval of , i.e., | . , and
 F1.0 denotes the peak of , i.e., | . .
The FNN and the FGA are designed as follows.
 FNN:

 #units: 1 input, 10 hidden, 1 output.
 Initial values for , , , , , : uniformly random
within 0.01, 0.01 .
 Initial values for , : uniformly random within

0.0, 0.01 .
 10.0 , , , , , 10.0.
 0.0 , 10.0.

 FGA:
 #Total FNNs evolved: 1,000,000.
 Population size and #generation: (100 and 10,000) or
(500 and 2,000).
 αfor the blend crossover: 0.5.
 Mutation probability: 0.01 for each of the elements

, , , , … , , in a genotype instance .
 Random values for mutation: N 0,1 for , , , , ,
and |N 0,1 |for , .
 Elitism: the best 10 genotype instances are copied to the
next generation.
 Tournament size for sampling two parent genotype
instances: 5% of the population size.

The number of generations is 10,000 (or 2,000) for the FGA
with 100 (or 500) solutions so that the total number of FNNs
evolved is consistently 1,000,000.

Genotype instances , , … , are ranked by utilizing the
same cost function as that in literature [1]. As the values for the
h-level intervals of fuzzy numbers, the author employs h {0.2,
0.4, ..., 1.0} in this experiment. An FNN which corresponds to a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

11

genotype instance is supplied with a real input value and
calculates its output fuzzy number . is sampled within the
input domain [0, 1] as = {0.0, 0.01, 0.02, ..., 1.0}. Besides,
each value of is supplied to the target function and the
output fuzzy number is obtained. Then, the error for
the input is calculated as:

, , , , , (18)

where,

 , and , are the lower and upper limits of the h-level
interval of , i.e., | , , , , and
 , and , are the lower and upper limits of the h-level
interval of , i.e., | , , , .
For each genotype instance , is calculated 101 times
, , … , for the 101 input values

0.0, 0.01, 0.02, … ,1.0 , and the sum of is used for
ranking . An instance with a smaller sum of is ranked
better. Note that scores are not utilized for calculating the
values of updating the weights and biases but only for ranking
the genotype instances: any output value of the target functions
is completely hidden from the FGA reproduction process.

Figs. 8-13 show the results of this experiment. Fig. 8 shows
the output fuzzy function of the best FNN among the total
20,000,000 FNNs (= [1,000,000 FNNs in each run] [five
runs] [two variations for population sizes] [two variations
for the interval model]) evolved by the FGA for
modeling .Figs. 9 and 10 shows those for modeling
and respectively in the same manner as Fig. 8. In Figs.
8-10,

 F0.0L, F0.0U, F0.5L, F0.5U and F1.0 are the same as those
in Figs. 5-7,
 NN0.0L and NN0.0U denote the lower and upper limits of
the support interval of the FNN output fuzzy number,
 NN0.5L and NN0.5U denote the lower and upper limits of
the 0.5-level interval of the FNN output fuzzy number, and
 NN1.0 denotes the peak of the FNN output fuzzy number.
Fig. 11 shows the membership functions of and for

the input values 0.2and 0.8, where is the output
fuzzy number of the best FNN. In this figure,

 NN(0.2) and NN(0.8)showthe membership function of the
output fuzzy number of the best FNN for the input values 0.2
and 0.8, while
 F(0.2) and F(0.8) show the membership function of
for the input values 0.2 and 0.8.

Fig. 8 Output fuzzy function of the best FNN evolved by FGA for

modeling where the error score was 4.4E-3

Fig. 9 Output fuzzy function of the best FNN evolved by FGA for

modeling where the error score was 9.2E-3

Fig. 10 Output fuzzy function of the best FNN evolved by FGA for

modeling where the error score was 9.6E-3

Fig. 11 Output fuzzy numbers of the best FNN evolved by FGA and
target fuzzy numbers for the inputs values of 0.2 and 0.8

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t
V
a
lu
e

In p u t V alu e

F0.0L F0.0U F0.5L F0.5U F1.0

N N 0.0L N N 0.0U N N 0.5L N N 0.5U N N 1.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t
V
a
lu
e

In p u t V alu e

F0.0L F0.0U F0.5L F0.5U F1.0

N N 0.0L N N 0.0U N N 0.5L N N 0.5U N N 1.0

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

O
u
tp

u
t
V
a
lu
e

In p u t V alu e

F0.0L F0.0U F0.5L F0.5U F1.0

N N 0.0L N N 0.0U N N 0.5L N N 0.5U N N 1.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

M
e
m

b
e
rs

h
ip
 S

c
o
re

O u tp u t V alu e

F(0.2) F(0.8) N N (0.2) N N (0.8)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

12

Fig. 12 Output fuzzy numbers of the best FNN evolved by FGA and

target fuzzy numbers for the inputs values of 0.3 and 0.7

Fig. 13 Output fuzzy numbers of the best FNN evolved by FGA and

target fuzzy numbers for the inputs values of 0.2 and 0.8

Figs. 12 and 13 show those for and
respectively, in the same manner as Fig. 11. The shapes of the
FNN output fuzzy numbers (the solid curves in Figs. 11-13) are
similar to those of the target fuzzy numbers (the dotted lines in
the same figures). These results shown in Figs. 8-13 reveal that
the best FNNs evolved by the FGA approximate their target
functions well, despite the fact that no training data is explicitly
provided.

B. Comparison of Two Models for Fuzzy Genotype Values
As described in Subsection III C, the constraints for the two

real parameters of a symmetric triangular fuzzy number (i.e.,
the lower and upper limits or the center and width) are different:
only the widths must not be negative, while the other three
parameters can be negative. Because of the difference in the
constraints, the search space for the FGA with the LU model is
not the same as that with the CW model even for the same task.
The difference in the search spaces between the two models
may affect the performance of the FGA in searching for
solutions. In this section, the author compares the two models
to investigate which model contributes better for the FGA to
find better solutions, based on the result of numerical
experiments in the last section.

Fig. 14 shows the error values of the best FNN for
among each number of FNNs evolved (e.g., 500,000 FNNs are
evolved in total at the 5,000th generation with the population
size of 100). In this figure, “LU (100)” denotes the result with
the LU model and the population size of 100. “LU (500)”, “CW

(100)” and “CW (500)” denote their results in the same manner
as “LU (100)”. The error values are the averaged ones over the
five runs. Figs. 15 and 16 show the error values for and

 respectively, in the same manner as Fig.14.
Figs. 14-16 reveal that, for all of the three target functions,

the CW model contributed slightly better than the LU model
did with the population sizes of both 100 and 500, i.e., after the
evolution of 1,000,000 FNNs, the dotted curves for the CW
model went below the solid curves for the LU model. This
finding suggest that the CW model is better for the FGA to
employ as the model for specifying symmetric triangular fuzzy
numbers as genotype values.

To investigate the reason why the FGA could evolve better
FNNs with the CW model, the author counts the number of
repairs for the invalid genotype values. As described in
Subsections III C, , must not be smaller than , with the LU
model and , must not be negative with the CW model. In the
crossover and mutation processes, if new values of , , , or

, violate the constraints then the new values are repaired.
Such repairs may interfere with the evolution of FNNs because
the repairs restrict modification of weights and biases. Thus, a
smaller number of repairs will be better in evolving INNs.
Table I shows the numbers of repairs where the values in the
table are the averaged ones over the five runs under each
condition. For example, the FGA with the LU model and the
population size of 100 required 1.29E+6 (1.29 10) repairs
for , while the FGA with the CW model and the
population size of 100 required 2.77E+5 repairs for .
Table I clearly shows that the CW model required less repairs
than the LU model did, which will be a reason for the fact that
the CW model could contribute to evolve better FNNs.

V. CONCLUSION
In this paper, the author proposed the fuzzy-valued GA

(FGA), an extension of GA, and applied it to the
neuroevolution of fuzzy-valued neural networks. In the
proposed FGA, values in the genotypes are not real numbers
but fuzzy numbers. To handle the fuzzy-valued genotypes, the
FGA extends its processes of initialization of population,
crossover and mutation.

Fig. 14 Error value of the best FNN at each number of FNNs evolved
for the target function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

M
e
m

b
e
rs

h
ip
 S

c
o
re

O u tp u t V alu e

F(0.3) F(0.7) N N (0.3) N N (0.7)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

M
e
m

b
e
rs

h
ip
 S

c
o
re

O u tp u t V alu e

F(0.2) F(0.8) N N (0.2) N N (0.8)

0.001

0.01

0.1

1

10

0 200000 400000 600000 800000 1000000

E
rr
o
r
V
a
lu
e

IN N s evo lved

LU (100) C W (100) LU (500) C W (500)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:8, No:1, 2014

13

Fig. 15 Error value of the best FNN at each number of FNNs evolved

for the target function

Fig. 16 Error value of the best FNN at each number of FNNs evolved

for the target function

TABLE I
NUMBER OF REPAIRS FOR GENOTYPE FUZZY NUMBERS

LU (100) 1.29E+06 2.38E+06 2.21E+06
LU (500) 1.98E+06 3.57E+06 2.58E+06
CW (100) 2.77E+05 3.69E+05 3.49E+05
CW (500) 3.63E+05 5.34E+05 5.45E+05

The numbers in this table are the mean values over five runs

The FGA was challenged to evolve FNNs which model
hidden fuzzy functions. The experimental results showed that
the best neural networks evolved by the FGA approximated the
target functions well, despite the fact that no training data was
explicitly provided. In addition, the results revealed that the
CW model contributed slightly better to the FGA than the LU
model did. The reason would be because the FGA with the CW
model required less number of repairs for invalid genotype
values than the FGA with the LU model did.

In the future work, the author will further evaluate the ability
of the FGA by applying it to problems other than
neuroevolution, e.g., evolving fuzzy if-then rules for fuzzy
inference systems.

ACKNOWLEDGMENT
This research was supported by Kyoto Sangyo University

Research Grant.

REFERENCES
[1] H. Ishibuchi, H. Tanaka, and H. Okada, “Fuzzy neural networks with

fuzzy weights and fuzzy biases,” Proc. of IEEE International
Conferences on Neural Networks, pp.1650–1655, 1993.

[2] D.B. Fogel, L.J. Fogel, and V.W. Porto, “Evolving neural networks,”
Biological Cybernetics, vol.63, issue 6, pp.487–493, 1990.

[3] X. Yao, “Evolving artificial neural networks,” Proc. of the IEEE, vol.87,
no.9, pp.1423–1447, 1999.

[4] K.O. Stanley, and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol.10, no.2,
pp.99–127, 2002.

[5] D. Floreano, P. Durr, and C. Mattiussi, “Neuroevolution: from
architectures to learning,” Evolutionary Intelligence, vol.1, no.1,
pp.47–62, 2008.

[6] L.A. Zadeh, “The concept of a linguistic variable and its application to
approximate reasoning - I, II, and III,” Information Sciences, vol.8,
pp.199–249, pp.301–357, and vol.9, pp.43–80, 1975.

[7] G. Alefeld, and J. Herzberger, Introduction to Interval Computation,
Academic Press, 1983.

[8] L.J. Eshelman, and J.D. Schaffer, “Real-coded genetic algorithms and
interval-schemata,” in D. L. Whitley (ed.), Foundation of Genetic
Algorithms 2, pp.187–202, 1993.

Hidehiko Okada is currently a Professor with the Department of Computer
Science and Engineering, Kyoto Sangyo University, Kyoto, Japan. He received
the B.S. degree in industrial engineering and the Ph.D. degree in engineering
from Osaka Prefecture University in 1992 and 2003, respectively. He had been
a researcher with NEC Corporation from 1992 to 2003, and since 2004 he has
been with the university. His current research interests include computational
intelligence and human-computer interaction. He is a member of Information
Processing Society of Japan, Institute of Electronics, Information and
Communication Engineers, Society of Instrument and Control Engineers,
Japanese Society for Artificial Intelligence, Japan Society for Fuzzy Theory
and Intelligent Informatics and Human Interface Society. He received the best
paper award in the 1st International Conference on Industrial Application
Engineering 2013.

0.01

0.1

1

10

0 200000 400000 600000 800000 1000000

E
rr
o
r
V
a
lu
e

IN N s evo lved

LU (100) C W (100) LU (500) C W (500)

0.01

0.1

1

10

0 200000 400000 600000 800000 1000000

E
rr
o
r
V
a
lu
e

IN N s evo lved

LU (100) C W (100) LU (500) C W (500)

