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Abstract—The traditional second order statistics approach of 

using only the hermitian covariance for non circular signals, does not 
take advantage of the information contained in the complementary 
covariance of these signals. Radar systems often use non circular 
signals such as Binary Phase Shift Keying (BPSK) signals. Their 
noncicular property can be exploited together with the dual 
centrosymmetry of the bistatic MIMO radar system to improve angle 
estimation performance. We construct an augmented matrix from the 
received data vectors using both the positive definite hermitian 
covariance matrix and the complementary covariance matrix. The 
Unitary ESPRIT technique is then applied to the signal subspace of 
the augmented covariance matrix for automatically paired Direction-
of-arrival (DOA) and Direction-of-Departure (DOD) angle estimates. 
The number of targets that can be detected is twice that obtainable 
with the conventional ESPRIT approach. Simulation results show the 
effectiveness of this method in terms of increase in resolution and the 
number of targets that can be detected. 

 
Keywords—Bistatic MIMO Radar, Unitary Esprit, Non circular 

signals.  

I. INTRODUCTION 
HE desire to correctly identify and obtain accurate 
estimates of target locations has prompted an increase in 

the study of Multiple Input Multiple Output (MIMO) radar 
systems. This follows from successes reported in MIMO 
Communications. Spatial diversity gain and waveform 
diversity are two very important advantages obtainable from 
MIMO radar systems [1]-[4]. The MIMO radar architecture is 
of two types. One with both the transmitting and receiving 
antennas or at least one them widely spaced is usually called 
statistical MIMO radar. Widely spaced antennas enable MIMO 
systems to view the target from several different angles 
simultaneously, thereby reducing signal fading caused by RCS 
fluctuations [1] The other architecture, called collocated 
MIMO has both the transmitting and receiving antennas closely 
spaced for detection and direction finding purposes [2], [4]. 
The Bistatic MIMO radar scheme comes under this category, 
but with the transmitter and receiver array far apart. Angle 
estimation in MIMO radar has been researched intensely in 
recent [9], [10]. In most studies, high resolution subspace based 
angle estimation algorithms are used based on a circular signal 
model.  
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Modern telecommunication, satellite and radar systems 
often use noncircular incoming signals like Binary phase shift 
keying (BPSK) and M-ary amplitude shift keying (MASK) 
signals. Circular signals, have Probability density functions 
(Pdfs) that are circular symmetric. That is, the signal z(t) and 
its rotation ejφz are equal for any angle, φ. This rotational 
invariance means the second order statistics only depends on 
the positive definite hermitian covariance E{zzH} because the 
complementary covariance E{zzT} vanishes [16]. On the other 
hand, signals with noncircular probability density functions 
(pdfs) retain their complementary covariance as well as their 
hermitian covariance. This means the second order statistics 
are also present in the complementary covariance matrix. This 
non circularity property can be exploited by concatenating the 
positive definite hermitian covariance and the complementary 
covariance for aperture extension in radar systems. This 
increases the angle estimation resolution and also the 
increases the number of sources that can be detected. 

With recent advancements in waveform generation and 
signal processing technology, waveforms based on Binary 
phase coded sequences (BPSK) which are noncircular signals, 
are used in radar, but their noncircularity property is not 
exploited for angle estimation purpose. They are only used for 
pulse compression to increase range resolution. In radio 
communication, the noncircularity of BPSK signals is 
exploited for bandwidth expansion to transmit information to 
multiuser environments [12]. Other contributions devoted to 
exploiting non circularity of noncircular signals include 
references [5], [6], [13], [16]-[17]. In a similar study, F. Gao et 
al. [18] show that using the augmented statistics can 
accommodate the generality of complex signals and also 
exhibit enhanced performance for situations where the signals 
are a combination of noncircular and circular signals.  

In this paper, we propose a new method that exploits the 
noncircularity property of non circular signals and the Unitary 
ESPRIT technique [5], [7], [8] for automatically paired angle 
estimates for a bistatic MIMO radar system. The rest of the 
paper is organized as follows: The Non circular signal model 
for a bistatic MIMO radar system is formulated in Section II; in 
Section III, we present the unitary transformations of the 
complex array manifold to a real manifold. The selection 
matrices for the bistatic MIMO virtual array manifold are also 
generated; Angle estimation based on Unitary ESPRIT 
technique is presented in Section IV. Numerical examples are 
presented and discussed in Section V; and finally we present 
some conclusions in Section VI.  

Notation: (·)H, (·)T, (·)*, (·)-1 denote Hemitian transpose, 
transpose, complex conjugation without transposition and 
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inverse respectively. diag(·) denotes the diagonalization 
operation. Vec(·) denotes a matrix operation that stacks the 
columns of a matrix under each other to form a new vector, 
A(m,n) represents the elements of a (M×N) matrix A. 
⊗ denotes the kronecker product.  

II. NON CIRCULAR SIGNAL MODEL 
Consider a narrowband bistatic MIMO radar system 

consisting of M and N half-wavelength spaced 
omnidirectional antennas for the transmitting and receiving 
arrays respectively. We assume both arrays are uniform linear 
arrays (ULA). For simplicity and clarity, we use a simple 
model with P uncorrelated targets with slowly varying 
velocities in the same range bin. The targets appear in the far 
field of the transmitting and receiving arrays and have Radar 
Cross Sections (RCSs) that are constant during a pulse period 
but fluctuates from pulse to pulse. The target model is a 
classical Swerling case II model. The directions of the pth 
target with respect to the transmit array normal and receive 
array normal are denoted by θp (DOD) and p (DOA) 
respectively. The location of the pth target is denoted by (θp, 

p). The transmitted waveforms are M orthogonal BPSK 
modulated signals with identical bandwidth and centre 
frequency. The transmitted signal of the mth transmit antenna 
within one repetition interval is denoted by 

{ }2Re oj f t
mb me π=s s , where, 1,lj

m e φ= = ±s  

 0 or  radianslφ π= , are the independent and identically 
distributed (iid) random BPSK transmitted symbols, 

1l L= "" and L denotes the length of the coding 
sequence within one repetition interval. smb is a constant 

modulus signal i.e. ( ) 1mb t =s . For a radar system that uses 

K periodic pulse trains to temporally sample the signal 
environment, the received signals of the kth pulse at the 
receiver array through reflections of the P targets can be 
written as [9]-[11], 

 

( ) ( )
1

2

1

dp k

bP
j f tT

k r p p t p k
p

Mb

e πφ β θ
=

⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥⎣ ⎦

∑ #
s

X a a W
s

                (1) 

 
where, βp in this case is a real valued amplitude mainly 
influenced by the reflection gain of the pth target , fdp denotes 
the Doppler frequency of the pth target, 

( ) ( )2 11, ,p p p
Tjr j r j N r

r p e e eφ −⎡ ⎤= ⎣ ⎦……a  σ2IN. IN is an N x N 

identity matrix. tk denotes the slow time, k the slow time index 
and K the number of pulses or repetition intervals. Using the 
orthogonality property of the transmitted waveforms, the 
output of the matched filters with the mth transmitted baseband 
signal can be expressed as  
  

( ) ( ) ( ) ( )2

1

0

( ) 1

0

dp k
P

j f tT
m k r p p t p k m k

p
t t e tπφ β θ

=
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⎢ ⎥
⎢ ⎥
⎢ ⎥= +
⎢ ⎥
⎢ ⎥
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∑
#

#
Y a a r V     (2) 

 

where, ( ) pj
k mr t e ϕ= s , φp denotes the arbitrary phase of the 

pth signal assumed to be an independent random variable 
uniformly distributed between 0 and 2π. ejφp≠ ejφq for any p≠ 

q. m m
∗=s s . The data matrix in (2) is usually vectorized by 

stacking the columns of ( )m ktY . Let 1( ) MN
kt C ×∈z be the 

output of all the received signal. 
 

1( ) ( ),..........., ( )
TT T

k k M kt t t⎡ ⎤= ⎣ ⎦z Y Y                                    (3) 

 
( ) ( ) ( )k k kt t t= +z Au n                                                   (4)                   

 
where ( ) ( )1 1( ) ,............, ( )r t r p t pφ θ φ θ⎡ ⎤= ⊗ ⊗⎣ ⎦A a a a a is the 

MN×P steering matrix. ( ) vec( ( ))k m kt t=n V  is the additive 
white Gaussian noise of zero mean and covariance, 

2
MNσ I after match filtering. 

12
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e
t t

e

π

π
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β
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Let Z denote the MN K× complex data matrix composed of 
K snapshots of ( ), 1kt k K≤ ≤z . 
 

1 2[ ( ) ( ) ( )]Kt t t=Z z z z""                                           (5) 
 
   1 2 1 2[ ( ) ( ) ( )] [ ( ) ( ) ( )]K kt t t t t t+"" ""A u u u n n n=         (6) 

 
+Z AU N=                                                              (7) 

                    
MN K

p C ×∈Z A S N= +Δ                                             (8)                
 
where 1( ,.........., )Pj jdiag e eϕ ϕΔ =  and  
 

1 22
1[ ]dp kd k j f tj f t T

p m pe e ππβ β= ……S s , p=U SΔ  
 

To exploit this rotational invariance between the 
transmitted BPSK symbols and the reflected signals, we 
concatenate the array measurements Z and their conjugate 
components Z* to form the augmented signal model, 

 

nc
MN

∗

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

Z
Z

Z∏
                                                        (9) 
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MN∏  is the MN MN×  exchange matrix with ones on its 

antidiagonal and zeros elsewhere. 
 

nc
MN MN

MN MN

∗ ∗ ∗

∗ ∗ ∗ ∗

⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

A U N
Z

A U N

A N
U

A N

∏ Δ ∏

∏ Δ Δ ∏

                    (10) 

 
 nc nc nc+Z A U N=                                                   (11) 

III. VIRTUAL ARRAY MANIFOLD SELECTION MATRICES 
We employ the linear algebra property that the inner 

product between any two conjugate centrosymmetric vectors 
is real valued. Any matrix whose rows are each conjugate 
centro symmetric can be applied to transform a complex 
valued array manifold vector into a real valued manifold. i.e. 
If the matrix A is centro hermitian, then H

F SQ AQ  is a real 
matrix. The matrix Q is unitary; its columns are conjugated 
symmetric and has a sparse structure [15]. As researched by 
various authors based on the pioneering work of Lee [14], the 
perfect matrices to accomplish this are 
 

2

2 1

1 for even 2

and

1 2 for odd 2

F F
F

F F

F F

T T
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F F

j
F

j

j
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j

+
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⎢ ⎥

= ⎢ ⎥
⎢ ⎥−⎣ ⎦

I I
Q

I 0 I

Q 0 0
0

∏ ∏

∏ ∏

               (12)                                           

 
These can be used to transform the complex valued data 

matrix to a real valued matrix. 
 

2
H

real MN nc K=Z Q  Z Q                                               (13) 
 

The real valued covariance matrix can be estimated using 
the maximum likelihood estimate, 
 

( )1
2real

H
Z real realK=R Z Z                                          (14)                             

 
Eigen-decomposition of 

realZR yields a signal subspace 

matrix SE composed of the P eigenvectors corresponding to 
the P largest eigenvalues. Exploiting the double vandermonde 
in the kronecker product structure of A(θ, ), similar to the 
2D DOA estimation using a URA [8], we have the following 
selection matrices for the transmit array. 
 

( ) ( ) ( )1 2 2 1 1 1 1nc N N M M M× × − × − − ×
⎡ ⎤= ⊗ ⊗ ⎣ ⎦J I I I 0                   (15)   

    

( ) ( ) ( )2 2 2 1 1 1 1nc N N M M M× × − × − × −
⎡ ⎤= ⊗ ⊗ ⎣ ⎦J I I 0 I                  (16)  

2 ( 1) 1nc M N nc MN−=J J∏ ∏                                           (17) 
 

The shift invariance property for the transmit array from the 
columns of A can be expressed as 
 

 1 2nc nc t=J A J AΦ                                                    (18) 
 

where, { }
1

p
Pjt

t p
diag e

=
=Φ . The selection matrices for the 

receive array can also be expressed as 
 

( ) ( ) ( )3 2 2 1 1 1nc M N M N M N M× − × − − ×
⎡ ⎤= ⊗ ⎣ ⎦J I I 0                      (19) 

 

( ) ( ) ( )4 2 2 1 1 1nc M N M M N M N× − × − × −
⎡ ⎤= ⊗ ⎣ ⎦J I 0 I                      (20) 

 
and they also posses centrosymmetry with respect to each 
other. 
 

 ( )4 31nc nc MNM N ==J J∏ ∏                                          (21) 
 

 3 4nc nc r=J A J AΦ                                                    (22) 
 

where { }
1

p
Pjr

r p
diag e

=
=Φ . 

IV. JOINT ANGLE ESTIMATION USING UNITARY ESPRIT 
The Unitary transformed virtual array steering matrix is 

obtained as [7], [8]: 
 
   H

MN=G Q A                                                         (23) 
 
The transformed selection matrices and invariance 

equations can be obtained by substituting (27) into (22) and 
(26). 

 

1 2
H H

nc MN MN t nc MN MN=J Q Q A J Q Q AΦ                             (24)     
              

 1 2nc MN t nc MN=J Q J Q GΦG                                        (25) 
 
Premultiplying both sides by ( )1

H
M N−Q  gives the invariance 

equation for the transmit array as 
 

( ) ( )1 21 1
H H

nc MN t nc MNM N M N− −=Q J Q G Q J Q GΦ                     (26)                
 
Using (21), and n n n n n n

∗= =Q Q I∏ ∏ ∏  
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( ){ }1 212Re ( )H
nc MNM N−=K Q J Q                                  (28) 

 

( ){ }2 212 Im ( )H
nc MNM N−=K Q J Q                                  (29)               

 
Substituting (31) and (32) in (28), we have 
 

( )( ) ( )( )2 21 1
H H

nc MN t nc MNM N M N

∗

− −=Q J Q G Q J Q GΦ            (30) 

 
( ) ( )1 2 1 2t j j− = +K K K K GGΦ                               (31)                                 

 

Multiplying both sides by 2
jtp

e
−

gives 
 

( ) ( )2 2
1 2 1 2

jt jtp p

t Pe j e j
− −

− = +K K G I K K GΦ               (32)                 
 

Note that { }
1

p
Pjt

t p
diag e

=
=Φ , and rearranging we have 

 

2 2 2 2
1 2

p p p pjt jt jt jt

P P P Pe e j e e
− −⎛ ⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
I I K G I I K G     (33) 

 
Using the tangent identity 
 

( ) ( )
2 2

2 2
tan 2

t tj j

t tj j

e et
j e e

−

−

−
=

+
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1 2
1

tan 2

P
p

p

tdiag
=

⎧ ⎫⎛ ⎞ =⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

K G K G                                (35) 

 
We obtain the following transformed real valued invariance 

equation for the transmit array. 
 

1 2t =K G K GΩ                                                         (36)                                                         
 

where 
1

tan 2

P
p

t
p

tdiag
=

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

Ω  

The 2MN P×  real valued matrix of signal eigenvectors 
sE spans the same P dimensional subspace as the 2MN P×  

real valued steering matrix G. Therefore there exists a 
nonsingular matrix H of size P P×  such that s =E GH . 
Substituting this in (40) yields the transformed invariance 
equation from which we can compute the DODs. 

 

1 2s t s=K E K EΨ                                                     (37) 
 
where 1

t t
−= H HΨ Ω . Following the same procedure, the 

transformed selection matrices and invariance equations to 
compute the DOAs for the receiver array are obtained as 
 

( ){ }3 412Re ( )H
nc MNM N −=K Q J Q                                 (38) 

 

( ){ }4 412 Im ( )H
nc MNM N −=K Q J Q                                 (39) 

 

3 4r =K G K GΩ                                                      (40)                
 

where 
1

tan 2

P
p

r
p

rdiag
=

⎧ ⎫⎛ ⎞= ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

Ω . And the invariance 

equation from which to compute the DOAs is obtained as 
 

3 4s r s=K E K EΨ                                                              (41) 
 
where 1

r r
−= H HΨ Ω . 

Since both andt rΨ Ψ  share the same transform matrix H 
and are also real valued matrices, automatically paired 
estimates of DODs and DOAs { }, , 1p pu r p P= ""  can be 

obtained from the real and imaginary parts of the eigenvalues 
obtained by the eigendecomposition of the complex valued 
matrix 

 
( ) 1

t r t rj j −+ = +H HΨ Ψ Ω Ω                                          (42) 
 

where { }
1

P

t r p p
j diag λ

=
+ =Ω Ω , are the eigenvalues. The 

DODs and DOAs are obtained as 
 

 { }( ){ }ˆ arcsin 2arctan Re 1p p p Pθ λ= ≤ ≤                    (43) 

 

{ }( ){ }ˆ arcsin 2arctan Im 1p p p Pφ λ= ≤ ≤                     (44) 

V. SIMULATION RESULTS 
In this section, we present some numerical examples, using 

monte Carlo simulations to demonstrate the effectiveness of 
the method proposed in this paper.  

First, we consider a uniform linear array (ULA) of 3 
antennas at the transmitter and 4 antennas at the receiver, both 
of which have half wavelength spacing between its antennas. 
There are 6 independent BPSK signals impinging on the 
virtual array from 6 different targets with angles and initial 
phases as shown in Table I and a signal-to-noise ratio 
SNR=10dB. 
 

TABLE I 
TARGET SIGNAL PARAMETERS 

Targets 1 2 3 4 5 6 
DOD(θ) 00 100 300 600 200 500

DOA( ) -100 200 250 200 500 600

 Phases π/2 π/4 π/6 π/8 π/5 π/3 
 
We observed 256 snapshots of the received signal corrupted 

by a zero mean spatially white noise of variance = 1. For 
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purpose of statistical repeatability, we made 500 monte carlo 
trials. Fig. 1 shows the targets are well localized and correctly 
paired.  

In the second part of the simulation, we demonstrate the 
performance improvement due to non circularity property. 
This gives an indication of the information contributed by the 
complementary covariance matrix. We use the Root Mean 
Square Error (RMSE) performance criterion. The RMSE of 
the pth target angle estimation is defined as 
 

( ) ( )2 2

1

ˆ ˆ1RMSE
L

p pl p pl p
l

L θ θ φ φ
=

= − + −∑  

 

where, L is the monte carlo trial number, ˆ ˆand pl plθ φ  are the 

estimates at the thl iteration, and p pθ φ are true angle values. 
We compare the RMSE of target angle estimation of the 
proposed algorithm to that of the same non circular signal but 
using only the standard hermitian covariance matrix. 
Considering the same number and configuration of antennas 
as before, we vary the signal to noise ratio (SNR) from -5 to 
30dB. Results were obtained using 200 monte carlo 
simulations. Fig. 2 shows the RMSE versus SNR for the 6 
targets. The estimation errors are quite negligible. Fig. 3 
shows a comparison of the RMSE of angle estimation for our 
proposed algorithm and the RMSE of angle estimation using 
the same BPSK signal without exploiting the conjugate 
symmetry. It can be seen from Fig. 3, that that for as low as -
5dB SNR, the proposed algorithm yields excellent estimates 
with negligible errors. Furthermore, this algorithm which uses 
both the hermitian covariance and the complementary 
covariance clearly outperforms the circular model Unitary 
ESPRIT algorithm that uses only the hermitian covariance. 
Performance improvement is observed for both low and high 
SNRs. 
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Fig. 1 Joint angle estimation of the proposed algorithm for 6 targets 
over 500 monte carlo trials with SNR =10dB 
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Fig. 2 RMSE of angle estimation for the six targets versus SNR for 
K=256 samples and 200 monte carlo trials 
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Fig. 3 RMSE of estimation versus SNR for M=N=3 antennas and 
K=256 samples for 200 monte carlo trials 

 
In the final simulation test, we perform an asymptotic 

analysis of the performance of the proposed algorithm and the 
circular model with respect to the number of transmit/receive 
antennas. Simulation conditions and parameters are the same 
as the previous simulations. However, in this case, the number 
of transmit and receive elements are made equal i.e M = N for 
ease of presentation. Fig. 4 shows the RMSE of angle 
estimation versus the number of transmit/receive antennas at a 
SNR of 20dB. As expected asymptotically, both algorithms 
improve as the number of sensors increase with our proposed 
noncircular model consistently giving lower angle estimation 
errors.  

 



International Journal of Electrical, Electronic and Communication Sciences

ISSN: 2517-9438

Vol:7, No:6, 2013

795

3 4 5 6 7 8 9 10 11 12
10-3

10-2

10-1

Number of Antenna elements(For M=N)

R
M

S
E

DO
A

(d
eg

)

 

 
Unitary ESPRIT
NC Unitary ESPRIT

 

Fig. 4 RMSE of estimation for different values of M=N, K=256 
samples and 200 monte carlo trials 

VI. CONCLUSIONS 
We have investigated the effectiveness of using the second 

order statistical information contained in both the hermitian 
covariance matrix and the elliptic covariance matrix of a non 
circular signal for aperture extension. Exploiting the non 
circularity property of non circular signals, like BPSK signals 
as shown in our simulation results, gives a better estimator 
performance and increases the number of targets that can be 
detected. 
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