
International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:7, No:12, 2013

2478

 

  

Abstract—In this paper the problem of buckling of plates on 

foundation of finite length and with different side support is studied.

The Finite Strip Method is used as tool for the analysis. 

method uses finite strip elastic, foundation, and geometric matrices

build the assembly matrices for the whole structure, then after 

introducing boundary conditions at supports, the resulting reduced 

matrices is transformed into a standard Eigenvalue

problem. The solution of this problem will enable the determination 

of the buckling load, the associated buckling modes and the buckling 

wave length.  

To carry out the buckling analysis starting from

foundation, and geometric stiffness matrices for each strip a computer 

program FORTRAN list is developed. 

Since stiffness matrices are function of wave length of buckling,

the computer program used an iteration procedure to find the critical 

buckling stress for each value of foundation modulus and for each 

boundary condition.  

The results showed the use of elastic medium to support plates 

subject to axial load increase a great deal the buckling load, the 

results found are very close with those obtained by other analytical 

methods and experimental work. 

The results also showed that foundation compensates the effect of 

the weakness of some types of constraint of side support and 

maximum benefit found for plate with one side simply supported the

other free. 

 

Keywords—Buckling, Finite Strip, Different 

Plates on Foundation.  

I. INTRODUCTION 

HE problem of buckling of plates on elastic foundation 

received attention of many researcher in the past, some of 

them approached the problem by using the principal of 

minimum of total potential energy for unit width [1],

derived the governing differential equation starting from the 

expression of applied bending moments relationship with 

deflection [2], with obvious difficulty of selecting pr

displacement function and introducing different

In this paper the problem is solved using the Finite Strip 

Method for local stability. The plate is loaded in its plane with 

distributed axial load on its width b, it is made of metallic 

material with Young’s modulus E, Thickness t

the analysis considered plate with length to width ratio a/b =9,

and b/t=64. 

The foundation material is linearly elastic and idealized as 
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In this paper the problem of buckling of plates on 

foundation of finite length and with different side support is studied. 

Method is used as tool for the analysis. This 

method uses finite strip elastic, foundation, and geometric matrices to 

build the assembly matrices for the whole structure, then after 

introducing boundary conditions at supports, the resulting reduced 

es is transformed into a standard Eigenvalue-Eigenvector 

solution of this problem will enable the determination 

of the buckling load, the associated buckling modes and the buckling 

To carry out the buckling analysis starting from the elastic, 

foundation, and geometric stiffness matrices for each strip a computer 

Since stiffness matrices are function of wave length of buckling, 

the computer program used an iteration procedure to find the critical 

buckling stress for each value of foundation modulus and for each 

The results showed the use of elastic medium to support plates 

subject to axial load increase a great deal the buckling load, the 

se obtained by other analytical 

The results also showed that foundation compensates the effect of 

the weakness of some types of constraint of side support and 

maximum benefit found for plate with one side simply supported the 

Different Sides Support, 

problem of buckling of plates on elastic foundation 

received attention of many researcher in the past, some of 

sing the principal of 

minimum of total potential energy for unit width [1], others 

derived the governing differential equation starting from the 

expression of applied bending moments relationship with 

with obvious difficulty of selecting proper 

displacement function and introducing different boundary . 

In this paper the problem is solved using the Finite Strip 

Method for local stability. The plate is loaded in its plane with 

it is made of metallic 

E, Thickness t, and length a, 

the analysis considered plate with length to width ratio a/b =9, 

material is linearly elastic and idealized as 

ical Engineering Department, Faculty of 

(phone: +218 91 3605052; e-mail: 

Makhlufi is with the Aeronautical Engineering Department, 

iversity of Tripoli, Libya (e-mail: 

closely spaced springs [3] and it is completely glued to the 

skin, has young’s modulus E

loading to provide adequate stiffness, to oppose deflection in 

that direction, the resulting spring modulus coefficient K

computed from  

 

Kf= EC /h,

where h is the foundation depth.

In this work the value selected for 

h=0.4band the values of EC =0.0 to 50 N/mm

Finite Strip Method [4] is used to find

plate on foundation with the following side supports:

a) One side simply supported the other free.

b) One side clamped the other free.

c) Both sides clamped. 

 

Fig. 1 Typical finite strip with nodal displacements

II. FINITE STRIP FOR S

The structural stability problem of plate supported by elastic 

medium which forms the foundation is based on expression 

the elastic stiffness of the plate as sum of elastic stiffness 

foundation stiffness Kf and geometric matrices 

Each of the overall matrices mentioned above is formed 

from the matrices of the single s

element procedure, the element matrices will be derived as 

follow: 

A.  Finite Strip Elastic Stiffness Matrix:

A single strip is as shown in 

displacements at each edge, U

and Uj for rotations, the derivation follow a standard Finite 

Element Method procedure,

function [4]; 

 w � ��1�2��2
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Plates on Foundation with 

Types of Sides Support 

and it is completely glued to the 

skin, has young’s modulus EC in the direction normal to 

provide adequate stiffness, to oppose deflection in 

that direction, the resulting spring modulus coefficient Kf is 

/h,                                                (1) 

 

where h is the foundation depth. 

In this work the value selected for the foundation depth 

=0.0 to 50 N/mm
2
. 

is used to find buckling load for 

with the following side supports: 

side simply supported the other free. 

side clamped the other free. 

 

1 Typical finite strip with nodal displacements 

STRUCTURAL STABILITY 

The structural stability problem of plate supported by elastic 

which forms the foundation is based on expression 

the elastic stiffness of the plate as sum of elastic stiffness Ke, 

and geometric matrices Kg. 

Each of the overall matrices mentioned above is formed 

from the matrices of the single strips as in a standard finite 

element procedure, the element matrices will be derived as 

Finite Strip Elastic Stiffness Matrix: 

A single strip is as shown in Fig. 1, with two nodal 

displacements at each edge, Ui for out of plane displacement 

for rotations, the derivation follow a standard Finite 

Element Method procedure, the assumed displacement 

2� � �3
sin�� x/L�                  (2) 

with Different 
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where Y=y/b, b plate width, L is half wave length of buckling 

and C1,C2,C3 are constants. 

In terms of shape functions the displacement function 

w(x,y) becomes: 

 

w={N1   N2   N3   N4}.sin (π x/L)U                  (3) 

 

where the shape functions Ni are expressed as follow: 

 

N1=(1-3Y
2
+2Y

2
), N2=(Y-2Y

2
+Y

3
)b, N3=(2Y

2
-2Y

3
), 

 N4=(-Y
2
+Y

3
)b 

 

and U={U1  U2  U3  U4}  is column of nodal displacement. 

Then from strains as second order partial derivatives: 

 

єx =-zδ
2
w/ δ x

2
  

єy =-z δ
2
w/ δ y

2
 

єxy =-2zδ
2
w/ δxy                                                                 (4) 

 

which in matrix form 

є =b U                                             (5) 

 

and from the  expression of elastic stiffness for single strip  

 

  �� � �   ���� dV,                             (6) 

 

where the matrix E is the elastic modulus matrix [7], V is the 

volume of element.  

We obtain the finite strip elastic stiffness matrix ke given 

below: 

 �� � ��� � ��� � ��                               (7) 

 

where 

!�� � "#$%&'�(()(��*+,�-'. �/0��% 1%, 234./1 � % �/0*� % * %, �*��% 1%,6 
 

!�� � ", $&' 0(��*+,�%- 788
9  0� :�/+� 1%, 234.* 0 * %  0*� % *%, *� :�/�% 1%,;<<

=
 

 

!� � $-&'�(()(��*+,�-'. ��0% 1%, 234.*�� *0% ��0% �%, *0% 1%,6 
B. Foundation Stiffness Matrix  

The foundation is assumed to be formed by elastic isotropic 

material with elastic modulus =Ec, to be perfectly glued to the 

plate, depth of the foundation is assumed to be =h. 

Under critical load the plate buckles into a number of half 

waves and the core material glued to the plate wrinkle the 

same way, under the first half-wave it will be pressed down 

and under the second half wave it will be pulled upward and 

so on. 

At distant h from the plate the core remains undisturbed. In 

practice the core is thick enough for this to be true. 

We can assume the spring constant of the foundation 

modulus be computed from 

 

kf=Ec/h                                       (8) 

 

 

Fig. 2 Foundation idealization 

 

The derivation of foundation stiffness matrix [5] can be as 

follow: 

From the assumed displacement function written above, the 

strain energy expression resulting from the elastic stiffness of 

the foundation UEF can be written as: 

 U$? � @A, B C,DED3                              (9) 

 

and substituting with the expression of the displacement 

function w written in matrix form 

 U$? � @A, FG�H H IG.I 2,DED3�F  JKLK                    (10) 

 

where b is plate width, a plate length, N is shape function 

matrix, and U column of displacement functions and 

 

 s= sin(π x/L)                                    (11) 

 

Then each element of the foundation matrix kf is given 

from: 

 

kf(i,j)=δ
2
UEF/ δUiδUj                            (12) 

 

where Ui, and Uj are nodal displacements. Foundation matrix 

is given; 

 

MN � OALJP#K . �/0��% 1%, 234./1 � % �/0*� % * %, �*��% 1%,6                  (13) 

C. Geometric Stiffness Matrix for Finite Strip Element: 

The geometric matrix for a strip is derived [4] by assuming 

middle plane constant stress σx acting in x direction the 

geometric matrix will be given from  

 MQ � H H H R ′SR′
&/�*&/�%(  dxdydz-(                        (14) 

 

where NWis first derivative of N relative to x and equal to 

=(π/L) N(y)cos(π x/L). 

The geometric matrix for single stripkg is given as follow: 

 

MQ � X Y,JZP#K[ . �/0��% 1%, 234./1 � % �/0*� % * %, �*��% 1%,6                (15)                 
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Fig. 3 Idealization of the plate

D. The Buckling Equation for the Assembled 

The displacement–load equation for the assembled structure 

constructed from the matrices of single elements

given from [7]: 

 \ � ��� � �] � �^�*�
instead of the column matrix F we substitute (

the relative magnitude of the applied load

λ is a constant of proportionality or (load f

since the geometric stiffness is proportional to the applied 

load, it can be written as _� Ŵ , with �
stiffness matrix for unit value of λ. 

For small displacement Ke can be considered

the general equation can be written as follow:

 \ � ��� � �] � _� Ŵ �*�_`
 

It follows that for buckling with displacement tending to 

infinity the determinant=0, or 

 a�� � �] � _� Ŵ a � 0                           

This determinant is stability equation used to find the 

buckling loads and buckling modes. 

The lowest root (Eigen-value) and the associated 

eigenvector will be the critical buckling load and buckling 

mode. 

E. Analysis Procedure: 

In this study since the elastic, foundation, and geometric 

matrices are functions of buckling wave length which is 

unknown, the buckling load and the associated buckling mode 

are found by an iteration procedure. 

For the analysis the plate is divided into six finite strips 

each of length equivalent to half wave length, Fig.

typical finite strip of the plate with nodal 

Fig. 2 shows the idealization of the full plate.

The assembly matrix for full plate is of order 14×

reduced matrix which obtained by introducing the boundary 

condition at sides of plate will be of order 13×13 for side 

 

 

Idealization of the plate 

ssembled Structure 

load equation for the assembled structure 

constructed from the matrices of single elements Fig. 3 is 

`                        (16) 

 

we substitute (λF′′′′) where F′ is 

the applied load column matrix and 

load factor) of F, and 

roportional to the applied � Ŵ  is the geometric 

considered constant then 

the general equation can be written as follow: 

_`c                      (17) 

that for buckling with displacement tending to 

                           (18) 

 

stability equation used to find the 

value) and the associated 

buckling load and buckling 

In this study since the elastic, foundation, and geometric 

matrices are functions of buckling wave length which is 

unknown, the buckling load and the associated buckling mode 

into six finite strips 

each of length equivalent to half wave length, Fig. 1 shows 

typical finite strip of the plate with nodal displacements, and 

idealization of the full plate. 

for full plate is of order 14×14, the 

educed matrix which obtained by introducing the boundary 

condition at sides of plate will be of order 13×13 for side 

simply supported the other 

reduced stiffness matrix will be of order 12×12,

clamped-clamped plate the reduced matrix will be of order 

10×10. 

III. FLOW CHART 

The flow chart and the FORTRAN list are given in 

Appendix. Fig. 7 illustrates

buckling program. 

The program steps are as follow:

1) RUN=1, geometric stiffness i

element  

2) Assembly matrix is initiated and receives each element

matrix in the proper space 

3) Boundary condition is introduced and reduced geometric 

matrix is formed. 

4) Run=2, steps 1-,2-,3-, are repeated for elastic stiffness 

matrix and reduced elastic stiffness matrix for full plate is 

derived. 

5) To Find Eigen-value and Eigenvectors Since subroutine 

require positive definite matrix to be introduced first, 

positions of matrices Ke 

the characteristic determinant as follow:

adeW � �f/g
adeW � g

where  is the required Eigen

6) A number of half wave lengths are used in the iteration 

procedure and the minimum of the curve will give the 

buckling load required.  

7) The subroutines used for solving the characteristic 

equation for each step of the iteration process is as follow 

[8]: 

• To find Eigen-values and eigenvectors for the problem 

the form Ax=Bx. 

• The second matrix B is decomposed into Land

Then (CALL CHOLDC{K

Note Ke +Kf≡B, and Kg≡A

• The equation Ax=Bx. Becomes

• which can be written as

symmetric matrix 

(CALL PMAT{KEI,KG,KEIT,P,N}).

• Householder’s method is used to transform the matrix 

into tridiagonal matrix.  

(CALL TRIDIAG{P,N,DP,EP})

• QL Algorithm is used to find eigenvalues and 

eigenvectors  

(CALL tgli{dP,eP,n,N,z} 

Note: The eigenvectors are related to the original x by the 

relations=L
t x. 

IV. ANALYSIS AND PRESENTATION 

The analysis is based on 

steel with young’s modulus E equal 210,000 N/mm

simply supported the other free, for clamped free plate the 

reduced stiffness matrix will be of order 12×12, and the 

the reduced matrix will be of order 

HART AND FORTRAN LIST 

The flow chart and the FORTRAN list are given in 

illustrates the flow chart of the plate 

The program steps are as follow: 

geometric stiffness is computed for one strip 

Assembly matrix is initiated and receives each element 

in the proper space  

Boundary condition is introduced and reduced geometric 

, are repeated for elastic stiffness 

reduced elastic stiffness matrix for full plate is 

value and Eigenvectors Since subroutine 

require positive definite matrix to be introduced first, 

 +Kf, and Kg are interchanged in 

rminant as follow: 

 � g�hdi � djka � l                  (19) 

 gchdi � djka � l                    (20) 

 

is the required Eigen-value 

A number of half wave lengths are used in the iteration 

imum of the curve will give the 

 

The subroutines used for solving the characteristic 

equation for each step of the iteration process is as follow 

values and eigenvectors for the problem in 

is decomposed into Land L
t
 B=LL

t
 

(CALL CHOLDC{Ke, N, n})  

A 

Becomes (L
-1

 A L
-1

)(L
-1

x)=(L
-1

x).  

which can be written as Py=y where P=L
-1

 A L
-1

 is the 

(CALL PMAT{KEI,KG,KEIT,P,N}). 

Householder’s method is used to transform the matrix P 

TRIDIAG{P,N,DP,EP}) 

QL Algorithm is used to find eigenvalues and 

Note: The eigenvectors are related to the original x by the 

RESENTATION OF RESULTS 

The analysis is based on study of relatively long plate of 

steel with young’s modulus E equal 210,000 N/mm
2
, 
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σε=600N/mm
2
 with length a=457mm, and b=50.8mm, 

thickness t=0.79 mm, foundation height h=0.4b and 

foundation modulus of elasticity Ec vary from 0.0 to 50.0 

Nmm
2
, and the corresponding elastic spring modulus 

Kf=Ec/(0.4b). 

Three boundary conditions column matrices NB(I) are as 

follow: 

• One side simply supported the other free  

 

NB(1)=m1n                                  (21) 

 

• One side clamped the other free  

 

NB(2)=o12p                                  (22) 

 

• Two sides clamped  

 

NB(4)=. 1213146                                 (23) 

 

and nodal numbering matrix for the plate is as follows 

 

ND
T
(6,2)=o1 2 3 4 5 62 3 4 5 6 7p                  (24) 

 

Ends simply supported in all cases. 

The Fortran list and flow chart used are given in Appendix, 

the results of analysis are given as follow: 

Fig. 4 shows results of critical buckling stress versus values 

of Kf 

Fig. 5 shows results of critical buckling stress coefficient K 

versus values of Kf. where 

 

 k � σ E xyz{�⁄                                  (25) 

 

Fig. 6 shows variation of buckling wave length to plate 

width ratio λLcr/b for the three cases considered versus Kf. 
 

 

Fig. 4 Critical buckling stress for plates on foundation 

 

 

Fig. 5 Critical buckling stress coefficient for plates on foundation 

 

 

Fig. 6 Critical wave length ratio for plates on foundation 

V. CONCLUSION 

1) Critical buckling stress increases with increase in 

foundation stiffness and wave length decrease  

2) The plate with one side simple supported and one side 

free benefit most from increase in stiffness of the 

foundation. 

3) For all types of side constraint values of buckling stress 

coefficients tend to get closer at high values of foundation 

spring modulus Kf. 

4) Comparison of results  

• Comparison with theoretical analysis For clamped-free 

plate not on foundation Kf=0.0, from ESDU [6]σx= 

57.4N/mm
2

, Lcr =90N/mm
2
 

In this study for the same plate σx=59.3N/mm
2

, Lcr=65.5mm 

• Comparison with experimental results[5] for long steel 

plate on foundation b=42 mm, and a/b=10.7, t=0.79mm: 

• Test 1 

Kf=1.3N/mm
2
 /mm, σx= 260 N/mm

2
, Lcr=30.mm 

In this study for the same Kf and for a/b=8.85, 

σx=298.5N/mm
2
, Lcr=27mm. 

• Test 2 

Kf= 1.5N/mm
2
, σx= 277N/mm

2
, Lcr=30.mm  

In this study for the same Kf and for a/b=8.85, 

σx=324N/mm
2
, Lcr=27mm. 

As it can be seen from the comparison, relatively good 

results are obtained. 
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APPENDIX 

 

Fig. 7 Flow chart of plate buckling program 

C FINITE STRIP STR-NW CURVES   12X12  CLMPED-FREE  

C BUCKLING OF PLATE CLAMPED -FREE UNDER  AXIAL LOAD   

DIMENSION ND(6,2),B(4,4),KS(14,14),KO(14,14), 

#KG(12,12),KE(12,12) 

#,NB(2),KEI(12,12),KEIT(12,12),P(12,12),DP(12), 

#EP(12),Z(12,12) 

 #,STR(30),F9(30),F99(30) 

 DOUBLEPRECISION PI,PHA,PHB,PHC,PHD,FLA,B,KO, 

#KG,KE,KS,E,BB,EY,ER,TT,KEI,KEIT,#P,DP,EP,Z 

INTEGER,I7,NOD,IND,I9,LL,NEL,QM,JM 

OPEN(1,FILE='MAT12.OUT') 

OPEN(2,FILE='MAT22.OUT') 

303 RUN=1  

F9(QM)=FLA 

F99(JM)=FLABP 

208PI=4*ATAN(1.0)  

 I1=1 

NN=IND*LL 

I9=NN-I7  

1000  DO 2 L=1,NN 

      DO 2 M=1,NN 

2     KS(L,M)=0.0 

ASTIC STIFFNESS OF SINGLE STRIP   

 

300   PHA=(PI**4.)*E*BB *(TT**3.)/(10080.*                                        

#(1-UN*UN)*FLA**3.)+GK*FLA*BB/840.  

      PHB=PI*PI*E*(TT**3.)/(360.*(1.-UN*UN)*BB*FLA) 

PHC=E*FLA *(TT**3.)/(24.* (1.-UN*UN)*BB**3.) 

      PHD=PI*PI*BB*TT/(840.* FLA) 

 33   IF(RUN-2) 3,4,602 

3    B(1,1)=PHD*156. 

B(2,1)=PHD*22.*BB 

B(3,1)=PHD*54. 

B(4,1)=PHD*(-13.)*BB 

B(2,2)=PHD*4.*BB*BB 

B(3,2)=PHD*13.*BB 

B(4,2)=PHD*(-3.)*BB*BB 

B(3,3)=PHD*156. 

B(4,3)=PHD*(-22.)*BB 

B(4,4)=PHD*BB*BB*4. 

      GO TO 11 

4     B(1,1)=PHA*156.+PHB*36.+PHC*12. 

B(2,1)=PHA*22.*BB+PHB*(3.+15.*UN)*BB+PHC*6.*BB     

B(3,1)=PHA*54.+PHB*(-36.)+PHC*(-12.) 

B(4,1)=PHA*(-13.)*BB+PHB*(3.)*BB+PHC*6.*BB 

B(2,2)=4.*BB*BB*(PHA+PHB+PHC)  

B(3,2)=PHA*13.*BB+PHB*(-3.)*BB+PHC*(-6.)*BB 

B(4,2)=PHA*BB*BB*(-3.)+PHB*BB*BB*(- 1.)+PHC*BB*BB*2. 

B(3,3)=PHA*156.+PHB*36.+PHC*12. 

B(4,3)=PHA*(-22.)*BB+PHB*(-3.-15.*UN)*BB+PHC*(-

6.)*BB 

B(4,4)=4.*BB*BB*(PHA+PHB+PHC)  

11    DO 7  I=1,4 

      DO 7  J=1,4 

 7    B(I,J)=B(J,I) 

C     #,I=1,4) 

          N1=1 

52    L1=1 

50    DO 90 I=1,LL 

 DO 90 J=1,LL 

      L2=I+(N1-1)*LL 

      M3=J+(L1-1)*LL 

L=LL*ND(I1,N1)-LL+I 

M=LL*ND(I1,L1)-LL+J 

90   KS(L,M)=KS(L,M)+B(L2,M3)         

      L1=L1+1 

IF(L1-NOD) 50,50,51 

51    N1=N1+1 

IF(N1-NOD)52,52,53 

53 I1=I1+1 

 IF(I1-NEL)300,300,320 

320  DO 500  L=1,NN 

      DO 500 M=1,NN 

KO(L,M)=KS(L,M) 

500  CONTINUE 

      DO   600  II=1,I7 

RUN=2 
EQ 

LT EQ 

LT EQ 

START 

A,b,t,E,Ec,NB(I),ND(I,J),NEL,I7,LL,PI,N 

FLA=a/NW 

 

KS(L,M),    L=1,NN,    M=1,    NN . 

 

RUN:2 

Ke(I,J)=B(I,J) Kg(I,J)=B(I,J) 

KS(I,J)=SUMB(I,J) 

NB(I),# KO(I,J)=KS(L,M) 

 

RUN=2 

KE(I,J)=KO KG(I,J)=kO 

9 

CALL  Subroutines 

for Eigen value-

Eigenvector 

Critical stress 

STR=1/R(I9) 

STOP 

9 

RUN=1 
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K=NB(II) 

K=K-II+1 

ITERM=NN-1 

      DO 510 L=K,ITERM 

      IP1=L+1 

      DO 510 M=1,NN 

KO(L,M) =KS(IP1,M) 

510   CONTINUE 

 NM1=NN-1 

      DO 540 L=1,NM1 

      DO 540 M=1,NN 

KS(L,M) =KO(L,M) 

540   CONTINUE 

      DO 520 M=K,ITERM 

      JP1=M+1 

      DO 520 L=1,NN 

520   KO(L,M)=KS(L,JP1) 

NN=NN-1 

      DO 545 L=1,NN 

      DO 545 M=1,NN 

KS(L,M)=KO(L,M)  

545   CONTINUE 

600   CONTINUE 

IF(RUN-2) 16,17,602 

16   DO 161 I=1,I9 

      DO 161 J=1,I9 

161   KG(I,J)=KO(I,J) 

       GO TO  207 

17    DO 171 I=1,I9 

      DO 171 J=1,I9 

171   KE(I,J)=KO(I,J) 

207   RUN=RUN+1 

IF(RUN-2)208,208,602 

02 CALL CHOLDC(KE,N,12) 

WRITE(2,992)((KE(I,J),J=1,N),I=1,N) 

 CALL LMI(KE,KEI,KEIT,N) CALL PMAT(KEI,KG,KEIT,P,N) 

                  CALL TRIDIAG(P,N,DP,EP) 

 Z=P 

                CALL TQLI(DP,EP,N,12,Z) 

 STR(JM)=1./DP(N) 

 X7=STR(JM)/(E*((TT/BP)**2)) 

 IF(JM.GT.1.)GOTO 1078 

 STRCR=STR(JM)      

 QM=QM+1 

 JM=JM+1 

 IF(QM.GT.QMMAX) GOTO 0111 

 GOTO 306 

1078  DEL=STR(JM)-STRCR  

IF(DEL.GT.0.0) GOTO 2933 

 STRCR=STR(JM) 

 QM=QM+1 

 JM=JM+1 

 GOTO 306 

2933 WRITE(2,33331)STRCR,X7,F99(JM),ER, GK,QM,JM 

33331 FORMAT(1X,'STRCR(JM)= ',F10.1,1X,'X7= 

',F6.2,1X,'FLA/BP= ',F5.2, 

     #1X,'ER= ',F8.6,1X,'GK= ',F4.2,1X,'QM= ',I2,1X'JM= 

',I2) 

10111 GK=GK+DGK 

 IF(GK.GT.GKMAX)GOTO 20111 

 GOTO 309 

20111 STOP 

      END 
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