
International Journal of Chemical, Materials and Biomolecular Sciences

ISSN: 2415-6620

Vol:7, No:12, 2013

991

 

 

  
Abstract—The dripping modes for a Newtonian liquid of 

viscosity µ emanating from an inclined nozzle at flow rate Q is 
investigated experimentally. As the liquid flow rate Q increases, 
starting with period-1 with satellite drops, the system transitions to 
period-1 dripping without satellite, then to limit cycle before showing 
chaotic responses. Phase diagrams showing the changes in the 
transitions between the different dripping modes for different nozzle 
inclination angle θ is constructed in the dimensionless (Q, µ) space. 
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I. INTRODUCTION 
HE drop formation resulting from the breakup of an 
axisymmetric liquid jet injected from a vertical nozzle has 

been an interesting area, as it has many industrial applications 
such as ink-jet printing [1], silicon microstructure [2], 
microencapsulation [3], 3D printing [4]. The phenomenon of 
drop formation from a vertical nozzle has been broadly studied 
from many decades. Eggers [5] provided an extensive review 
about the experimental and computational work on this study 
starting from 1686. 

In the process of drop formation, dripping mode is 
characterized by tiny droplets emanating from the nozzle at 
low flow rate [6]-[9], while jetting mode occurs at high flow 
rates in which liquid flows out as a continuous stream to form 
a jet which subsequently breaks up in to small droplets [10], 
[11]. In dripping mode, before the drop breaks from the 
remaining part of the fluid, the gravitational and surface 
tension forces are balanced. If inertia does not play any role 
then liquid drop goes through sequence of equilibrium shapes 
[12]. 

A Newtonian liquid having viscosity µ, density ρ, and 
surface tension σ, flowing through a nozzle of outer radius R, 
at flow rate Q is the most commonly investigated 
configuration. For a vertical nozzle the dripping dynamics are 
governed by three dimensionless groups [13]-[15]: Weber 
number We≡ ρv2R/σ that measures the relative importance of 
inertia to surface tension force, Bond number G≡ ρgR2/ σ, 
where g is the acceleration due to gravity, that measures the 
relative importance of body force to surface tension force, and 
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Kapitza number Ka≡ (µ4g/ρσ3)1/3 or Ohnesorge number 
Oh=µ/(ρRσ)1/2, both measure the relative importance of 
viscous force to surface tension force.  

The viscosity effects on drop shapes and liquid thread 
length have been studied by using high speed photography 
[16]. This work is later extended and to examine the effect of 
all relevant parameters likes flow rate, viscosity, nozzle 
diameter, and nozzle thickness on the general characteristics 
of drop formation especially the growth, extension, breakup of 
liquid thread, and satellite drop formation that are formed 
following the pinch off process [8]. Several studies on drop 
formation by changing liquid flow rate showed a pronounced 
effect on dripping dynamics where at low flow rate simple 
dripping is observed followed by the complex dripping at 
moderate flow rate, and at high flow rate system gives jets of 
the liquid [8], [14], [17]. A detailed phase diagram showing 
these transitions from simple and complex dripping and jetting 
in (We, Oh) space are developed and critical We for these 
transitions are estimated by scaling argument and shown to 
accord well with simulations [13]. 

The introduction of asymmetrical perturbations, both by 
tilting the nozzle by an angle θ from the vertical [18], or by 
cutting obliquely the tip of nozzle [19], breaks the cylindrical 
symmetry and found strong changes in the dripping dynamics 
when compared with those obtained with flat tip shaped 
nozzle in the vertical position. In the rare experiments of 
dripping from a tilted nozzle, it is showed that the θ can 
constitute an effective control parameter by breaking the axis 
symmetry [18] thus adding asymmetric perturbations [19] as 
well as changing the effective G. However, previous studies 
are far from being comprehensive, thus unable to provide 
guides on the general behavior. The goal of this paper is to 
further explore the effects of θ and the associated parameters 
to avail a more complete picture for future theoretical analysis. 

The paper is organized as follows: Section II describes the 
experimental setup, material properties, and experimental 
procedure. Section III presents and discusses the experimental 
results before concluding in Section IV. 
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Fig. 1 Schematics of the experimental setup
 

II.  METHODS 

A. Apparatus 
The experimental apparatus is depicted in Fig. 1. It consists 

of a nozzle through which liquid flows to form drops. The 
liquid is delivered to the nozzle by using a Meditech JZB-
1800D Syringe Pump which is capable of providing range of 
flow rate from 0.00167 to 30 mL/min with an accuracy of 
±2%. Two stainless steel dispensing nozzles (P-30619-06 and 
P-30619-07) are obtained from Cole-Parmer. The outer 
diameters of the nozzles are 1/32" (N1) and 1/8" (N2). The 
ratio of the inner radius to outer radius is >0.2, hence the 
effect of nozzle thickness on the interface dynamics can be 
safely neglected [8]. A protractor is provided to adjust the tilt 
angle of the nozzle. A transparent shield is provided to reduce 
draft that can perturb the drop formation process. 

The high speed camera is Casio EX-FH100 capable of 
recording 30 to 1000 frames per second. A planar white LED 
backlight measuring 10cm × 10cm (model LFL-Si100-W-
IP65) with adjustable brightness is obtained from Falcon 
Illumination (M) Pte. Ltd. 

The sharpness of the images can be adjusted via the 
intensity of the backlight, the focal length and digital zoom of 
the camera. All parts of apparatus except the syringe pump are 
kept on a 0.3m×0.3m×0.06m aluminum optical base plate 
inside the transparent shield. 

B. Chemicals Used 
A mixture of water and glycerol chosen as an experimental 

liquid because of their desirable physical properties namely, 
that their surface tension and densities are almost similar to 
that of pure water, but their viscosities can be made to vary 
three orders of magnitude. The 99% pure glycerol was 
obtained from R and M Chemicals, CAS NO [56-81-5], and 
used as obtained. Distilled water is used to the make water 
glycerol mixtures. Silicone oil, Dow Corning® 111 Valve 
Lubricant and Sealant was used for dewetting of the outer 

nozzle surface. The physical properties of these are taken from 
the literature [20] and are listed in Table I. 

III. RESULTS AND DISCUSSIONS 

A. Dripping Modes 
Experiments with a vertically oriented nozzle illustrate the 

various dripping modes observed. Fig. 2 shows the variation 
with drop numbers of tb made dimensionless with the capillary 
time (ρR3/σ) 1/2. As depicted in Fig. 2 (a), values of tb decrease 
with increase in Weber number. Based on this, three different 
dripping regimes were encountered, namely period-1 (P1); 
limit cycle (LC), and chaos (C). Unlike reports in the literature 

[15], for this chosen value of G, no satellite drops are observed 
at very low values of We. At low Weber numbers, all the 
droplets have values of tb within ±10% of the average, and this 
is denoted as the period-1 (P1) dripping. Seen on the time 
return map in Fig. 2 (b), the points cluster together, ideally 
forming only one point. At moderate Weber numbers, the tb 
trajectory repeats itself but the variation in t is more than 10% 
of its average value. This is denoted as the limit cycle (LC) 
behavior. On the time return map, the trajectory encircles a 
region. The chaotic (C) behavior is seen at high Weber 
numbers, where the tb trajectory does not repeat itself, 
showing disorderly long term evolution. On the time return 
map, the points are scattered rather randomly. 
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TABLE I 
PHYSICAL PROPERTIES OF WATER GLYCEROL MIXTURE 

Solution Wt. % glycerol ρ (kg/m3) µ (mPa.s) σ (mN/m) 
S0 
S20 
S40 
S80 

0 
20.0 
40.0 
80.0 

1000 
1044 
1095 
1205 

1 
1.5 
3.2 
45.9 

72 
69.5 
68.4 
64.7 

 
The two Weber numbers for the transition from one mode 

to another can be pin-pointed experimentally. The first, for 
transition from P1 to LC occurs at We = WeLC, and the second, 
for transition from LC to C occurs at We = Wec. As the value 
of Ka changes, the corresponding values of WeLC and Wec also 
change. These transitional We are plotted against Ka as a 
dripping mode phase diagram next.  

B. Phase Diagram for Dripping Modes 
The phase diagrams shown in Figs. 3 (a)-(c) identify the 

location in the parameter space where the dynamics changes 
from one mode to another. For a vertical nozzle (Fig. 3 (a)), at 
low values of Ka, both WeLC and Wec rise sharply as the value 
of Ka increases. For high values of Ka, the trajectories of WeLC 
and Wec converge, i.e. the transition occurs directly from P1 to 
C without exhibiting a LC regime [15]. A feature of interest to 
applications is that the P1 region widens considerably at high 
values of Ka. Other than the absence of a satellite dripping 
mode, this phase diagram is qualitatively similar to that 
reported by Hariprasad et al. [15]. 

The phase diagrams for an inclined nozzle look similar to 
that of the vertical nozzle. On closer examination, three 
significant and potentially useful features can be distilled. 
First, the values of Wec decrease dramatically with θ especially 
for Ka ~ 10-3, suggesting that the asymmetry favours chaotic 
dripping. This is in line with the findings of Reyes et al. [18], 
which showed that even at θ = 5o, the dripping dynamics turns 
very complicated. Second, the locus of WeLC is not so strongly 
affected by θ at low values of Ka. It suggests that P1 and LC 
regimes are influenced more by viscous damping than by 
asymmetry. A consequence of these two observations is that 
the LC regime shrinks noticeably with increase in θ. 
Conceivably at even larger values of θ, the LC region might 
vanish. 

 

 

Fig. 2 (a) Variation of the dimensionless dripping time with drop 
number, and (b) the corresponding time return map for a vertical 

nozzle. Three different dripping behaviours are seen as We increased, 
namely P1 (  We=0.05), LC (  We=0.15), and C (  We=0.30). 

Here G=0.062, Ka=0.000562 
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IV. CONCLUSION 
This is the first systematic exploration of the phase diagram 

for dripping at non-zeroθ. According to the foregoing results, 
the global dripping behavior from an inclined nozzle is similar 
to that from a vertical nozzle, but modified where an increase 
in θ results in a narrowing of the LC regime and giving an 
extended P1 regime. Further, as expected, satellite formation 
is unaffected by θ. These findings have implications to 
applications involving droplet formation, as they clarify 
another heretofore under-studied parameter to tune the 
dripping mode. The study on the effect of θ on drop volumes 
is underway. Future directions may include computational 
studies to elucidate the detailed changes in flow profiles that 
lead to the macroscopic observations. 
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