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Abstract—A “clean” black hole is a black hole in vacuum such 

as the Schwarzschild black hole. However in real physical systems, 
there are matter fields around a black hole. Such a black hole is called 
a “dirty black hole”. In this paper, the effect of matter fields on the 
black hole and the greybody factor is investigated. The results show 
that matter fields make a black hole smaller. They can increase the 
potential energy to a black hole to obstruct Hawking radiation to 
propagate. This causes the greybody factor of a dirty black hole to be 
less than that of a clean black hole. 
 

Keywords—A dirty black hole, Greybody factor, Hawking 
radiation, Matter fields. 

I. INTRODUCTION 
N general relativity, the spherically symmetric vacuum 
solution is the Schwarzschild metric. A Schwarzschild black 

hole, which is described by the Schwarzschild metric, is a 
black hole in empty space. It is referred to a “clean” black 
hole. However, in real situations a black hole is surrounded by 
various types of matter fields and referred to a “dirty” black 
hole [1]-[3]. We are interested in the presence of matter fields 
around a black hole. In this paper, the effect of matter fields 
on the black hole and the greybody factor is studied. 

II.  THE SCHWARZSCHILD BLACK HOLE 
The Schwarzschild metric is given by 
 

1
/

Ω ,               (1) 
 

where  is the Schwarzschild black hole mass. In this paper, 
we are interested in a spin one particle radiated from the 
Schwarzschild black hole. We define the tortoise coordinate  
by 

/
.                                     (2) 

 
The Schwarzschild metric can be rewritten as 

 
1 Ω .          (3) 

 
The  Schrödinger-like equation is given by 
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where the potential for a vector field is [4] 
 

1 .                           (5) 
 

The potential is plotted with 1 and 3 as shown in 
Fig. 1. In one-dimensional scattering problem, there are very 
general and rigorous bounds on the transmission probability 
[5]. Application for the generic systems can be found in [6]-
[8]. For developments in applying to black hole greybody see 
[9], [10]. The lower bounds on the transmission probabilities 
are given by [5] (see also [11], [12]) 

 
sech ,                             (6) 

 
where 

,                           (7) 
 

for any positive function . We set , then 
 

sech .                         (8) 
 

From (2), the tortoise coordinate can be written as 
 

2 ln .                           (9) 
 

when ∞, 2  and when ∞, ∞. Therefore, 
 

sech sech     (10) 
 

The transmission probability and the energy of the emitted 
particle for the Schwarzschild black hole are plotted as shown 
in Fig. 2. 
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Fig. 1 The Schwarzschild potential with 1 and 3 

 

 
Fig. 2 The transmission probability for the Schwarzschild black hole 

with 1 and 3 

III. THE DIRTY BLACK HOLE 
The metric of a generic static spherically symmetric 

spacetime is given by [1] 
 

1
/

Ω   (11) 
 

where  and  are arbitrary functions. If the black hole 
event horizon exists, the function  will satisfy the 
boundary condition 2 , where  is the horizon 
radius. Asymptotic flatness of spacetime is assumed so that 

∞ 0 and ∞  is finite. The Einstein equations are 
 

4  and 
/

.                 (12) 
 

In this paper, we find an appropriate choice for  and 
 in order to derive the specific results. The Weak Energy 

Condition (WEC) states that 0. Thus the function  is 
an increasing function. Because of finiteness of  at 
spatial infinity, this motivate us to assume , where  
is a constant. Therefore, 

                             (13) 
 

where  is a constant of integration. Applying the boundary 
condition 2 , we obtain 
 

.                                 (14) 
 

Therefore, 
4 .                     (15) 

 
Applying the boundary condition ∞ , we obtain 
 

4 .                              (16) 
 

thus 
.                       (17) 

 
That is 

1 1 .              (18) 
 

Since  is an increasing function, then 
 

∞                                  (19) 
 
or 

2 .                                       (20) 
 

It can be seen that the horizon radius of the dirty black hole 
is smaller than that of the Schwarzschild black hole. Thus, 
matter fields around the black hole can shorten its horizon 
radius. The dirty black hole is, therefore, smaller than the 
Schwarzschild black hole for the same mass. From (12), we 
obtain 

 

/ /
.                     (21) 

 
so 

ln
/

/ / ,                      (22) 
where 
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and  is a constant of integration. Derivation of (22) can be 
seen in Appendix A. Applying the boundary condition 

∞ 0, we obtain 0. Therefore, 
 

ln
/

/ / .                         (23) 
 

The  Schrödinger-like equation is given by 
 

0,                         (24) 

where 
 

/
.                               (25) 

 
and the potential for a vector field is [13] 
 

1 .             (26) 
 

The dirty potential is plotted with 1, 3, and 1 
as shown in Fig. 3. The comparison between the dirty 
potential and the Schwarzschild potential is plotted in Fig. 4. It 
can be seen that the dirty potential is higher than the 
Schwarzschild potential. Increment of the potential energy in 
case of the dirty black hole comes from matter fields. The 
lower bounds on the transmission probabilities are given by 
[13] 

 
sech sech sech   (27) 

 
Because of (20), we derive 

 
.                                       (28) 

 
Fig. 5 shows the plot between the transmission probability 

and the energy of the emitted particle for the dirty black hole 
with 1, 3, and 1. Fig. 6 shows the comparison 
between the transmission probabilities of the Schwarzschild 
black hole and the dirty black hole. The graph confirms the 
validity of (28). 

 
 

 
Fig. 3 The dirty potential with 1, 3, and 1 

 

 
Fig. 4 The comparison between the dirty potential and the 
Schwarzschild potential with 1, 3, and 1 

 

 
Fig. 5 The transmission probability for the dirty black hole with 

1, 3, and 1 
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Fig. 6 The comparison between the transmission probabilities of the 

Schwarzschild black hole and the dirty black hole with 1, 3, 
and 1 

IV. CONCLUSION 
In this paper, we have investigated what effect of matter 

fields surrounding a black hole on the black hole and the 
greybody factor. It has been found that a black hole with the 
presence of matter fields is smaller than a clean black hole 
with the same mass. Matter fields around a black hole can 
shorten its horizon radius. Increment of the potential energy in 
case of the dirty black hole is an effect of matter fields. This 
causes the greybody factor of a dirty black hole to be less than 
that of a clean black hole. Matter fields can obstruct a spin one 
Hawking radiation to propagate. 

APPENDIX 

A. Explicit Form of  
For the simple model, assume that we are now in the 

matter-dominated universe. So 0. From (21), we obtain 
 

.  .                     (29) 

 
Using , we derive 
 

.   (30) 
 

From (16), then 
 

.                     (31) 
 

Let 2 . The denominator of (31) can be 
factorized 
 

2 2  
√ √ (32) 

 
Using the partial faction, the right hand side of (31) becomes 
 

       (33) 

 

    (34) 
 

equating the coefficients of powers of  gives 
 
                     1 

√ 2√
 

√ 2√
 . 

 
We define √  and 
√ . Using (33), we can integrate (31) 
 

ln ln ln ln
/

/ /  (35) 
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