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Abstract—An experimental study has been done to investigate 

the flame acceleration in a closed pipe. A horizontal steel pipe, 2m 
long and 0.1m in diameter (L/D of 20), was used in this work. For 
tests with 90 degree bends, the bend had a radius of 0.1m and thus, 
the pipe was lengthened 1m (based on the centreline length of the 
segment). Ignition was affected at one end of the vessel while the 
other end was closed. Only stoichiometric concentration (Ф, = 1.0) of 
natural gas/air mixtures will be reported in this paper. It was 
demonstrated that bend pipe configuration gave three times higher in 
maximum overpressure (5.5 bars) compared to straight pipe (2.0 
bars). From the results, the highest flame speed, of 63ms-1, was 
observed in a gas explosion with bent pipe; greater by a factor of ~3 
as compared with straight pipe (23ms-1). This occurs because bending 
acts similar to an obstacle, in which this mechanism can induce more 
turbulence, initiating combustion in an unburned pocket at the corner 
region and causing a high mass burning rate, which increases the 
flame speed. 
 

Keywords—Bending, gas explosion, bending, flame acceleration, 
overpressure. 

I. INTRODUCTION 
HE acceleration of the flame inside a pipe is a complex 
phenomenon involving several variables spanning from 

fuel nature and mixture composition to geometrical 
characteristics of the pipe such as length, diameter, wall 
roughness or presence of obstacles in the flame path. 

During explosions, flame flow through the vessel usually is 
laminar at its initial propagation. Overpressure is only 
generated later, due to rapid turbulent combustion in the shear 
layers and recirculation zones induced by the obstacles created 
either by blockage or bending [1]. As the turbulence intensity 
increases, the flame front configuration becomes more 
complicated. The overall explosion process may accelerate 
further as the flame front velocity increases, due to 
deflagration of turbulent burning. Ibrahim and Masri [2] 
argued that the rise in burning and pressure in vessels is due to 
the propagation of a flame front that travels to the unburned 
mixture of a combustible fuel in a premixed combustion 
system. A method for evaluating the unburned mixture 
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velocity was developed, which converts the observed speed of 
expanding spherical flames to the speed with respect to the 
unburned mixture [3]. 

The influence of bends was also of interest, as they are 
often perceived as a complicated problem involving the 
interaction between fluid dynamics, heat transfer and turbulent 
combustion by promoting flame acceleration and detonation 
even though little previous published work exists to justify or 
quantify this perception of increased risk of detonation [4]. 
Phylaktou et al. [5] showed that with a short tube of a 90 
degree bend can enhance the flame speed by a factor of five 
and was equated to the effect of baffle with a blockage ratio of 
20% at the same position. Another investigation using 
propane-air mixture showed that 24% enhancement of flame 
acceleration was observed when 90-degree bend placed half 
way down a tube [6]. 

Oakley and Thomas [7] highlighted that in many situations, 
in order to aid ATEX compliance, correctly placed and 
specified flame arresters are needed, dependent on the 
conditions they are likely to encounter. However, there is still 
some uncertainty over where best to locate these devices and 
concerns have been raised about safety standards for flame 
arresters with regards to the lack of knowledge of where 
deflagration to denotation will or can occur in a pipe and what 
factors can contribute to this effect. For the flame arrester, 
questions on the best location for these devices have been 
raised along with the contributing factors in this phenomenon. 
Hence, it is important to be able to predict the mode of flame 
acceleration and combustion behavior at various points in the 
pipe in order to install appropriate protective systems. The 
uncertainty of the flame propagation patterns and the 
overpressures could pose significant consequences in applying 
the standard testing of protective measures such as flame 
arrester [8]. 

This study aims to provide additional data and to investigate 
the effect of pipe configuration (i.e., straight and bending) on 
gas explosion in a pipeline, using stoichiometric natural 
gas/air mixtures as a fuel. 

II.  MATERIALS AND METHOD 
A horizontal steel pipe, 2m long and 0.1m in diameter (L/D 

ratio of 20), was used in this project. Only stoichiometric 
concentration i.e. equivalence ratio (Ф) = 1.0 will be reported 
in this paper. The pipe was made up of a number of segments 
ranging from 0.5 to 1m in length, bolted together with a gasket 
seal in-between the connections and blind flanges at both 
ends. Evacuation performed prior to introduction of the gas 
ensured that no leakage was present in the pipe during the 
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