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Abstract—This paper discusses regression analysis of partly 

interval-censored failure time data, which is occur in many fields 
including demographical, epidemiological, financial, medical and 
sociological studies. For the problem, we focus on the situation 
where the survival time of interest can be described by the additive 
hazards model in the present of partly interval-censored. A major 
advantage of the approach is its simplicity and it can be easily 
implemented by using R software. Simulation studies are conducted 
which indicate that the approach performs well for practical 
situations and comparable to the existing methods. The methodology 
is applied to a set of partly interval-censored failure time data arising 
from anti D in Rhesus D negative studies. 

 
Keywords—Anti D in Rhesus D negative, Cox’s model, EM 

algorithm.  

I. INTRODUCTION 
Y partly interval-censored failure time data we means, for 
some subjects, the exact failure times are observed, but 

for the remaining subjects, the survival time of interest is 
observed only to belong to an interval instead of being exactly 
[14], [18], [12]. 

General partly interval censored data arise often in follow-
up studies. An example of such data is provided by the 
Framingham Heart Disease Study; see [16] for a description. 
In this study, times of the first occurrence of anti D infection 
through to contaminated blood factor disease patients are of 
interest. For some patients, time of the first occurrence of 
infection is recorded exactly. But for others, time is recorded 
only between two clinical examinations. Another example of 
such data is provided by the study on incidence of protein urea 
in insulin-dependent diabetic patients in Denmark; see [8] for 
a detailed description. 

Suppose time to event random variable, or failure time 
nTTT ....,,, 21
 are independent and identically distributed as 

0F . If 
all the random variables are observable, then it is well known 
that the semiparametric maximum likelihood estimator of 0F  
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is the empirical distribution function and it is asymptotically 
efficient.  

However many reliability and medical studies, observations 
are subject to censoring. The goal of this paper is to discuss a 
semi-parametric Cox’s proportional hazards regression model 
with the subdistribution of 0F  based on incomplete partly 
interval-censored data in which some of the failure times are 
observed, but some of the failure times are subject to interval 
censoring [13], [18].  

There are many cases of partly censored data; here we 
consider the case that is; for the some subjects, the exact 
failure times nTTT ....,,, 21  are observed. But for the remaining 
subjects, only the information pertaining to their current status 
is available. That is for subject in this group, we only know 
whether or not failure has occurred at the examination time 

iU , so the observed data is; 
 

nniU ii ,....,1),( 1 +=δ          
 

where 1=iδ  if the unknown failure time 
ii UT ≤  and 0=iδ  

otherwise. Note that this censored model is different from 
doubly-censored data studied by [4], [3] and [11]. 

In the competing risks model, a unit is exposed to several 
risks simultaneously, but it is assumed that the eventual failure 
of the unit is due to only one of these risks, which is called 
“cause of failure” [1]. The standard analysis for competing 
risks data involves modeling the cause specific hazard 
function of the different failure types under Cox’s model 
assumption [15], [17]. The cause specific hazard function is 
known as subdistribution function, also historically was 
known as the cumulative incidence function, the marginal 
probability function, the crude incidence or the absolute 
cause-specific risk [2]. In this paper, we propose the semi-
parametric proportional hazard model of the subdistribution 
function for partly interval-censored of a competing risks 
survival data based on EM algorithm to estimate the 
parameters. 

II. COMPETING RISKS MODEL FORMULATION 
Reference [9] developed a class of estimation procedures 

for semi-parametric proportional hazards regression model for 
the subdistribution of a competing risks model using the 
partial likelihood principle and weighting techniques. 
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Specifically, let T , C  and Z  denote the failure time, the 
censoring time and 1×p  bounded time-independent covariate 
vector. Let ),...,2,1( K∈ε  because of failure, for which the 
K  causes are assumed to be observable. We only observe 

),min( iii CTX = , )( iiii CTI ≤=Δ δ , where (.)I  is the 
indicator function of the event. Here 1=iδ  if iT  is observed 

and 0  otherwise, and iC  is the independent censoring 
variable. The main interest is the modeling of the cumulative 
incidence function for failure from say cause 1 conditional on 
the covariates, i.e. ),1,Pr();(1 ZtTZtF =≤= ε  and the hazard 
of the subdistribution as originally described by [10]. Gray 
constructed K-sample tests for differences in the cumulative 
incidence function based on integrated difference of 
nonparametric estimates of the within-group subdistribution 
hazard functions. The subdistribution hazard as defined by 
Gray is,  

 

,/),1
,Pr(lim);( 0

tzZtT
ttTtZt ti

Δ=≥=ε
Δ+<≤=λ →Δ

( ));(.
);(1

1

1

ZtF
dt
d

ZtF i−
= [ ])};(1log{ 1 ZtF

dt
d

−
−

=  

 
The cumulative incidence function and subdistribution 

hazard functions are estimable from the competing risks data 
[17]. We use Cox proportional hazards models to specify each 

);( Ztλ  and assume that censoring is conditionally independent 
of the latent failure times for given Z . Then, under Cox 
model;  

 
))(exp()();( 0 βλ=λ tZtZt T                 (1) 

 
where )(0 tλ  is a completely unspecified, nonnegative function 

in ,t  β  is regression coefficients and )(tZ  is the original 
time-dependent covariates (time-varying covariates). For 
simplicity, we restrict our attention to a time-independent 
covariates. Thus the regression coefficients and baseline 
hazard form the Cox model for F  have straightforward 
interpretation that does not depend on the probabilistic 
structure of the subdistribution hazard and given as; 
 

⎥⎦
⎤

⎢⎣
⎡−−= ∫

t T dssZsZtF
0 0 })(exp{)(exp1);( βλ       (2) 

 
The familiar form of this proportional hazards model is 

intended to be a convenient empirical representation for the 
cumulative risk of a competing risk and should be evaluated 
on the extent to which it permits the analyst to assess the 
effect of covariates on the cumulative incidence function [9]. 
Previous work in survival data as mentioned above used 
techniques when there is only a single cause of failure. In this 

paper, we use the model for the cumulative incidence function 
in the competing risks setting for survival data analysis. 

III. SEMI-PARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION 

A.  Complete Data  
In this section we present the partial likelihood for the 

subdistribution function for complete data. By complete data 
we mean that t  and ε  are observed for all individuals. The 
type of data considered is complete in all failure times (not 
censored) and incomplete only in terms of failure modes. It 
may be mentioned that [6] considered different cases when the 
data are censored.  

As mentioned above, an individual who has not failed from 
the cause of interest by time t  is at risk. This includes two 
distinct groups: those who have not failed from any cause and 
those who have previously failed from another cause. The 
partial likelihood for the improper distribution, ):( ZtF  as 
proposed by [9] is; 

 

{ }
{ }∏ ∑=

=
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where )( it

R  is the risk set at time of failure for the ith  

individual. 
The log partial likelihood is;  
 

{ }

{ }[ ]( )∑ ∑
=

∈ β−β×=ε

=β
n

i itRj i
T
ii

T
ii tZtZI

L

1 )(
)(explog)()1(

)(log
   (4) 

 
where { })(log βL  indicates that the a function depends on the 

unknown parameters β , the values of Z  being known. 
The asymptotic theory of maximum likelihood estimation 

requires that the likelihood function satisfy some “regularity 
conditions” which are met in most applications. The 

regression coefficients β  are estimated by the values β̂ , 
which maximize the logarithm of the partial likelihood. The 
values )ˆ,...,ˆ(ˆ

1 pββ=β  are obtained by equating to zero the p  

first derivatives of { })(log βL  with respect to ),...,1( pii =β . 
An iterative process such as the EM algorithm or Newton-

Raphson is adopted to solve this system of equations for β . 
The score vector is obtained by taking the 1st derivative of (4) 
with respect to ),...,1( pii =β  and is given by; 
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This derivative is the difference between the value of the 

pth  covariate on the subject who fails at t  and the weighted 

average of the covariate over the risk set )( itR , with 

exponential weights { }β)(exp i
T
i tZ . Reference [9] adapt (5) in 

terms of counting processes, by letting 
)1,()( =ε≤= iii tTItN  and ),(1)( −−= tNtY ii  so (5) 

become; 
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The EM algorithm is used to estimate β̂  by setting 

0)ˆ( =ββU .  

IV. WEIGHTED SCORE FUNCTION METHOD 
To modify the second model of [9], let 

},...,1,,,{ niZCT iii =  to be n  independent copies of 

},,{ ZCT . However, one can only observe ),min( iii CTX =  

and )( iii TCI ≤=Δ  for ni ,...,1= , where (.)I  defined as 
before in section 2. In the case when the survival distribution 

(.)G  of the censoring variable C  does not depend on Z , the 
weight at time t  proposed by [9] is, 

)(ˆ/)(ˆ)()( tXGtGtrtw iii ∧=  can make a simple modification 
of the weight at time t  [7] as follows;  

 

)()(
)()(

)(
tGtG

tGtr
tw

jZiZ

i
i =  

 
where (.)ZG  is the Kaplan-Meier estimator for the survival 
function and )()( tTCItr iii ∧≥=  is the vital status on 
individual i  at time t . Censored individuals are observed 
until time iC ; thereafter, vital status is uncertain. If 0)( =tri , 

then )(tYi  and )(tNi  are not observable. If 1)( =tri , then 

)(tYi  and )(tNi  are observed data up to time t . Moreover, 

consider the standard extreme value distribution F  for Cox 
model ))exp(exp(1)( ttF −−= . The covariate vector that 
has a finite number of possible values, form the basis of the 
weighted score function, which when applied to (6) become; 
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and (.)w  is a positive weight function. The weight function 
becomes identically 1 when F  is the standard extreme value 
distribution, [5]. Reference [5] shows that the estimation 
procedure with 1=w  works well for the proportional 
hazards odds model. The solution of 0)( =∗ ββU , using the 

same arguments given in Appendices A of [9]. 

V. ILLUSTRATIVE EXAMPLE 
The proposed method is illustrated Anti D in Rhesus D 

negative pregnant Sudanese women who were treated in two 
hospitals in Sudan, that is, Khartoum hospital and Aldayat 
hospital. They were 100 patients of the study were at risk for 
anti D infection through the contaminated blood factor. At the 
end of the study, there were 50 patients found to be 
prophylactic standard dose of the anti-D immunoglobulin 
administration in pregnant women who are Rhesus D- 
negative, but the infection times were interval-censored. 
Among them 14% positive for anti body and 86% negative in 
women who receive anti D appropriate postnatal prophylaxis. 
The patients were classified into either the positive treated 
group or negative treated group according to the amount of 
blood received (when treated for anti D in Rhesus). The goal 
here is to investigate the possible association between the 
treatment and the anti D in Rhesus time. We code the 
covariate 0=iz  or 1=iz  if the patient was positively or 
negatively treated. To see the effect of covariates on 
development of complications, we fitted our proposed model 
that is competing risks model based on EM algorithm. 
Appling the procedures described early, we obtained the result 
as shown in Table I. The first cause of failure show better 
result compare to second cause of failure based on standard 
deviation and smallest variance. We conclude that the 
covariates do not have a significant different. However, it is 
confirmed that the negative treated group had a significantly 
higher risk of the onset of anti D rhesus after infection.  

 
TABLE I 

ESTIMATE OBTAINED UNDER THE COMPETING RISKS MODEL BASED ON 
SUBDISTRIBUTION USING EM ALGORITHM FOR ANTI D IN RHESUS D 

NEGATIVE DATA 
First Causes 

Eq 1β 2β  )ˆvar(β (var)E
W 0.724(0.0223) 0.712(.034) 0.015 0.015 
CC 0.742 (0.0223) 0.723(.034) 0.015 0.015 

Second Causes 
W 0.602 (0.134) 0.653(1.27) 0.0672 0.0672 
CC 0.632(0.134) 0.653(1.27) 0.0672 0.0672 
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VI.  CONCLUSION 
We have proposed a simple modification of estimating 

functions for partly-interval censored data using the semi-
parametric Cox’s proportional hazards regression models of 
the subdistribution of a two competing risks models namely, 
the censoring complete model and a weighting technique 
model. Simulations studies (which is not addressed here) 
indicate that under the assumed modification models of [9], 
the weighted estimating equation with censored data can be as 
efficient as the censoring complete score function. However, 
both proposed models give similar results from the two 
simulation studies [7]. Similar results are also obtained when 
using anti D infection. EM algorithm was used to estimate the 
parameters of the model. The simulation studies strongly 
support the generalized missing information principle in a 
semi-parametric context and use of the generalized profile 
information for non-identically distributed samples. From the 
real data set we find that the covariates do not have a 
significant difference. The first cause of failure show better 
result compare to second cause of failure based on standard 
deviation and smallest variance. Fixing the age at diagnosis, a 
very young patients have a lower hazard rate than relatively 
young patients. Even with many exact observations (100), the 
additional interval-censored observations (23) help to give a 
more accurate estimate of the regression parameter. However, 
it is confirmed that the negative treated group had a 
significantly higher risk of the onset of anti D Rhesus after 
infection. 
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