
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:11, 2013

1443

Vision Based Hand Gesture Recognition Using
Generative and Discriminative Stochastic Models

Abstract—Many approaches to pattern recognition are founded on
probability theory, and can be broadly characterized as either gener-
ative or discriminative according to whether or not the distribution
of the image features. Generative and discriminative models have
very different characteristics, as well as complementary strengths and
weaknesses. In this paper, we study these models to recognize the
patterns of alphabet characters (A-Z) and numbers (0-9). To handle
isolated pattern, generative model as Hidden Markov Model (HMM)
and discriminative models like Conditional Random Field (CRF),
Hidden Conditional Random Field (HCRF) and Latent-Dynamic Con-
ditional Random Field (LDCRF) with different number of window
size are applied on extracted pattern features. The gesture recognition
rate is improved initially as the window size increase, but degrades
as window size increase further. Experimental results show that the
LDCRF is the best in terms of results than CRF, HCRF and HMM at
window size equal 4. Additionally, our results show that; an overall
recognition rates are 91.52%, 95.28%, 96.94% and 98.05% for CRF,
HCRF, HMM and LDCRF respectively.

Keywords—Statistical Pattern Recognition, Generative Model, Dis-
criminative Model, Human Computer Interaction.

I. INTRODUCTION

THe hand gesture recognition is an active area of research
in the vision community, mainly for the purpose of

sign language recognition. Sign language recognition is an
application area for Human Computer Interaction (HCI) to
communicate with computers. The goal of pattern interpreta-
tion is to push the advanced human-computer communication
to bring the performance of HCI close to human-human
interaction. In the last decade, several methods of potential
applications [1], [2], [3], [4], [5], [6] in the advanced hand
gesture interfaces have been suggested but these differ from
one another in their models. Some of these models are Neural
Network [7], Hidden Markov Model (HMM) [1], [8], [9],
Dynamic Time Warping (DTW) [10] and Conditional Random
Field [3], [4], [5]. Elmezain et al. [1] proposed a real-time
system to recognize American Sign Language (ASL) and
numbers (0-9) using HMM. The experiment was performed
with isolated hand motion trajectory that was employed for
HMM for recognition and achieved 94.72% accuracy. Yang
et al. [2] introduced an ASL recognition system based on
a time-delay neural network. This system used the motion
information to extract hand position where the recognition rate
was 96.2%. Yang et al. [3] introduced a method for designing
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threshold model in a CRF model, which performs an adaptive
threshold to distinguish between signs and non-sign patterns.
The experiments were performed with isolated and continuous
data set according to extracted six features. Sminchisescu
et al. [4] applied CRF model to recognize human motion
activities and showed improvement over an HMM technique.
The difference between HMM and CRF is that HMM is
generative model that defines a joint probability distribution
to solve a conditional problem thus focusing on modeling
the observation to compute the conditional probability p(y|x).
Moreover, one HMM is constructed per label (i.e. pattern)
where HMM assumes that all the observation are independent.
CRF uses an undirected graphical model to overcome the
weakness of Maximum Entropy Markov Model (MEMM) [5].
CRF uses a single model of the joint probability of the labels
sequence given the observation sequence. Therefore, there is
trade-off in the weights of occurrences number of a feature
value for each state [3]. Hidden Conditional Random Field
(HCRF) is the extension of CRF that include hidden variables
[11], [12]. HCRF can automatically model the local inter-
connection between labels (i.e. states) with hidden variables,
but it cannot model dynamics among states. On the other
sides, Latent-Dynamic Conditional Random Field (LDCRF)
can model the sub-structure of a state and learn dynamic
among states [6]. The LDCRF model combines the strengths
of CRF and HCRF. Furthermore, it can detect and recognize
states from un-segment data (Fig.1). The main contribution of
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Fig. 1. Different type of discriminative models: CRFs, HCRFs and LDCRFs.
In these models, xj refers to the jth corresponding observation value, hj is a
hidden states that assigned to xj . yj is the label of xj where the gray circles
represent the observed variables.

this paper is to investigate the generative and discriminative
models for recognizing the patterns of alphabets characters
(A-Z) and numbers (0-9). The experimental results discover
that LDCRF is the best in terms of results than CRF, HCRF
and HMM. Additionally, LDCRF can automatically recognize
hand patterns (i.e. gestures) with 98.05%. The rest of this
paper is organized as follow; Section II reviews the basic
classification generative and discriminative techniques. The
main difference between generative and discriminative models
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is described in Section III. Experimental results are described
in Section IV. Section V concludes this paper.

II. CLASSIFICATION

In computer vision, a good choice for classification ap-
proaches helps the success of any system and makes it suitable
for real-world applications. Classification of symbols in pattern
recognition assigns them to respective classes. An application
of hand gesture-based interaction with alphabet characters
and numbers is implemented to demonstrate the coactions of
suggested components and the effectiveness of gesture (i.e.,
hand motion) recognition. The isolated hand gesture is handled
according to two different classification techniques: generative
model such as HMM and discriminative model like CRF, to
decide which one is the best in terms of performance. The
following two subsections discuss how HMM and CRF are
employed for the classification of alphabets character and
numbers.

A. Generative Model: HMM

The most widely used recognition algorithm for pattern
recognition is HMM [13], [14]. HMM is mathematical model
of the stochastic process which generates a sequence of
observations according to the previously stored information.
In the Markov chain, every state of the model can only
observe a single symbol. However, all states in Hidden Markov
Model topology can observe one symbol out of a distinct
gesture. The probability of observing a symbol for each state
is stored in the observation probability distribution matrix.
Furthermore, HMM states are called hidden for the following
reasons. Firstly, the decision of observing a symbol represents
the second process. Secondly, the emitter of an HMM only
emits the observed symbol. Finally, the emitting states are
unknown since the current states are based on the previous
states. HMM have many advantages that are rich mathematical
framework, powerful learning and decoding methods, good
sequences handling capabilities, and flexible topology for the
statistical phonology and the syntax. The disadvantages lie in
the poor discrimination between the models and in unrealistic
assumptions that must be make to construct the HMM theory,
namely the independence of the successive feature frames (i.e.
input vectors) and the first order Markov process [15].

1) Elements of HMM: A Hidden Markov Model can be
symbolized with λ = (A,B, π) and is characterized by the
following elements [1], [13];

• The set of states S = {s1, s2, ..., sN}. N represents the
number of states in the model.

• An initial probability distribution for each state π such
that;

πi = P (si), 1 ≤ j ≤ N (1)

• An N-by-N transition matrix A = {aij}, which is given
by;

aij = P (sj |si), 1 ≤ i, j ≤ N (2)

where aij is the probability of the transition from state
si at time t to sj at time t + 1. The sum of the entries
in each row of matrix A must be 1 because it is the sum

of the probabilities of making a transition from a given
state to each other states.

∑
j

aij = 1 (3)

• The set of possible emission (an observation) O =
{o1, o2, ..., oT } in which T is the length of gesture path.

• The set of discrete symbols V = {v1, v2, ..., vM}, where
M represents the number of distinct observation symbols
per state (i.e. the size of a codeword).

• An N-by-M observation matrix B = {bj(m)}, where

bj(m) = P (vm|sj), 1 ≤ j ≤ N, 1 ≤ m ≤ M (4)

∑
m

bj(m) = 1 (5)

where bj(m) gives the probability of emitting symbol vm
at state sj . The sum of the entries in each row of matrix
B must be 1 for the same pervious reason.

In short, a complete specification of the HMMs contains two
model parameters (N and M ). Additionally, it also includes
the observation symbols and the three probabilistic parameters
A, B and π. Thus, a compact notation of HMM is as follows;

λ = P (π,A,B) (6)

Here, λ refers to the parameters set of the model.
2) HMMs Basic Problems: Mathematically, three factors

control the use of HMMs. These factors lie in their topologies,
the selected features to be emitted and their observation
probabilities. The feature selections are based on the obser-
vation task. There are three main problems for HMMs; and
their solutions helps to employ transitions and observation
probabilities in a good way for real-world applications. The
problems are:

• Evaluation problem: Given the observation sequence O
and the model parameter λ, how to compute the prob-
ability of observed sequence given the model parameter
(i.e. P (O|λ))?

• Decoding problem: Given the observation sequence O
and the model parameter λ, how to determine the best
path through λ that generates O = {o1, o2, ..., oT } with
maximum likelihood (i.e. best explains the observations)?

• Estimation problem: Given the observation sequence O,
how to adjust or re-estimate the model λ = P (π,A,B) to
generate O = {o1, o2, ..., oT } with maximum likelihood?

3) Model Size: Before the HMMs training starts, the size
of HMMs must be decided. How many states do we need?

The number of states must be estimated by considering
the complexity of the various patterns that HMMs will be
used to distinguish. In other words, the number of segmented
parts in the graphical pattern is taken into consideration when
we represented it. When the number of training data samples
is insufficient, the use of excessive state numbers causes the
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Fig. 2. Straight-line segment for HMMs topologies (a) Gesture number from
hand motion trajectory (b) Line segment of gesture number (c) LRB model
with line segmented codewords.

over-fitting problem1. In addition, the discrimination power of
the HMMs is decreased when insufficient number of states
is used because more than one segmented part of graphical
pattern is modeled on one state. The number of states in
our gesture recognition system is determined by mapping
each straight-line segment into a single HMM state (Fig.
2). To represent various graphical patterns, we must look at
the possible patterns and estimate how many distinguishable
segments are contained in a pattern. It may be a good idea to
use different numbers of states in the different HMMs, which
used to represent separate classes of patterns. For example, to
represent a graphical pattern ‘L’, only two states are needed,
whereas six states are required for a graphical pattern ‘E’, and
four states for graphical pattern ‘3’.

4) Initializing a Left-Right Banded Model: Before starting
the iterative Baum-Welch algorithm, the initial values of all
parameters in the HMMs must be assigned. There is only one
general requirement; the initial model must indicate, somehow,
what we want to represent different model states. However,
this requirement has different consequences, depending on the
type of HMMs. In practice, the LRB model is considered
because each state in Ergodic topology has many transitions
than LR and LRB topologies, so, the structure data can be
easily lost. On the other hand, LRB topology has no backward
transition so, the state index either increases or remains the
same as time increases. In addition, LRB topology is more
restricted than LR topology and simple for training data, which
can match the data to the model [1].

An intuitively observation is that, a good initialization for
HMMs parameters (A,B, π) achieves better results. Matrix A

1Over-fitting occurs when HMMs describe random error instead of the
underlying relationship. Potential over-fitting problem does not only depend
on the number of parameters and data, but also on the compatibility of model
structure with the amount of model error and data shape. To avoid the problem
of over-fitting, additional techniques (e.g. regularization, early stopping, cross-
validation and etc.) are used when further training is not resulting in better
generalization.

is the first parameter, where it is determined using Eq. 7.

A =

⎛
⎜⎜⎜⎝
a11 1− a11 0 · · · 0
0 a22 1− a22 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎞
⎟⎟⎟⎠ (7)

The diagonal elements aii of the transition matrix can be
chosen to indicate approximately the average state durations
d such that;

aii = 1− 1

d
(8)

and
d =

T

N
(9)

where T is the length of gesture path and N represents the
number of states.

This is sufficient for an automatic training procedure in
which state 1 is intended to represent the first part of the
training data, state 2 the next part, etc. Therefore, all output
probability distributions for different states can be initialized
with the same parameters for all states. Consequently, the
first step in Baum-welch iteration uses the training data to
calculate more correct output probability parameters for each
state. Since HMMs states are discrete, all elements of matrix
B are initialized with the same value for all different states
(Eq. 11). Matrix B is an N -by-M observed symbols where
bim gives the probability of emitting symbol vm in state i (Eq.
4).

bim =
1

M
(10)

where i, m run over the number of states and the number of
discrete symbols, respectively.

B =

⎛
⎜⎜⎜⎝

b11 b12 · · · b1M
b21 b22 · · · b2M

...
...

. . .
...

bN1 bN2 · · · bNM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
M

1
M · · · 1

M
1
M

1
M · · · 1

M
...

...
. . .

...
1
M

1
M · · · 1

M

⎞
⎟⎟⎟⎠
(11)

For each new time sample, the state can jump back by itself,
or only to the nearest following state. Therefore, the initial
probability vector π should be initialized as;

π =
(
1 0 · · · 0

)T
(12)

It is to ensure that it begins from the first state.
5) Termination of HMMs Training: The Baum-Welch train-

ing algorithm is very efficient. Often a good model is reached
already after 5-10 iterations. The trained model must be
flexible enough to correctly represent a new test sequence that
never occurred during training. The training step is repeated
until the change of transition and emission matrix converges.
The convergence is satisfied if the change is less than 0.001
(i.e. tolerance ε = 0.001) as described in Eq. 13, or reaches to
the maximum number of iterations (i.e. 500).

N∑
i=1

N∑
j=1

|âij − aij |+
N∑
j=1

M∑
m=1

|b̂jm − bjm| < ε (13)
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The main motivation behind using tolerance is to control the
number steps required by the Baum-Welch algorithm in order
to successfully execute its purpose. This algorithm is termi-
nated if all of the following three quantities are less than the
tolerance value. First, log-likelihood for a given observation
sequence O is generated using the current estimated values
of transition matrix A and observation matrix B. Second,
change in the normalization of the transition matrix A. At the
end, change in the normalization of the observation matrix
B. Note that, increasing tolerance reduces the number of
steps to execute the Baum-Welch algorithm before it was
terminated. In fact, the maximum number of iterations controls
the maximum number of steps to execute the algorithm. If the
Baum-Welch algorithm executes 500 iterations before reaches
to the specified tolerance value, the termination is occurred
with a warning. When this occurs, the value of maximum
number of iterations should be increased so that the algorithm
reaches to the desired tolerance before termination.

It is usually very difficult to provide sufficient amounts of
training data. Therefore, some observation may never occur
in the limited set of training data, although we may know
that they might have occurred with some small probability. If
a discrete HMM is trained on a such data, the Baum-Welch
will assign zero observation probability to some elements of
the observation probability matrix. In such case, a very small
non-zero value may be assigned and re-normalization of the
row matrix is required. A similar problem can occur with the
transition probability matrix. For a left-right banded HMM
we have intentionally defined many elements of the transition
probability matrix exactly zero values. These elements still
have zero values after the Baum-Welch training, and should
remain zero. Furthermore, the adjustment of HMMs parame-
ters is important after performing the training operation.

B. Conditional Random Fields

Conditional Random Field (CRF) is undirected graphical
models that were developed for labeling sequential data. CRF
is different than HMM in their conditional nature and the
dependencies assumptions in their computations to ensure
tractable inference. In addition, CRF overcomes the weakness
of directed graphical models, which suffer from the bias
problem as in Maximum Entropy Markov models (MEMM)
[16], [17]. Furthermore, CRF combines the strength of MEMM
and HMM on a number of real-world sequence labeling tasks.
In our work, each label (state) corresponds to a gesture (e.g.
alphabets from A to Z or numbers from 0 to 9). In addition,
there is a trade-off for each label according to the weights of
each feature function because CRF uses a single exponential
distribution to model all reference labels of given observation
[3]. The CRF is satisfied by defining the normalized each
product of potential function [19]. In the case of chain-
structured CRF as depicted in Fig.1, each potential function
operates on pairs of adjacent label variables yi and yi+1.

The probability of label sequence y for a given observation
sequence x is calculated by;

p(y|x, θ) = 1

Z(x, θ)
· exp

( n∑
i=1

Fθ(yi−1, yi, x, i)
)

(14)

where Z(x, θ) is the normalized factor given by;

Z(x, θ) =
∑
y

exp
( n∑

i=1

Fθ(yi−1, yi, x, i)
)

(15)

where parameter θ = (λ1, λ2, ..., λNf
;μ1, μ2, ..., μNg ), Nf

represents the number of transition feature function, Ng refers
to the number of state feature function and n is the length of
observation sequence x. Fθ is defined as follows;

Fθ(yi−1, yi, x, i) =
∑
f

λf tf (yi−1, yi, x, i)+
∑
g

μgsg(yi, x, i)

(16)
where tf (yi−1, yi, x, i) � tf (yi−1, yi, x) is a transition feature
function of the entire observation sequence and labels at posi-
tions i and i−1 in the label sequence. sg(yi, x, i) � sg(yi, x)
refers to a state feature function of the label at position i and
the observation sequence. λf and μg represent the weights of
the transition and state feature functions respectively, which
can be estimated from training data.

From Eq. 14 and Eq. 16, the joint probability of a label
sequence y given an observation sequence x can be written as
follows;

p(y|x, θ) = 1

Z(x, θ)
· exp

( n∑
i=1

∑
f

λf tf (yi−1, yi, x, i)+

n∑
i=1

∑
g

μgsg(yi, x, i)
)
(17)

As CRF is similar to HMM in their characteristics, it is
easy to build a CRF model by defining a single feature for
each label-observation pair (yb, x) and label-label pair (ya, yb)
according to the training data set as follow;

tya,yb
(yu, yv, x) =

{
1 if yu = ya and yv = yb

0 otherwise
(18)

syb,x(yv, xv) =

{
1 if yv = yb and xv = x

0 otherwise
(19)

Based on the foregoing mentioned, the parameters μyb,x and
λya,yb

which corresponds to syb,x(yv, xv) and tya,yb
(yu, yv, x)

features respectively are equivalent to the logarithms of the
HMM observation and transition probabilities.

1) Learning Parameter for CRF: The maximum likelihood
parameter estimation problem for CRFs which defines the
probability distribution (Eq. 17) is the task of estimating
the parameters θ = (λ1, λ2, ..., λNf

;μ1, μ2, ..., μNg
) from

training data set D = {(x(j), y(j))}Td
j=1. Here, x(j) is an

observation sequence of training data set, y(j) represents the
corresponding label sequence and Td refers to the number
of training sequences. The learning parameters of CRF is
based on the maximum entropy. According to the principle
of maximum entropy, it is considered a good measure for
the variational problems as a finite training data. In addition,
it has the ability to justify the probability distribution from
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incomplete information. The maximization of log-likelihood
that learns the parameter θ is computed by2;

L(θ) =

Td∑
j=1

log p(y(j)|x(j), θ) =

Td∑
j=1

( n∑
i=1

Fθ(y
(j)
i−1, y

(j)
i , x(j), i)− logZ(x(j), θ)

) (20)

Up to now, there is no closed solution to Eq. 20. Instead,
iterative techniques have been used to determine the best
solution [3], [5]. Likelihood maximization is performed using
a gradient ascent method with Broyden-Fletcher-Goldfarb-
Shanno (BFGS) optimization technique with 300 iterations to
converge [19];

∂L(θ)

∂θ
=

Td∑
j=1

( n∑
i=1

∂Fθ(y
(j)
i−1, y

(j)
i , x(j), i)

∂θ
−

∑
x

p(y|x(j))

n∑
i=1

∂Fθ(yi−1, yi, x
(j), i)

∂θ

)
(21)

2) Inference CRF: To compute the probability p(y|x, θ)
of label sequence y for the given new observation sequence
x, a set of matrices is computed [4], [5]. To simplify some
expressions, special starting y0 and stopping yn+1 states are
added. These states are dummy (i.e. observe no symbol and are
passed without time delay). Suppose that p(y|x, θ) is given by
Eq. 16. For each position i in the observation sequence, Mi(x)
is |Y × Y| matrix, which defined as follows;

Mi(y
′, y|x) = exp

(
Fθ(y

′, y, x, i)
)

(22)

where Y = y1, y2, ..., yl represents a set of labels of the
training data set. l refers to the number of the labels, and
y′, y are the labels of Y at time i. Using this notation,
the conditional probability of a label sequence y given the
observation sequence x can be written as the product of the
appropriate elements of the n + 1 matrices for that pair of
sequences (Eq. 23);

p(y|x, θ) = 1

Z(x, θ)
·
n+1∏
i

Mi(yi−1, yi|x) (23)

Similarly, the normalization factor Z(x, θ) for observation
sequence x is given by the (starting, stopping) entry of the
product of all Mi(x) matrices;

Z(x, θ) =
( n+1∏

i=1

Mi(x)
)
starting,stopping

(24)

3) CRF with Hidden Variables: Other approaches including
the hidden variables offer several advantages over previous
CRF model. Although the CRF model the transition among
gestures and overcome the weakness of directed graphical
models which suffer from bias problem, it does not have the
ability to learn the internal sub-structure of gesture sequences.

2More details about the derivation of Eq. 20 can be found in [19]

Hidden Conditional Random Fields (HCRF) is the extension
of CRF, which incorporate hidden state variables to deal well
with gesture sub-structure [11], [12]. The main advantage of
HCRF is to automatically model the local interconnection
between labels (i.e. states) with hidden variables. However,
it cannot model the dynamics among the states (Fig.1).

Latent-Dynamic Conditional Random Fields (LDCRF) is
considered as one of the approaches, which combine the ad-
vantages of CRF and HCRF by using both extrinsic dynamics
and intrinsic sub-structure [6]. The strategy of LDCRF is based
on two main points. Firstly, they learn extrinsic dynamics by
modeling the class labels. Secondly, they learn the intrinsic
sub-structure of gesture sequence using intermediate hidden
states. Thus, LDCRF models has the ability to overcome the
main weaknesses of HCRF model (Fig.1). LDCRF model can
be used to recognize the un-segmented sequences because they
contain a class label per observation. Furthermore, LDCRF
model can efficiently infer the gesture sequences during train-
ing and testing processes. HCRF model has only one label
associated to each sequence while CRF and LDCRF have one
label associated to each time sample in the sequence.

4) Data Format of CRF: CRF and LDCRF models are
applied to un-segmented sequences while HCRF should be
applied to pre-segmented sequences (only one label per se-
quence). The data and the label files are encoded using
Comma Separated Values (CSV) format according to HCRF
library. The CRF formulation is implemented by extending the
software of the library of Hidden-state Conditional Random
Field [20]. This library implements three models: CRF, HCRF
and LDCRF with C++ and Matlab languages.

Each file contains multiple matrices or vectors encoding
the feature values (data files) or label values (label files). A
data file contains multiple matrices, one for each sequence.
For each matrix, the first line always contains two numbers:
the number of rows and the number of columns. The number
of rows for each matrix represents the number of features.
All the matrices should have the same number of features.
The number of columns for a specific matrix represents the
number of time samples in the sequence. Since HCRF model
has only one label associated to each sequence while CRF
and LDCRF have one label associated to each time sample in
the sequence, the HCRF library supports two file format for
labels. For HCRF model, the label file contains one integer
per line, representing the label for the specific sequence. For
CRF and LDCRF models, the label file is encoded as a data
file with matrix headers specifying the number of rows and
columns but in this case the matrices always have one row.
This row should have the same length as the corresponding
sequence in the data file, with one label for each time sample.

III. GENERATIVE VERSUS DISCRIMINATIVE MODELS

The difference between HMM and CRF is that HMM is the
generative models and define a joint probability distribution
to solve a conditional problem, thus focusing on modeling the
observation to compute the conditional probability. Moreover,
one HMM is constructed per label (i.e. each alphabet character
or number) where HMM assumes that all the observations
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are independent. CRF is undirected graphical model and is
developed for labeling sequential data. The key features of
CRF than HMM are represented in their conditional nature
and the dependencies assumptions of their computations to
ensure tractable inference. In addition, CRF overcomes the
weakness of directed graphical models which suffer from the
bias problem as in MEMM [18]. Furthermore, CRF combines
the strength of MEMM and HMM where they have all
characteristics of the directed graphical models as in HMM. In
addition, each label in CRF is employed as exponential model
as in MEMM to conditional probabilities of the next label for
a given current label. Additionally, CRF uses a single model
for all alphabets and numbers.

IV. EXPERIMENTAL RESULTS

In our experimental results, the segmentation of the hand
with complex background takes place using 3D depth map
and color information over Y CbCr color space, which is
more robust to the illumination variation and partial occlusion.
Gaussian Mixture Model (GMM) was considered where a
large database of skin and non-skin pixel is used to train
it. Moreover, morphological operations were used as a pre-
processing, and Mean-shift algorithm in conjunction with
Kalman filter [1] is to track the hand to generate the hand
motion trajectory. Combined features of location, orientation
and velocity for hand gestures are extracted and then, k-
means clustering is employed for HMM, CRF, HCRF and
LDCRF codeword. Our experiments are carried out on isolated
gestures according to two different classification techniques:
generative model and discriminative models. The following
sections discuss the analysis of HMM and CRF results in
details.

A. Data Set

The alphabets and numbers are classified using HMMs,
CRFs, HCRFs and LDCRFs by the motion trajectory of single
hand. A database is developed containing 2160 video samples
for gesture symbols taken from three subjects on a set of
26 alphabets and 10 numbers. In other words, each isolated
gesture is based on 60 video sequences where 42 video
samples for training and 18 video samples for testing ( In
total, our database contains 1512 video samples for training
and 648 video samples for testing). The sample test data
is entirely different from the training data and is tested on
Intel(R) Core(TM)2 Duo CPU 2.2GHz PC with 4 GB of
RAM. The input images are captured by Bumblebee stereo
camera system which has 6 mm focal length at 15FPS with
240×320 pixels image resolution, and Matlab implementation.
Bumblebee camera is used for acquisition of 2D images along
with depth map. Therefore the databases are captured in IESK
lab3, Otto-von-Guericke-University Magdeburg, Germany.

B. Experimental Discussion

To handle isolated gesture, CRF, HCRF and LDCRF with
different number of window sizes (W ) ranging from 0 to 7

3http://www.iesk.ovgu.de/

are applied and tested to decide the best in term of recognition
results. A window size of zero means that the feature vector
at the current frame is only used to construct the input feature
while the window size of three means that the input feature
vector at each frame consists of seven feature vectors which
contain the current frame, three preceding frames and three
future frames. In our application, the size of window is based
on the complexity of each gesture as described in previous
section. So, multiple experiments have been conducted with
a variety of window size to empirically conclude the optimal
outcome of the recognition system. Fig. 3 shows the recog-
nition rate of CRF, HCRF and LDCRF according to different
window sizes for training and testing data. The recognition
of hand gesture path using LDCRF is higher than CRF and
HCRF. In addition, the yield of training data is higher than
testing data in the proposed method. Furthermore, the gesture
recognition rate is initially improved as the window size
increases but degrades as the window size further increases.
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Fig. 3. Recognition accuracy with different window sizes (0-7) for CRFs,
HCRFs and LDCRFs on training and testing data.

In HMM, we use a Left-Right Banded model based on
Gaussian emission probabilities which have a full covariance
matrix for each state. The HMM parameters (i.e. the emission
probability and the state transition matrix) are learned from
the same training data used by CRF. HMM is trained by
Baum-welch algorithm while CRF is trained using Gradient
ascent with the BFGS optimization technique. On a standard
desktop PC, training process is more expensive for CRF,
HCRF and LDCRF than HMM since the required time to
model ranges from 20 Minutes to several hours and is based
on observation window. On the contrary, the Inference (i.e.
recognition) process is less costly and very fast for all models
with Sequences of several frames (e.g. more than 80 frames
in a sequence). The type of observed gesture is decided with
HMM by Viterbi algorithm, frame by frame. As shown in
Table I, the overall recognition rates (the average of the
training and the testing of recognition result) of HCRF at
window size equal to 0 is higher than CRF. Also, in that
case, the overall recognition rate achieved by HMM is 96.91%.
Furthermore, HMM is the best in terms of results than CRF,
HCRF and LDCRF at W = 0.

Whereas at window size equal to 4, LDCRF recognition rate
is higher than HMM according to the training and the testing
data (Fig. 4). Our results show that the overall recognition rates
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TABLE I
RESULTS OF GESTURES RECOGNITION AT W = 0

Model Data set Recognition result (%)
type Training Testing Training Testing Overall

CRFs 1512 648 60.34 52.78 56.56

HCRFs 1512 648 78.55 60.34 69.45

LDCRFs 1512 648 95.68 86.73 91.21

HMMs 1512 648 99.07 94.75 96.91

Training data Testing data Overall recognition
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Fig. 4. Results of gestures recognition using CRFs, HCRFs, LDCRFs versus
HMMs at window size = 4.

are 91.52%, 95.28%, 96.94% and 98.05% for CRF, HCRF,
HMM and LDCRF, respectively. The recognition ratio is the
number of correctly recognized gestures over the number of
input gestures (Eq. 25).

Recognition ratio =
# recognized gestures

# test gestures
× 100%

(25)
The high recognition rate achieved by the proposed system

is due to the following reasons; 1) As a benefit of depth
information, a high segmentation accuracy of the hand is
achieved. 2) A set of feature candidates that optimally dis-
criminate among the input patterns is elected. 3) A carefully
experimental based selection of initialization parameters for
training process. 4) HMM, CRF, HCRF and LDCRF clas-
sification techniques have the ability to efficiently alleviate
spatio-temporal variabilities.

V. CONCLUSION

Experiments were carried out on isolated gestures according
to two different classification techniques: a generative models
such as HMM and discriminative models like CRF, HCRF and
LDCRF. For discriminative models, CRF, HCRF and LDCRF
with different number of window sizes ranging from 0 to 7
were applied and tested to decide the best among them. In
contrast to generative and discriminative models, HMM was
the best in terms of results than CRF, HCRF and LDCRF at
window size = 0. Whereas at window size equal to 4, LDCRF
recognition results were higher than HMM according to the
training and the testing data. Our results showed that, the
overall recognition rates were 91.52%, 95.28%, 96.94% and
98.05% for CRF, HCRF, HMM and LDCRF, respectively. It is
noted that the proposed system achieves high recognition rate

due to a high segmentation accuracy of hand. In addition, a
good election for the set of feature candidates that optimally
discriminate among input patterns. Also, a careful experimen-
tal based selection is required for initialization parameters of
training process. Above all, HMM, CRF, HCRF and LDCRF
classification techniques have the ability to efficiently alleviate
spatio-temporal variabilities.
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