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Abstract—The coherent Self-Averaging (CSA), is a new method 

proposed in this work; applied to simulated signals evoked potentials 
related to events (ERP) to find the wave P300, useful systems in the 
brain computer interface (BCI). The CSA method cleans signal in the 
time domain of white noise through of successive averaging of a 
single signal. The method is compared with the traditional method, 
coherent averaging or synchronized (CA), showing optimal results in 
the improvement of the signal to noise ratio (SNR). The method of 
CSA is easy to implement, robust and applicable to any physiological 
time series contaminated with white noise. 
 

Keywords—Evoked potentials, wave P300, Coherent Self-
averaging, brain - computer interface (BCI). 

I. INTRODUCTION 
RAIN COMPUTER INTERFACE (BCI), is a 
communication system that allows by means of brain 

activity, control devices with no peripheral muscle activity [1]. 
Its main objective is to provide a person with severe motor 
disabilities, the ability to control mechanisms that enable 
greater independence, improving the quality of life and 
reducing the social costs [2]. The BCI system recognizes 
patterns in the brain activity of the user, registered by 
electroencephalography generally superficial (EEG) and 
translates them into commands [2], [3]. This identification is 
performed using various algorithms that process the signal and 
classified by the characteristics of the vector [4], [5]. BCI 
system consists of: 1) a block of instrumentation, which is 
acquired and EEG signal conditioner and/or evoked potentials 
(EP); 2) feature extraction, which generates a signal 
representing the pattern, which improves the performance of 
the classifier, and 3) a classifier that determines what class the 
new sample, taking into account the information that is 
extracted from the training set [6]. To measure the BCI system 
performance is evaluated classification accuracy, sensitivity 
and specificity [7].  

One of the patterns of brain activity commonly used in BCI 
are event-related potentials (ERP). One of these potentials is 
the P300 wave [1], [8], [9], which is a variable amplitude 
positive peak occurring approximately 300ms after a stimulus 
that can be visual, auditory or somatosensory, described by 
Sutton in 1965 [10]. This wave is composed of two sub-waves 
known as: P3a originates from mechanisms of attention front 
 

Espinosa R. A. is with Biomedical Engineering Department Manuela 
Beltran University, Bogota, Colombia (e-mail: ricardo.espinosa@ 
docentes.umb.edu.co). 

led by stimuli during processing tasks, and P3b activity 
originates in the parietal-temporal associated with attention 
and seems to be related to the memory of post-processing [11].  

There are many techniques at present to obtain the ERP, but 
the paradigm "Odd Ball" is the more usual [10], [12]. In this 
technique the patient is instructed the stimuli which are 
frequent and which the rare. The events of one of the 
categories are listed randomly so that the patient will not be 
able prediction once the stimulus is identified objective 
subject should perform a specific task [12]. The ERP obtained 
by the acquisition system is contaminated samples with 
potential of the activity of the eyes (EOG), muscles (EMG) 
[13] and different rhythms of the EEG, additionally there is 
pollution as technical motion artifacts, the voltage to 60Hz, 
thermal noise and noise of the instrumentation itself [14]. In 
such a way that the amplitude of the signal of ERP is much 
lower than the amplitude of the noise, this causes a significant 
decrease in signal-to-noise ratio (SNR) [15], for this reason, it 
is desirable to obtain more than one record or time, to discover 
the target signal. 

The records obtained from the EEG can be represented by 
the model xk[n] =s[n] + rk[n], where s[n] is the signal P300 
and rk[n] the noise, each record has a length of 1≤ n≤ N, 
coherent averaging is done among the k -th epochs or records 
[16]. Although the coherent averaging is of great acceptance, 
it is essential to clarify that it has limitations. The most 
important is that it considers the evoked potential signal is 
repeated exactly the same in each era, this in most cases it is 
not true [17], in addition to assume that the noise is Gaussian 
and zero mean. 

In this work we propose an algorithm based on coherent 
averaging that we call Coherent Self-Averaging, a method of 
analysis in the time to clean time series of white noise, the 
algorithm takes the signal and generates a straight line 
between samples separated by a value m, the resultant signal 
returns to enter again the algorithm, we call this process epoch 
such a way that the resulting signal becomes the input signal 
by K epochs. This method is applied to simulated signals P300 
with different SNR and compared with the traditional method. 

II. METHODS 

A. Method of Coherent Averaging (CA) 
The records can be pre-processed with the coherent 

averaging or synchronized, one of the most commonly used 
techniques in the estimation of the wave P300, is to average 
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Fig. 2 A record of the Group 1, the results of the implementation of 

the method CA in the epochs 100, 200, 300 and 400 
 

 
Fig. 3 A record of the Group 2, the results of the implementation of 

the method CA in the epochs 100, 200, 300 and 400 

III. RESULTS 
With the method CA was obtained an increase in the SNR 

in all groups. In Figs. 2 and 3 are distinguished the P300 wave 
in each epoch 100, 200, 300 and 400 respectively. In Figs. 4 
and 5 the P300 wave is less clear and is different for every 
time a positive wave in the period of latency. Table I shows 
SNR values in each epoch and each group.  
 

 

Fig. 4 A record of the Group 3, the results of the implementation of 
the method CA in the epochs 100, 200, 300 and 400 

 

 
Fig. 5 A record of the Group 4, the results of the implementation of 

the method CA in the epochs 100, 200, 300 and 400 
 

The implementation of the method CSA to each signal from 
each group also showed an increase of the SNR. In Figs. 6 and 
7 the P300 wave is clearly distinguishable, in addition to this 
there is a decrease in the white noise, as well as its frequency. 
In Figs. 8 and 9 the P300 wave is not distinguishable. Table II 
shows the SNR values in every epoch and in every group. 

In all cases the epoch400 showed the best results. 
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Fig. 6 A record of the Group 1, the results of the implementation of 
the method in the CSA epochs 100, 200, 300 and 400 

 

 
Fig. 7 A record of the Group 2, the results of the implementation of 

the method in the CSA epochs 100, 200, 300 and 400 

IV. CONCLUSION 
The two methods were increased in the SNR. However, the 

best results showed the method CA. The advantages of the 
coherent self-averaging (CSA) compared to the traditional 
method is that you only need a signal and not hundreds of 
signals, avoiding long training sessions for signals in the BCI 
system and immediate recognition of the signal hidden in the 
white noise. In other words, the characteristics in the time 
domain are extracted directly from the signal. 

 

 
Fig. 8 A record of the Group 3, the results of the implementation of 

the method in the CSA epochs 100, 200, 300 and 400 
 

 
Fig. 9 A record of the Group 4, the results of the implementation of 

the method in the CSA epochs 100, 200, 300 and 400 
 

In the CSA, increasing the number of iterations or "epochs" 
you can overcome the low values displayed in front of the CA. 
In addition the variation of the m-value may cause unwanted 
effects in the resulting signal. 

Method CSA for not making any transformation is easy to 
deploy and requires little computational load. In addition, it 
can be used in time series of any kind where suspected 
contamination of white noise.  
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