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Abstract—In an original directed diffusion routing protocol, a 

sink requests sensing data from a source node by flooding interest 
messages to the network. Then, the source finds the sink by sending 
exploratory data messages to all nodes that generate incoming 
interest messages. This protocol signaling can cause heavy traffic in 
the network, an interference of the radio signal, collisions, great 
energy consumption of sensor nodes, etc. According to this research 
problem, this paper investigates the effect of sending interest and 
exploratory data messages on the performance of directed diffusion 
routing protocol. We demonstrate the research problem occurred 
from employing directed diffusion protocol in mobile wireless 
environments. For this purpose, we perform a set of experiments by 
using NS2 (network simulator 2). The radio propagation models; 
Two-ray ground reflection with and without shadow fading are 
included to investigate the effect of signaling. The simulation results 
show that the number of times of sent and received protocol signaling 
in the case of sending interest and exploratory data messages are 
larger than the case of sending other protocol signals, especially in 
the case of shadowing model. Additionally, the number of 
exploratory data message is largest in one round of the protocol 
procedure. 
 

Keywords—Directed diffusion, Flooding, Interest message, 
Exploratory data message, Radio propagation model. 

I. INTRODUCTION 
IRECTED diffusion routing [1] is a new paradigm of 
routing protocol for wireless sensor networks [2]. It is a 

data-centric routing scheme, and sensing data is named using 
attribute-value pairs. Directed diffusion routing establishes a 
route by employing the interest and the exploratory data 
messages. A sink or a base-station requests data from a source 
by flooding the interest message to a network. When the 
interest message reaches the source, the sink confirms the 
possible routes by sending the exploratory data message to all 
neighbors that generate incoming the interest messages. The 
intermediate nodes do the same. However, this routing 
approach can cause heavy traffic, the packet collision, an 
interference of the radio signal, and great energy consumption 
of the sensor nodes, especially in dense wireless sensor 
networks. In the research literature, the problem about the 
signaling overhead in directed diffusion routing protocol is 
continuously addressed. References [3]-[5], [16], and [17] 
study how to reduce the interest message by modifying an 
original directed diffusion. References [6] and [7] investigate 
how to decrease the exploratory data message on directed 
diffusion routing. In [8], the reduction of the interest and the 
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exploratory data messages is proposed. To the best of our 
knowledge, there is no work in the research literature has 
directly demonstrated the effects of protocol signaling on the 
performance of an original directed diffusion routing. How the 
protocol signaling is generated in the routing algorithm is still 
not explored sufficiently.  

According to this research gap, the objective of this study is 
to demonstrate the research problem occurred from employing 
an original directed diffusion protocol in mobile wireless 
environments through the extensive simulation. We 
investigate the effect of sending and receiving protocol 
signaling on the performance of directed diffusion routing. 
Additionally, the different radio propagation models; Two-ray 
ground reflection and shadowing models are also included to 
study the effect of signaling. The simulation results indicate 
that the protocol signaling in the case of sending and receiving 
interest and exploratory data messages are higher than the case 
of other protocol signaling. The number of exploratory data 
message is largest if one round for sending and receiving each 
protocol signaling of the directed diffusion procedure is 
considered. Both the numbers of interest and exploratory data 
messages are significantly increased in the dense mobile 
wireless sensor networks. In addition, the number of protocol 
signaling in the case of shadowing model is higher than the 
case of the two-ray ground reflection model. This is because 
the multipath fading effect reduces the successful of path 
setup; the routing establishment process is more repeated.  

The remainder of this paper is organized as follows. In 
Section II, we introduce the directed diffusion routing 
protocol. In Section III, we describe the simulation models; 
the mobility model and the radio propagation models are 
presented. Section IV presents the simulation design. In 
Section V, the simulation results and discussions are detailed. 
Finally, Section VI concludes this paper 

II. DIRECTED DIFFUSION ROUTING PROTOCOL 
 Directed diffusion [1] is a data-centric routing protocol for 

wireless sensor networks. Sensing data collected by a sensor 
node is named by attribute-value pairs. A node requests 
sensing data by sending an interest for named data. Data 
matching the interest is sent back toward that node. 
Intermediate nodes can cache and transform data. The node 
requesting sensing data is called a sink. The node detecting 
data is called a source. The routing mechanisms of directed 
diffusion routing protocol are illustrated in Fig. 1. In Fig. 1 (a), 
the sink requests sensing data from the source by broadcasting 
the interest message to the network (interest propagation). 
This message contains a description of the event in which the 
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Fig. 3 Number of times of sent and received protocol signaling in the 

case of 20 nodes scenario with two-ray ground reflection model 
 

 
Fig. 4 Number of times of sent and received protocol signaling in the 

case of 20 nodes scenario with shadowing model 
 

 
Fig. 5 Number of times of sent and received protocol signaling in the 

case of 100 nodes scenario with two-ray ground reflection model 
 
Fig. 7 compares the total number of time of sent and received 

each protocol signaling in one phase of the protocol procedure 
with the two-ray ground reflection and shadowing models. 
These results indicate that the number of time of sent and 
received exploratory data message is highest. The reason can be 
explained here. In the directed diffusion routing mechanism, the 
sink requests data from the source by flooding interest messages 

to the network. Then, the source finds the sink by sending 
exploratory data messages to all nodes that matches the interest. 
The exploratory data messages are propagated to all nodes that 
generate incoming interest messages; this approach can cause 
higher number of sending and receiving exploratory data than 
other messages. 

 

 
Fig. 6 Number of times of sent and received protocol signaling in the 

case of 100 nodes scenario with shadowing model 
 

To extend the previous discussion as explained in Fig 7, the 
description of sending protocol signaling in directed diffusion is 
illustrated in Fig. 8. We assume that the sink and the source are 
node IDs 0 and 4, respectively. Node IDs 1, 2, and 3 are the 
relay nodes. We describe only the routing process at these relay 
nodes. In the interest propagation stage, the sink sends the 
interest message to node ID 1. Then, node ID 1 forwards the 
interest message by the flooding technique to node IDs 2 and 3 
only in one time. Node ID 2 forwards the interest message to 
node IDs 1 and 3 in one time, and node ID 3 also forwards the 
interest message to node IDs 1 and 2 in one time. Thus, the total 
number of times of sent the interest message by the relay nodes 
is 3 times. In the exploratory data propagation stage, node ID 3 
must send the exploratory data message to node IDs 1 and 2 in 
two times. The relay node IDs 2 and 3 do the same approach. 
Thus, the total number of time of sent the exploratory data 
message by the relay nodes is 6 times. In the reinforcement 
propagation stage, the sink sends the reinforcement message to 
node ID1. Node ID 1 selects only one of its neighbors (node IDs 
2 or 3) to send the reinforcement message. Node IDs 2 and 3 do 
the same approach to forward this message. Thus, the total 
number of time of sent the reinforce message by the relay nodes 
is 2 times. For the data propagation stage, we assume that the 
source sends its sensing data to the sink through node ID 3. 
Node ID 3 delivers the data message along the reinforcement 
path. Thus, the total number of time of sent data message by the 
relay nodes is 2 times. 
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increased larger than the case of the two-ray ground reflection 
model. 

VI. CONCLUSION 
The effect of sending and receiving protocol signaling on the 

performance of directed diffusion has been investigated in this 
paper. We demonstrate that employing the different radio 
propagation models in the simulation study can help to better 
understand the effect of protocol signaling. The two-ray ground 
reflection model is not sufficient in investigating the protocol 
signaling effects on routing; the shadowing model is more 
appropriate. The shadow fading causes high number of times of 
sent and received protocol signaling due to the unsuccessful 
transmission of the packets. This problem becomes worse in the 
dense mobile wireless sensor networks. Additionally, our 
findings indicate that the protocol signaling as the interest and 
exploratory data messages are larger than the case of other 
protocol signaling. The number of exploratory data message is 
highest in one round of the directed diffusion procedure. For the 
future work of our research, to resolve these high protocol 
signaling (interest and exploratory data messages) in directed 
diffusion routing is required because it can help to reduce the 
packet collision, an interference of the radio signal, and the 
energy consumption of the sensor nodes. 

REFERENCES  
[1] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed Diffusion for 

Wireless Sensor Networking”, IEEE/ACM Transactions on Networking, 
vol. 11, no. 1, pp. 2-16, February, 2003. 

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramanism, and E. Cayiric, 
“Wireless Sensor Networks: a Survey,” Computer Networks, Elsevier, 
vol. 38, no. 4, pp. 393-422, 2002.  

[3] L. Zhiyu and S. Haoshan, “Design of Gradient and Node Remaining 
Energy Constrained Directed Diffusion Routing for WSN,” in Proc. 
International Conference on Wireless Communications, Networking and 
Mobile Computing, pp. 2600-2603, September, 2007. 

[4] C. Yanrong and C. Jiaheng, “An Improved Directed Diffusion for 
Wireless Sensor Networks,” in Proc. International Conference on 
Wireless Communications, Networking and Mobile Computing, pp. 
2380-2383, September, 2007. 

[5] J. Jang, “A Study on a Sequenced Directed Diffusion Algorithm for 
Sensor Networks,” in Proc. the 9th International Conference on 
Advanced Communication Technology, pp. 679-683, February, 2007. 

[6] A. Booranawong and W. Teerapabkajorndet, “Reduction of Exploratory 
Data Messages on Directed Diffusion in Mobile Wireless Sensor 
Networks,” in Proc. the 6th International Conference on Electrical 
Engineering/Electronics, Computer, Telecommunications and 
Information Technology (ECTI-2009), pp. 996-999, 2009. 

[7] N. Hu and D. Zhang, “Source Routing Directed Diffusion in Wireless 
Sensor Networks”, Asia Network for Scientific Information, Information 
Technology Journal, vol. 5, no. 3, pp. 534-539, 2006. 

[8] J. Tang, S. Dai, J. Li, and S. Li, “Gossip-based Scalable Directed 
Diffusion for Wireless Sensor Networks”, International Journal of 
Communication Systems, vol. 24, no. 11, pp. 1418-1430, 2011. 

[9] S. Gowrishanker, T.G. Basavaraju, and S.K. Sarker, “Effect of Random 
Mobility Models Pattern in Mobile Ad hoc Networks,” IJCSNS 
International Journal of Computer Science and Network Security, vol.7, 
no.6, June, 2007. 

[10] C. Bettstetter, G. Resta, and P. Santi, “The Node Distribution of the 
Random Waypoint Mobility Model for Wireless Ad Hoc Networks,” 
IEEE Transactions on Mobile Computing, vol. 2, no. 3, pp. 257-269, 
July-September 2003. 

[11] “The Network Simulator-ns2,” http://www.isi.edu/nsnam/ns/. 
[12] I. K. Eltahir, “The Impact of Different Radio Propagation Models for 

Mobile Ad hoc NETworks (MANET) in Urban Area Environment,” in 

Proc. the 2nd International Conference on Wireless Broadband and 
Ultra Wideband Communications (AusWireless 2009), August, 2007. 

[13] A. Booranawong and W. Teerapabkajorndet, “Impact of Radio 
Propagation on the Performance of Directed Diffusion Routing in 
Mobile Wireless Sensor Networks,” in Proc. International Conference 
on Embedded Systems and Intelligent Technology (ICESIT-2009), 2009. 

[14] P. Agrawal and N. Patwari, “Correlated Link Shadowing Fading in 
Multi-Hop Wireless Networks”, IEEE Transactions on Wireless 
Communications, vol. 8, no. 8, pp. 4014-4036, August, 2009. 

[15] Y.R. Tsai, “Sensing Coverage for Random Distributed Wireless Sensor 
Networks in Shadowed Environments”, IEEE Transactions on Vehicular 
Technology, vol. 57, no. 1, pp. 556-564, January, 2008. 

[16] K.E. Kannammal and T. Purusothaman, “Performance of Improved 
Directed Diffusion Protocol for Sensor Networks under Different 
Mobility Models”, Journal of Computer Science, vol. 8, no. 5, pp. 694-
700, 2012. 

[17] K.E. Kannammal and T. Purusothaman, “New Interest Propagation 
Mechanism in Directed Diffusion Protocol for Mobile Sensor 
Networks”, European Journal of Scientific Research, vol. 68, no. 1, pp. 
36-42, 2012. 

 
 
Apidet Booranawong obtained the B. Eng. and M. Eng. degrees in electrical 
engineering-telecommunications from Walailak University and Prince of 
Songkla University in 2007 and 2009, respectively. Currently, he is working 
toward the Ph.D. degree in electrical engineering-telecommunications, Prince 
of Songkla University, Thailand. His research interests are wireless ad-hoc 
networks, wireless sensor networks, wireless sensors and actuator networks, 
and wireless networked control systems.  
  
 


