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Abstract—Community structures widely exist in almost all 

real-life networks. Extensive researches have been carried out on 

detecting community structures in complex networks. However, many 

aspects of how community structures may affect the dynamics and 

properties of complex networks still remain unclear. In this work, we 

examine the impacts of community structures on the epidemic 

spreading and detection in complex networks. Extensive simulation 

results show that community structures may not help decrease the 

infection size at steady state, yet they could indeed help slow down the 

infection spreading. Also, networks with strong community structures 

may expect to have a smaller average infection size when equipped 

with a number of sparsely deployed monitors. 

 

Keywords—Complex network, epidemic spreading, infection 

size, infection monitoring.  

I. INTRODUCTION 

OMPLEX network has been a hot topic for more than a 

decade. A lot of real-life systems can be conveniently 

modeled as networks and then be effectively studied. Such 

systems include computer networks [1], Internet autonomous 

systems [2], human sexual contacts [3], World Wide Web [4], 

and many more. It is well known that the structures of the 

networks may have paramount impacts on the dynamics and 

properties of the systems. For example, one of the most 

significant discoveries is that many real-life systems can be 

presented into scale-free networks with a power-law nodal 

degree distribution [5], which leads to some critical properties 

of such systems including strong fault tolerance [6] and 

fragility under intentional attacks [7], [8], etc. 

An important topic which has attracted extensive research 

interests recently is epidemic spreading and control in complex 

networks, for which the network structures also play a critical 

role. For example, it is found that scale-free networks are 

generally speaking in absence of an epidemic threshold [9] and 

one of the most effective immunization methods, known as 

targeted immunization, is to immunize the high-degree hub 

nodes [10], even when such immunization is not perfect [11], 

etc. 

Community structures, which reflect some important 

properties of real-life systems such as social structures with 

dense internal connections and sparse external connections due 

to geographic distances and obstacles, emergence of clustering 
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in online social media etc., have been attracting increasing 

research interests. The existing results however have been 

rather heavily focusing on the construction and detection of 

various community structures in complex networks. 

Specifically, the pioneering work by Newman [12]-[14] 

introduced the modularity score for measuring the intensity of 

community structures. He also proposed algorithms for 

maximizing the modularity score by grouping the nodes 

according to the eigenvalues of the adjacency matrix of the 

network. Other relevant works include algorithms for adjusting 

modularity level without changing any nodal degree [15], 

detecting the modularity in bipartite graph [16], methods for 

defining and detecting overlapping communities in large-scale 

networks [17], and methods for detecting community structures 

in directed networks [18] etc.  

Despite of all these existing results, the effects of community 

structures on dynamics and properties of epidemic spreading in 

complex networks, such as the effects on infection size and 

transmission speed, remain rather unclear. In [19], by 

conducting theoretical analyses and numerical simulations on a 

simple random network model with adjustable modularity level, 

it is shown that when the modularity score increases, which 

denotes an increasing number of intra-community links and a 

decreasing number of inter-community links, the epidemic 

threshold becomes lower. However, it does not discuss on the 

effects of community structures on infection size when an 

outbreak does happen. In [20], based on a different network 

model and by adopting the SI spreading dynamics model where 

infected nodes always remain infectious, it is shown that, when 

an outbreak does happen, the epidemic spreading is slower in 

networks with stronger community structures. 

In this work, we carry out extensive numerical simulations to 

examine on two aspects of the effects of community structures 

on epidemic spreading and control in complex networks. First, 

we examine how the infection size changes over time and 

whether the final steady-state infection size changes with 

community structures; second, by adopting the monitoring 

allocation method as proposed in [21], we exam, when there is a 

certain number of monitors deployed in the network for 

detecting epidemic spreading, whether and how community 

structures affect the average infection size until the infection 

spreading is detected and stopped. 

The rest of this paper is organized as follow. In Section II, we 

define models and assumptions adopted in this work. 

Simulation results and discussions are presented in Section III. 

Finally, Section IV concludes this paper. 
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II. MODELS 

A. Random Network with Community Structures  

In this paper, we adopt the method proposed in [19] to 

generate random networks with community structures. 

Specifically, the main idea of constructing a network with 

community structures is to generate inter-community links at a 

lower probability than that for generating intra-community 

links. The construction process can be briefly described as 

composing of the following three steps [19]:  

Step 1. Randomly divide N  node into M  communities with 

in  nodes in 
thi  group such that 

1

M

ii
n N

=
=∑ . 

Step 2. Within each group, let every pair of nodes be connected 

with a probability p . 

Step 3. For each pair of nodes in different groups, connect them 

with a lower probability q . Denote /p qσ = . 

In this case we are able to calculate the overall number of 

links in the network as: 
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For networks with very strong community structures and 

equal size of each community, we have 1σ >>  and the total 

number of edges therefore can be approximated as  
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In the rest part of this paper, we use this function to generate 

network with community structures. The number of edges in 

the network can be controlled by adjusting p . 

To make comparisons between the networks with 

community structures versus their counterparts with the same 

nodal degree by without community structure, we generate 

their counterparts using the Monte-Carlo Switching algorithm 

[22]. The method is to randomly choose two links, denoted as 

(A-B, C-D), and rewire the links into (A-D, B-C) if, and only if, 

there is no multiple links of self-links generated. By carrying 

out such rewiring operation for a large enough times, the 

network will closely resemble a random network with no 

community structures. In our simulations, we rewire 100V 

times where V denotes the number of nodes in the network. 

Such a large number of rewiring operations is sufficient to 

basically eliminate the community structures in the networks 

[22].  

B. Scale-Free Network with Community Structures 

In scale-free networks, the nodal degrees follow a power 

–law distribution, i.e.,  
 

 ( ) ~P k k γ−  

 

where ( )P k denotes the portion of nodes with degree k, and γ
is the exponent which typically has a value within the range of 

[2], [3] in real-life systems. The well-known BA model [5] 

which generates a scale-free network by growth and 

preferential attachment has an exponent value of 3γ = . 

An algorithm is proposed in [20] to generate scale-free 

networks with community structures, basically still by adopting 

growth and preferential attachment. Specifically, when a new 

node is added to the network, it is randomly assigned to a 

certain community. First it is connected to a fixed number of 

existing nodes within the same community by intra-community 

links. Then it has a certain given probability to be connected to 

a fixed number of nodes outside its own community by 

inter-community links. For both the intra- and inter-community 

connections, the existing nodes to be connected are randomly 

selected in probabilities proportional to their degrees, i.e., by 

using the preferential attachment method. Specifically, the 

construction process can be described as follows: 

Initialization: Build an initial network with M communities 

and 0m  nodes in each community, where each community is 

connected into a complete graph (i.e., every node is connected 

to every other node in the same community). For every pair of 

communities, randomly choose a single node in each 

community and connect them with an inter-community link. 

Keep separate records of every node’s intra- and 

inter-community degrees respectively. 

Evolving: When a new node is added to the network, 

randomly choose a community for it. Connect this new node 

with m existing nodes in the same community by 

intra-community preferential attachment, i.e., the probability 

that the new node is connected to an existing node is 

proportional to the intra-community degree of the existing 

node. Each new node also has a probability σ  to have n  

inter-community links. When the new node indeed can have 

inter-community links, the probability that an existing node in 

another community is connected to the new node is 

proportional to the inter-community degree of the existing 

node. 

This above procedure is repeated until the network size is 

large enough. 

The network generated in this way has a power law degree 

distribution of [20]: 
 

2
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Once again, the Monte-Carlo Switching algorithm [22] is 

applied to generate the counterpart network with the same 

nodal degree but without community structures. 

C. Epidemic Spreading Models 

In this work, we adopt the well-known Susceptible- 

Infected-Recovered (SIR) model for evaluating infection size 

and spreading speed, and Susceptible-Infected (SI) model [23] 

for evaluating the average infection size in networks equipped 

with sparsely deployed monitors. Specifically, for the SIR 

model, we assume that time is slotted and any susceptible node 

adjacent to an infected node has a probability λ  of being 
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infected at the beginning of each time step. At the same time 

slot, each infected node has a probability of µ  to recover. A 

recovered node is no longer infectious and will never get 

infected again. We also assume that the epidemic starts from a 

single infection source. For the SI model, it differs from the SIR 

model by not allowing any node to recover. In early stage of 

strong infections when recovery hardly starts yet, the SI model 

closely resembles the real-life cases.  

III. THE EFFECTS OF THE COMMUNITY STRUCTURES  

In this section, we compare epidemic spreading in networks 

with and without community structures, respectively. For the 

random network model, we generate 10 networks, each of 

which has 1000 nodes, 10000 edges, 10 communities and a 

community parameter of / 1000p qσ = = . In each generated 

network, we choose 1000 different infection sources and 

average the results of these 1000 realizations. The spreading 

rate is set as / 0.1λ µ = . For the scale-free network model, we 

generate 10 networks, each of which has 1000 nodes, 5000 

edges, 10 communities and a community parameter value of 

0.01σ = . Again, for each network generated, we test on 1000 

different infection sources and calculate the average results of 

the 1000 realizations. The spreading rate is set as / 0.4λ µ = . 

The final results presented in this paper, unless otherwise 

specified, are the average results in all the generated networks. 

A. Infection Speed and Overall Infection Size 

 

Fig. 1 Dynamics of overall infection size along time: (a) random 

network model; (b) scale-free network 

 

Fig. 1 illustrates the dynamics of the overall infection size 

along time. The SIR model is adopted. We can see that in both 

networks, the existence of strong community structures helps 

slow down the infection spreading. The steady-state infection 

size, however, is hardly affected by the existence of the 

community structures. Nodal degrees of the network largely 

decide the overall infection size.  

We then proceed to examine on the effects of changing the 

number of communities in the networks. Specifically, we test 

different cases with 2, 6 and 10 communities in the random 

networks and 5, 10 and 15 communities in the scale-free 

networks. For each number of communities, we generate 5 

random networks. All the other parameters remain unchanged 

as stated at the beginning of Section III.  

The simulation results are presented in Fig. 2. We can 

observe that in random networks, the infection spreading 

becomes slower with an increasing number of communities. 

This can be easily understood: the strong community structures 

make it difficult for the infection spreading to enter into a new 

community. In scale-free networks, however, the effects of 

having different number of communities become much less 

significant and decisive. This can be explained by the existence 

of the hub nodes in the scale-free network, which helps 

distribute the virus quickly despite of the gaps between 

different communities. 
 

 

Fig. 2 Epidemic spreading in networks with different number of 

communities: (a) random networks; (b) scale-free networks 

B. Infection Size with Network Monitors 

Finally we test on the effects of community structures on the 
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average infection size in networks with sparsely deployed 

monitors. As aforementioned, since the main concern for 

infection detection is to find and stop strong infections at their 

early stage, we adopt the SI model where infected nodes never 

get recovered. As that in [21], we assume that once the infection 

reaches any of the monitors, it will be detected and stopped 

immediately 

We test on both the random and scale-free network models. 

For random network model we generate 5 networks, each of 

which has 1000 nodes and 10000 edges with 10 communities 

and a modularity parameter / 1000p qσ = = . For scale-free 

network models we also generate 5 networks, each of which has 

1000 nodes and 5000 edges with 10 communities and a 

modularity parameter of 0.01σ = . For each network we 

deploy up to 30 monitors in it using the algorithm proposed in 

[21] and randomly choose 1000 different infection sources to 

start the virus spreading. The spreading rate is 50%p = . Once 

again we compare the cases in networks with and without 

community structures respectively. The average infection sizes 

are presented in Fig. 3.  

 

 

Fig. 3 Average infection size in networks equipped with a given 

number of monitors: (a) random networks; (b) scale-free networks 

 

As we can observe, the existence of strong community 

structures does help reduce the average infection sizes in 

networks with a given number of monitors for infection 

detection. And the effects are much more significant in random 

networks than those in scale-free networks. Such observations 

can be explained: when there exist strong community structures 

in networks, by using the algorithms in [21], monitors tend to 

be allocated on the “gateways” of the communities (i.e., the 

nodes with a large number of inter-community links) and 

high-degree hub nodes. Such allocations of monitors help 

reduce the infection to a fraction of a community before it is 

detected and stopped. This explains the significantly reduced 

average infection sizes in random networks. In scale-free 

networks, however, the existence of hub nodes plays a more 

significant role in epidemic spreading than the existence of 

communities. Since in both the community-structured networks 

and their counterpart community-less networks, the greedy 

algorithm in [21] shall make sure that monitors are allocated on 

high-degree hub nodes, the effects of the existence of 

community structures become much less impactful. Controlling 

the epidemic spreading in scale-free networks basically 

remains as a challenge, while the existence of community 

structures generally speaking may not help too much. 

IV. CONCLUSION 

In this paper, we evaluated the effects of community 

structures on epidemic spreading and control in complex 

networks. Specifically, by conducting extensive simulations, 

we studied on the effects of community structures on overall 

infection size, spreading speed and the average infection size in 

networks deployed with monitors, respectively. It was found 

that, generally speaking, the existence of community structures 

does not help reduce the overall infection size yet it may indeed 

slow down the spreading speed and hence helps buy more time 

before the vaccination could be available. In networks with 

monitors for infection detection, the existence of strong 

community structures helps reduce the average infection size 

since the infection sourced from a community has a very low 

chance to penetrate into any other community. Another 

important observation is that the effects of the strong 

community structures on epidemic spreading and control tend 

to be much more limited in scale-free networks than those in 

random networks. The existence of high-degree hub nodes 

persistently plays the most impactful role in epidemic 

spreading and control in scale-free networks, with or without 

community structures.  
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