
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1333

Abstract—In this paper, we propose a general mandatory access

framework for distributed systems. The framework can be applied
into multiple operating systems and can handle multiple stakeholders.
Despite considerable advancements in the area of mandatory access
control, a certain approach to enforcing mandatory access control can
only be applied in a specific operating system. Other than PC market
in which windows captures the overwhelming shares, there are a
number of popular operating systems in the emerging smart phone
environment, i.e. Android, Windows mobile, Symbian, RIM. It
should be noted that more and more stakeholders are involved in
smartphone software, such as devices owners, service providers and
application providers. Our framework includes three parts—local
decision layer, the middle layer and the remote decision layer. The
middle layer takes charge of managing security contexts, OS API,
operations and policy combination. The design of the remote
decision layer doesn’t depend on certain operating systems because
of the middle layer’s existence. We implement the framework in
windows, linux and other popular embedded systems.

Keywords—Mandatory Access Control, Distributed System,
General Platform.

I. INTRODUCTION
ANDSET devices like smart phones and netbooks are
very popular these days. There are two features of these

devices. First, various operating systems are used in these
devices because they are embedded essentially. Second,
multiple stakeholders are involved like communication service
providers, device manufacturers and the owners of
downloaded applications. Operating systems security is the
cornerstone of system security; access control mechanism has
an important meaning for the operating system; however at
present the majority of the operating system access control
mechanisms are designed for a single system, and to
implement access control mechanisms on other systems we
need to re-implement it, which is a waste of a lot of work and
makes the security configurations of different systems differs.

A general mandatory access control framework is proposed
in this paper to avoid duplication of efforts. We use smart
phone systems as the instance in this paper although the
framework can be easily applied in other distributed systems.

The main work and contributions of this paper includes:
(1) Research of the differences of operating systems, as well

Feng Yang is with the University of Science and Technology of China

Hefei, China, (phone: 86-13913584736; e-mail: yfus@ mail.ustc.edu.cn).
Xuehai Zhou is with the University of Science and Technology of China

Hefei, China.
Dalei Hu is with the University of Science and Technology of China Hefei,

China.

as the middle layer design.
(2) Designing a general mandatory access framework for

distributed systems.
(3) Implementing the framework in Windows, Linux and

other operating systems.
The rest of the paper is organized as follows. In Section II

we review the background and related works. We propose the
framework design in Section III. We then present the
implementation details and the overhead involved in our
solution in Section IV. Discussion of the framework is
presented in Section V. We conclude the paper in Section VI.

II. BACKGROUND AND RELATED WORKS
Several mandatory access control models have been

proposed in the literature such as BLP [1], [2], BIBA [3], [4],
RBAC [5], TE [6]. Generally, there are two phases in the
access control. The first is assigning levels (BLP, BIBA),
types (TE), roles (RBAC) or other labels to the new subjects
and objects. The second is access enforcement which
answerhs the query “Can subject S perform action A on
Object O”.

In smart phone systems, traditional access controls are
static. Like Symbian [7] and Android [8], static policies
should be loaded at install time. These systems do not
consider the dynamic policy decision and multiple
stakeholders. Obviously, the access control mechanism in one
system is different from those in others.

A. Herzberg et al. extend existing RBAC mechanisms and
present a mechanism that allows a business to define a policy
to map accessed users to roles, based on certificates received
from the user and collected automatically by the system [9].
Considerable advancements in the area of composing access
control policies are achieved. We leverage the results in [10]
and [11].

V. Rao et al. revise SE linux and propose a dynamic
mandatory access control for multiple stakeholders [12].
However, it can only be applied in Linux and it is hard to be
used in other operating systems.

We can see from above that a general mandatory access
control framework that can be applied in multiple operating
systems is needed.

A General Mandatory Access Control Framework
in Distributed Environments

Feng Yang, Xuehai Zhou, Dalei Hu

H

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1334

III. APPROACH

A. Framework Architecture

Window
s Hook

Windows
Application

Linux
Applicaction

Linux
Hook

Access
Request

Access
Request

Local policy
server

Policy
combine

r

Security
Model

Stakeholder
I

Policy
Decision

Stakeholder
II

Policy
Decision

Security
Model

Platform
Abstraction

Request
send

Request
send

Request
reply

Fig. 1 Overview of the framework

Fig. 2 Overview of the security model manager

Fig. 3 Hierarchy of decision lookup

The architecture of our framework is shown in Fig. 1. The
main components are the remote decision layer, the middle
layer and the local decision layer. Each stakeholder makes
decisions using various policy models. The middle layer takes
charges of combining decisions and managing security
contexts, OS kernel APIs and the set of operations. The design
of remote decision layer could be applied in various operating
systems due to the existence of the middle layer. The local
decision layer takes charge of enhancing the access control.
We have been implementing our framework in Windows,
Linux and other operating systems.

B. The Remote Decision Layer
The remote decision layer has two functionalities. One is

assigning labels to new objects and subjects; the other is
replying to access control requests. Due to the existence of the
middle layer, the remote server in our framework is universal.

1. Security Model Manager
We implement popular mandatory access control models

including BLP, BIBA, RBAC and TE. Security models are
organized as a double-linked list. Stakeholders assign labels to
new objects or subjects and reply to access control requests
according to the decision of the security model. Stakeholders
use the security model manger to manage these models and
the security model is organized as a double-linked list as
shown in Fig 2. Each security model corresponds to a set of
rules. A stakeholder receives requests from the middle layer
and makes decisions according to the rules corresponding to
the security model it uses. For example, a certain stakeholder
chooses BLP(BIBA) as his/her security model. In BLP, a
subject with higher level cannot read an object with lower
level. If the stakeholder receives a request from the middle
layer like (<scontext,10>, <ocontext,7>, read) which means a
subject with level 10 wants to read an object with level 7.
According to the rules in BLP model, the stakeholder denies
the request.

2. State Information Transferred to the Server
The information carried by subjects can help stakeholders

make decisions. The information includes certifications that
subjects carry, temporal states of subjects and conflicts sets
that subjects belong to, etc. In the RBAC model, applications
may carry some certificates from issuers that are either known
in advance or provide sufficient certificates to be considered a
trusted authority [assigning roles to strangers]. Some polices
are time-related. For example, telecom operators may restrict
some applications to conserve bandwidth during peak hours.
Some devices in the smart phones like microphone and
camera are exclusive. If the exclusive device is used, the visit
to the device should be denied directly. The information is
useful for stakeholders to make decisions.

C. The Middle Layer
The middle layer receives requests from local servers and

sends requests to stakeholders using standard forms. After that
the middle layer receives decisions from stakeholders and
combines the decisions. Final decisions are sent to local
servers.

1. Policy Combiner
We leverage results already obtained in [10] and [11].

There are three ways for policy combination as follows.
(1) Intersection (∩) – The final decision is “allow” only if all

policy decisions are “approve”
(2) Union () – The final decision is “allow” if one policy

decision is “approve”.
(3) Difference (–) – “A – B” means the final decision is only

accordance with A.
To resolve conflicts, several rules can be used.

(1) Strict – The final decision is “deny” if any policy decision

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1335

is “deny”.
(2) Majority – The final decision is “allow” if more than half

decisions are “allow”.
(3) Priority – The final decision is only accordance with the

decision that made by the stakeholder with the highest
priority.

(4) Weight – Each stakeholder i has a weight number w[i].
The sum of stakeholders’ weight numbers whose decision
is “allow” is A and the sum of stakeholders’ weight
numbers whose decision is “deny” is B. If A>B, the final
decision is “allow”; otherwise, the final decision is
“deny”.

2. The Platform Abstraction
In order to apply our framework into various operating

systems, we design a platform abstraction module composed
of three components.

(1) Security Context Manager
Although operating systems are different from each other,

there are processes, threads, files, signals, sockets, etc in most
operation systems. These common concepts are the basis of
context abstraction. As it should be, each OS has some
specific concepts like superbloc, inode in Linux. We consider
general concepts as well as specific concepts and design a
context manager which manages a context set. The set is
composed of most existing contexts in popular operating
systems and an interface is designed to add new contexts.
Meanwhile, forms of contexts are different in different
security models. For example, subjects and objects are related
to some security levels in BIBA and are related to some roles
in RBAC. We consider these factors and construct a subset for
each security model.

(2) OS API Abstraction
Kernel APIs are different in different operating systems.

We design a set composed of OS APIs in the middle layer.
The APIs include lock_operation, input, output, atomic
operations, fork, etc. Interfaces are provided to local systems.
Each system could communicate with the middle layer as long
as it implements these interfaces. For example, when a new
process B is created by A in Linux, the API fork() is invoked.
The fork() is in the set of APIs in the middle layer. Therefore,
it takes B as A’s child and sends the information to
stakeholder for assigning labels to the new process B.

(3) Operation Set
Operation sets are different in various systems. Although

most operations are equivalent in different systems, they
maybe have different names. We design a superset of
operations can be done in most systems such as “read”,
“write”, “create”. The security server doesn’t care what are
stored in the operation set.

D. The Local Decision Layer

1. Architecture of the Local Server
In Fig. 3, we show the hierarchy of the decision lookup in

which the local server includes the policy cache and the local
policy database. Cache is used for easy revocation and fast
lookup. More details can be found in the next section.

Enhancement of the access control in an operating system
differs from that in other operating systems. Generally, a hook
is inserted when a subject needs to visit an object and a
request is sent to the local server or the remote server. The
access is approved or denied according to the reply
information.

2. Policy Addition and Revocation
A two-phase insertion is performed when updating the local

policies. The permission replied from the policy server is
inserted into the cache instead of modifying the local policy
database directly. When the permission is visited more than N
times (N is a predetermined parameter), it is inserted into the
local policy database. The reason is to save space and revoke
more easily. Time stamps can be made to limit the period of
time that the permission lasts. Revocation is the recalling of a
grant. In telecommunication systems, a large number of paid
services are provided. Therefore, revocation should be done
when users are out of credit. Meanwhile, users installed and
uninstalled applications downloaded from internet all the time
and revocation is an important aspect of the access control
framework. Therefore, we take revocation into account in our
framework. For policies just in cache, revocation means
simple cache invalidation. For policies in the policy database,
revocation is a little difficult. In this case, the module in the
database should be removed and a new module is reinstalled.

IV. IMPLEMENTATION & EVALUATION

A. Linux
We use the LSM module in the kernel 2.8.5 to implement

the os-related part on linux and modify it to keep accordance
with our framework. Both subjects and objects own a domain
for security in LSM. The index of each security context is
stored here and it is linked to the subject or object when it is
created. For example, an index of task_security_struct is
added to the security domain when a new process is created.
In LSM, a hook is inserted when an access request(creating,
reading, writing, etc) occurs.

B. Windows
There is not a ready security framework for mandatory

access control in windows like LSM in linux. Therefore, we
implement the OS-related part of the framework in Windows
NT. Security contexts are managed in two ways: first, an
index is added if the structure of a subject or object has
enough unused fields. Second, we maintain a list for
associating the subject or object with the corresponding
security context. Extended attributes exist in NTFS. The index
of the security context of a file is stored as an extended
attribute. For process, we define a data structure called
_PROCESS_ENTRY which represents the description of a
specified process. The definition of _PROCESS_ENTRY is as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1336

follows:

typedef struct _PROCESS_ENTRY {
struct _PROCESS_ENTRY* pre;
struct _PROCESS_ENTRY* next;
ULONG processID;
PEPROCESS eProcessInfo;
PVOID processSecurityContext;
} PROCESS_ENTRY, *PPROCESS_ENTRY;

The process Security Context could store the structure of
security context. In our implementation, we use the double
linked list in which each element corresponds to a security
context.

C. Other Embedded Operating Systems
To make our framework more general, we implement it on

a number of embedded operating systems. In this section, we
illustrate the implementation on RTEMS (Real-Time
Operating System for Multiprocessor Systems). RTEMS is a
real-time executive which provides a high performance
environment for embedded applications on a range of
processors and embedded hardware. Details about RTEMS
can be found in [13]. We hook the operations on process, file
and communication. Table II illustrates the hook points we set
on process operations. The policy cache has 512 items, each
of which is 20B. Adding the control structure, the overall
space that the policy cache occupies is not more than 11KB
which is acceptable in RTEMS.

More details about the implementations can be found on
our website [14]. Please contact the authors for access
permission.

D. Performance
Introduction of our framework into Linux is relatively easy

because of the existence of LSM. Meanwhile, we could
compare the performance of our implementation with
SELinux directly. The hardware used was a Dell Optiplex 755
machine with Intel Pentium Dual Core processor @2.33 GHZ.
We use the LSM module in the Linux 2.8.5 kernel to
implement the local server and enhancing mandatory access
control.

We record the number of cycles needed to enhance
mandatory access control when the cache hit and missed.
During the measurement, the network round trip delay is
recorded independently because it varies according to the
network environment. We can see from Table I that the
bottleneck is the network round trip delay. The advantages we
obtain from the local cache include improved performance
and the minimum overhead incurred by the framework is
0.302μs which is acceptable. The real performance depends
on the cache size, cache replacement and local policy database
size, etc, and we leave the optimization as future works.

TABLE I
PERFORMANCE EVALUATION FOR ACCESS CONTROL

Processor Speed 2.33 GHZ
SELinux 703 cycles = 0.302 μs

Referring to Cache 703 cycles = 0.302 μs

Referring to local server 1271 cycles = 0.545 μs

Referring to stakeholders 1546 cycles = 0.664 μs
Network round trip delay 1.7 ms

TABLE II

PROCESS HOOK POINTS IN RTEMS
Rtems_task_create()
Rtems_task_start()

Rtems_task_restart()
Rtems_task_delete()

Rtems_task_suspend()
Rtems_task_resume()

Rtems_task_set_priority()
Rtems_task_get_priority()

V. DISCUSSION

A. Auditing
Permission requests can be logged and uploaded to the

remote server at reasonable intervals. An auditing and
intrusion-detection modular can be easily coupled with the
existing server. The outbreak of viruses could affect many
smart phones and cause noticeable changes in their behavior.
A behavior-detection module in conjunction to the proposed
framework is our future work.

B. Offline Operations
If the user is disconnection from the remote server, the

cache and the local database is refer to. If the corresponding
policy cannot be found in the cache and the local database, the
access is denied in our framework. For clarity, the user only
takes charge of enforcing mandatory access control and
doesn’t participate in the policy decision process in the
proposed framework. However, the framework can be easily
used in the situation that the user is one of the judgers. In case
of disconnection from remote servers, the user is referred to if
the corresponding policy cannot be found in the cache and the
local database.

C. Dynamic Properties of the Mechanism
In ordinary mandatory access control mechanisms of smart

phone systems, the default “deny” policy is used. A new
application cannot be executed unless registered during the
installed period. In our mechanism, when the applications
need to visit some critical resources, the local server or
stakeholders are referred to. The mechanism is dynamic
because stakeholders can generate policies during the
execution process and the related information is provided to
stakeholders for reference. Meanwhile, an application’s
unused privileged functionality doesn’t affect its operation.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:7, No:10, 2013

1337

VI. CONCLUSION
In this paper, we present a general mandatory access control

framework in distributed environments. The framework is
universal which means that it can be applied on various
operating systems. The main feature of the framework is the
middle layer which communicates with local servers and
stakeholders. The framework is support with multiple
operating systems, multiple stakeholders. Dynamic decisions
and easy revocation are obtained in the framework. We
implement the framework on Windows, Linux, Rtems, etc.
The performance overhead is acceptable as the experiments
show.

ACKNOWLEDGMENTS
The authors would like to thank associate professor

Songwu LU in UCLA for his constructive advice. This work
was supported in part by Natural Science Foundation of
China.

REFERENCES
[1] L. Lapadula 1996. Secure computer systems: a mathematical model.

MITRE Technical Report, Vol I.
[2] L. Lapadula 1996. Secure computer systems: a mathematical model.

MITRE Technical Report, Vol II.
[3] K.J. Biba 1977. Integrity Considerations for Secure Computer

Systems:[ESD-TR-76-372]. Electronic Systems Division.
[4] C.E. Landwehr. 1981. Formal Models for Computer Security. ACM

Computing Surveys, 13(3).
[5] S.R. Ferraiolo DF, S. Gavrila. 2001. Proposed NIST Standard for Role-

based Access Control. ACM Transactions on Information and System
Security.

[6] W.E. Boebert, R. Y. Kain. 1985. A Practical Alternative to Hierarchical
Integrity Policies. In Proceedings of the 8PthP National Computer
Security Conference.

[7] Symbian Limited. Symbian OS – the mobile operating system.
HTUhttp://www.symbian.comUTH, 2006.

[8] W. Enck, M. Ongtang, and P. McDaniel. Automated Cellphone
Application Certification in Android. Technical report, Pennsylvania
State University, 2008.

[9] A. Herzberg, Y. Mass, J. Michaeli, Y. Ravid, D. Naor. 2000. Access
Control Meets Public Key Infrastructure, Or: Assigning Roles to
Strangers. In the Proceedings of the 2000 IEEE Symposium on Security
and Privacy.

[10] P. Bonatti, S. De Capitani di Vimercati, and P. Samarati. 2002. An
Algebra for Composing Access Control Policies. HACM Transactions
on Information and System SecurityH.

[11] H. H. Hosmer. 1992. Metapolicies II. In Proceedings of the 15PthP
National Computer Security Conference.

[12] V. Rao, T. Jaeger. 2009. Dynamic Mandatory Access Control for
Multiple Stakeholders. In the Proceedings of 2009 HSymposium on
Access control Models and TechnologiesH.

[13] Rtems HTUhttp://www.rtems.com/UTH.
[14] http://web-b.embedded.ustcsz.edu.cn/projects/PFAC.

