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Abstract—In production processes, assembly conceals a 

considerable potential for increased efficiency in terms of lowering 
production costs. Due to the individualisation of customer 
requirements, product variants have increased in recent years. 
Simultaneously, the portion of automated production systems has 
increased. A challenge is to adapt the flexibility and adaptability of 
automated systems to these changes. The Institute for Production 
Systems and Logistics developed an aerodynamic orientation system 
for feeding technology. When changing to other components, only 
four parameters must be adjusted. The expenditure of time for setting 
parameters is high. An objective therefore is developing an 
optimisation algorithm for automatic parameter configuration. Know 
how regarding the interaction of the four parameters and their effect 
on the sizes to be optimised is required in order to be able to develop 
a more efficient algorithm. This article introduces an analysis of the 
interactions between parameters and their influence on the quality of 
feeding. 
 

Keywords—Aerodynamic feeding system, design of 
experiments, interactions between parameters. 

I. INTRODUCTION 
ECAUSE of the high level of automation in the 
production segment, assembly has become the costliest 

production process [1]. In the mid-1980s, assembly made up 
50% of the costs of a product [2], but according to current 
studies, this portion now amounts to 70% [1]. In particular, in 
automated assembly an increase in output performance of 
assembly units cannot be realised without increasing feeding 
capacities [3]. Furthermore, the flexibility requirements on the 
assembly system constantly increase on account of increasing 
diversity of product and variety of options.  

Conventional feeding systems, in terms of their flexibility, 
as well as their feeding output and process reliability 
increasingly reach their limits [4]. In terms of exhausting still 
undeveloped rationalisation potentials in automated assembly, 
a considerable economic significance must be attributed to 
feeding technology. The feeding process is subdivided into the 
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partial processes, storage, separation, orientation, positioning 
and transfer [4]. 

This article focuses on the partial process of orientation. By 
means of the aerodynamic impulse process, a wide range of 
small components can be fed quickly, reliably and, above all, 
correctly [5]. In passive orientation processes, incorrectly 
oriented components are merely removed and correctly 
oriented ones are placed in the correct position randomly [6]. 
That is why the impulse process uses the principle of active 
orientation, in which incorrectly oriented parts are actively 
placed in the correct position [6]. Therefore, this principle is 
evidently more efficient in terms of feeding output. The 
adaptation to new workpieces is achieved by setting the four 
system parameters. Until now, these parameters always had to 
be configured manually and involved considerable 
expenditure of time. Thus, a process is to be developed by 
means of which the aerodynamic feeding system can be 
automatically adjusted. This enables reducing manual 
configuration costs when changing over to new components. 
In this article, the cause and effect relations between 
adjustable parameters and the portion of correctly oriented 
components is worked out by means of experimental design 
planning. Further, interactions between parameters will be 
taken into consideration. 

II. AERODYNAMIC FEEDING WITH THE IMPULSE PROCESS 
Many flexible feeding systems use air nozzles as order 

baffles for orienting components. This method has a lower 
susceptibility to faults then systems that work with mechanical 
order baffles. In systems that operate according to the 
principle of passive orientation, incorrectly oriented 
components, for example, are recorded per line scan, 
identified by image processing and subsequently are blown 
back into the feeding pot by means of an air nozzle [6]. This 
reduces the output of a system because components, which are 
not correctly oriented, have to run through the process several 
times. In the area of active orientation, airflow is used in a 
targeted manner in order to place the components in the 
desired position. 

The impulse process serves for orienting components with 
an edge length of up to 0.1 m and a mass of 0.001 to 0.05 kg 
[5]. Further, the process uses eccentric centre-of-gravity 
positions or local varying air resistances of components. 
Depending on the centre-of-gravity position, aerodynamic 
characteristics and projected areas of the feed component, a 
radial orientation around the axis of the direction of motion or 
an axial orientation vertically to the direction of motion is 
possible. Fig. 1 shows the functional principle of the impulse 
process in the example of the axial orientation. 
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The above feeding device consists of a tilted guide level 
with a gradient α, a lateral inclination ß and a leading edge 
arranged at right angles to the guide level. An air nozzle is 
inserted into the leading edge, which is aligned parallel to the 
guide level. 

 

(a) Rotation (b) No Rotation  

Fig. 1 Functional principle of the impulse process [5] 
 

The previously separated components are fed into the 
feeding system at a defined speed υ and slide down the tilted 
guide level along the leading edge. The air nozzle operates at 
a constant operating pressure ρ and emits continued airflow. 
When passing the air nozzle, the components are subjected to 
an impulse and lift off the leading edge. While the incorrectly 
oriented components rotate by 180° (Fig. 1 (a)), the correctly 
oriented components retain their orientation at (Fig 1 (b)). 
Ideally, at the output of the system all components have a 
similar orientation. 

By completely dispensing with mechanical order elements, 
the impulse process is characterised by its high level of 
flexibility with respects to adjustment and changeover to the 
new components. Jamming of components in the baffle is 
excluded, as a result of which a high level of process 
reliability can be achieved. Since the component motion due 
to vibrations also is excluded and the components 
subsequently are actively oriented, a continued very high 
feeding output of 750 units / minute can be realised. The high 
operating costs on account of using compressed air and 
expertise for adapting the changeover to new components, 
which previously was necessary, are deemed to be 
disadvantageous [5], [7]. 

The adjustment and changeover to new components with 
the impulse methods is performed by setting the parameters 
gradient α and inclination ß of the tilted guide level, air 
pressure ρ of the nozzle and feeding speed of the components 
υ. Previously, the setting process, based on experience, was 
performed by applying the iterative method by trial and 
observation. Depending on the user's expertise, this process 
takes a longer or shorter time, but, as a rule, the designing of 
parameters is very time-intensive. Moreover, because of the 
open design, interfering environmental influences may impair 
the behaviour of the feeding device. A setting, which 
previously might have been considered optimal, might not be 
able to provide the desired result because of the change in 
ambient pressure. The aerodynamic feeding method 
consequently offers a development potential not only with 
respect to the time-intensive parameter setting, but also in 
terms of the absence automatic adjustment. 

By means of the equations of motion, one is able to 
describe the components motion mathematically in the 
impulse process until the impact [4]. Because of the 
dependence on materials, services and masses, the impact can 
be modelled only experimentally and component-specifically 
[4]. A complete simulation of the motion therefore is not 
expedient. Due to the complexity of the impact phenomenon, 
this article makes no reference to a mathematical description 
of the component motion during the impulse process. Instead, 
the system is seen as a black box, of which the general 
function is known, but not modelled in detail. 

III. FOUNDATIONS FOR PERFORMING THE TEST 

A. Input and Output Values 
In order to create a better understanding of the system, the 

input and output values in Fig. 2 of the feeding system are 
shown in a parameter diagram. 

 

 

Fig. 2 Parameter diagram for the impulse process 
 

The term parameter comprises the quantity of all input 
values of a system. Control values are targeted variable input 
values [8], and with the impulse process the adjustable 
parameters represent gradient α, lateral inclination ß, pressure 
p and feeding speed υ. Signal values also are input values and 
specify the range of the system’s function [8]. For example, if 
the gradient of the inclined level is too flat, components will 
be unable to slide down the level. If the gradient is too steep, 
components will no longer be able to land on the level after 
having been subject to the air impulse. In both cases the 
system would no longer be functional, and correspondingly 
certain upper and lower limits must be maintained for all 
control values. Quality characteristics are understood to be 
continued output values by means of which the degree of 
fulfilment of the desired results can be quantified [8]. 
Primarily, in the case of the impulse procedure, a large portion 
of properly oriented components is desirable and therefore a 
major quality characteristic. Other characteristics, for 
example, may be lower nozzle pressure or highest possible 
feeding rates. The objective of a parameter optimisation is 
optimising quality characteristics by setting the control values. 

B. Description of the Test 
According to Fig. 3, during the following tests, 

commercially available dummy plugs are used as test 
components for pneumatic plug connections. 

Because of their elongated shape, low weight, eccentric 
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centre of gravity and insensitivity to impact and vibrations, 
these plastic components are particularly good for orientation 
with impulse processes. 

 

 

Fig. 3 Drawing of test specimen – dummy plug for pneumatic plug 
connections 

 
Initially, the test specimens are separated and pre-oriented 

in the centrifugal conveyor. When leaving the centrifugal 
conveyor, the test specimens in terms of their orientation still 
have a degree of freedom: They either lie with their narrow 
wide end (A) or their elongated wide end (B) towards the 
front. A conveyor belt picks up the components after they 
leave the centrifugal conveyor and accelerates their 
conveyance at a defined speed υ. Subsequently the 
components slide along the tilted level down the leading edge 
and are oriented by means of the impulse process. After 
leaving the conveying chute, the conveyor transports the test 
specimens past the image recognition unit. The image 
recognition (Fig. 4) records the components with a camera and 
transmits the information to a computer. By counting the 
number of correctly and incorrectly oriented components, the 
portion of correctly oriented components can be measured as 
quality characteristic. 

 

 

Fig. 4 Example of camera images during the optical recording of the 
test specimen 

 
For a successful test it is important that the system is 

adapted to the component to be tested, thus ensuring the 
system’s general function for the given test conditions. During 
pre-tests, it has been observed that test specimens tend to 
tumble over after impacting the conveying chute. A 3 mm 
thick plastic layer was glued onto the conveying chute, so as 
to improve impact behaviour. Glass fibre-based Teflon 
adhesive tape improved the conveying chute’s sliding 
characteristics even further and reduced risk of component 
blockage in the feeding system. 

Further, it must be ensured that the test specimens are 
separated correctly. For this purpose, the centrifugal 
conveyor’s turntable is operated at a speed of 20 rounds/min 
and the discharge ring at 55 rounds/min. This setting enables a 
speedy end secure separation of individual test components at 
the start of the process. The image recognition system is 

directed towards the conveyor belt and trained towards the 
component. To ensure that the test specimen position is 
recorded correctly, the conveyor belts speed at the system 
output is set to 90 m/min. As this speed is in excess of the 
feeding rate to be tested, after leaving the conveyor chute the 
components are rectified to facilitate the separate recording of 
test specimens. 

 
TABLE I 

TWO-LEVEL FULL FACTORIAL DESIGN OF EXPERIMENTS 
Test V α (°) β (°) ρ (kPa) υ (m/min) 

1 17.4 43.1 22 63 
2 21.2 43.1 22 63 
3 17.4 52.7 22 63 
4 21.2 52.7 22 63 
5 17.4 43.1 28 63 
6 21.2 43.1 28 63 
7 17.4 52.7 28 63 
8 21.2 52.7 28 63 
9 17.4 43.1 22 77 
10 21.2 43.1 22 77 
11 17.4 52.7 22 77 
11 21.2 52.7 22 77 
13 17.4 43.1 28 77 
14 21.2 43.1 28 77 
15 17.4 52.7 28 77 
16 21.2 52.7 28 77 

 
All individual tests are performed on the same test system 

with the same test specimens. In order to avoid falsifying the 
results due to temperature and ambient pressure changes, all 
tests are performed on the same day and in the same room. 
Windows and doors are closed during all tests, in order to 
exclude influences due to draught and wind. As soiling of the 
conveyor chute may influence the sliding behaviour of 
components, the test system is cleaned before every test. In 
each individual test, 500 test specimens are separated, 
subsequently accelerated, oriented by means of impulse 
processes, rectified on a conveyor belt and recorded by the 
image recognition system. 

C. Structure of the Design of Experiments 
The following terms are relevant for understanding the 

subsequent details: 
 Factors: Selected subset of parameters that will be taken 

into consideration as influencing variables [9]. 
 Factor levels: Setting factors during a test in which each 

factor is tested at least at two varying levels [8]. 
 Target value: Quality characteristic, which is measurable 

or a test calculable from measuring values, by means of 
which one is able to differentiate between good and bad 
system settings [9], [8]. 

 Effect: Effect, which a factor has on a quality 
characteristic. The effect of a factor may depend on the 
setting of other factors [8]. 

 Main effect: Effect, which an individual factor has on a 
quality characteristic, without taking into consideration 
interactions with other factors [8]. 
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 Interaction: The effect of a factor depends on the setting 
of another factor [9]. 

The selection of the design of experiments depends on the 
purpose of this study, the number of factors, the number of 
levels per factor and the desired precision of results [9]. As the 
number of factors and levels increases, the number of tests to 
be performed rises as well. Two-level designs of experiments 
have proved to be low-cost, suitable for practice and powerful 
[8]. The results must be interpreted comparably and clearly.  

In the case of non-linear correlations, the model works 
inaccurately, but the two-level design of experiments can be 
extended, if required [8]. Expenditure for the experiment can 
be reduced further by applying a fractional factorial 
experiment of designs, in that only one half of the possible 
combination of levels is tested. One weakness of fractional 
factorial experiments of designs is combining main effects 
with interactions [9], in which case the allocation of causes 
and result changes would be possible only to a limited extent. 
With full factorial designs all possible level combinations are 
tested. With a given number of nF = 4 factors each with n1 = 2 
levels, this produces a total of nl

4 = 16 individual tests for a 
full factorial design. Since the number of individual tests is 
easily understandable, a full factorial experimental design is 
preferred. Based on the predominantly correctly oriented 
components and the process-reliable function of the system, 
during preliminary testing the following factor setting by 
means of the trial and error method is considered to be a good 
initial solution: 
 

min/70;25;9.47;3.19 mkPa ==°=°= υρβα  
 
Other preliminary tests indicate that a design of 

experiments with level values that are 10% above or below the 
determined initial value, produce results that clearly vary from 
those produced by a continuously functioning system. 
According to Table I, it produces a two-level full factorial 
design of experiments. After performing 16 individual tests, 
this produces portions of correctly oriented test specimens 
according to Table II.  

The determined portions of the correctly oriented parts yc 
vary with respect to the different tests V. During the 
subsequent procedure, the statistical evaluation test results 
examine on which effects the observed target value variations 
can be based. 

IV. STATISTICAL EVALUATION OF THE RESULT 

A. Main Effects and Interactions 
Effects and interactions can be calculated according to the 

mean difference principle. An effect can be derived from the 
average change perceived in the target value when changing 
from a low to a high setting [8]. The effect E of the gradient α, 
for example, can be calculated by the difference of the mean 
of test results with higher and lower setting of the factor α. 

Due to the various combination options of higher and lower 
factor levels, the calculation of interactions is more 

complicated, but follows the same principle of mean 
differences. A linear description module can be formulated 
from the overall mean of the observations and the calculated 
effects. With a level width of exactly two, the coefficients of 
the model correspond to exactly one half of the related effects 
[8]. The effects and coefficients calculated in the analysis of 
the design of experiments are summarised in Table III.  

 
TABLE II 

PORTIONS OF CORRECTLY ORIENTED COMPONENTS ACHIEVED IN THE 
INDIVIDUAL TEST 

Test V α (°) β (°) ρ (kPa) υ (m/min) yC (%) 
1 17.4 43.1 22 63 78.8 
2 21.2 43.1 22 63 51 
3 17.4 52.7 22 63 70.2 
4 21.2 52.7 22 63 95.4 
5 17.4 43.1 28 63 99.4 
6 21.2 43.1 28 63 98.8 
7 17.4 52.7 28 63 77.8 
8 21.2 52.7 28 63 86.8 
9 17.4 43.1 22 77 52 

10 21.2 43.1 22 77 51.2 
11 17.4 52.7 22 77 69.8 
12 21.2 52.7 22 77 48.2 
13 17.4 43.1 28 77 99.4 
14 21.2 43.1 28 77 57.8 
15 17.4 52.7 28 77 98.4 
16 21.2 52.7 28 77 93.4 

 
In consideration of a regression constant, which represents 

the mean of all test results, one arrives at the following portion 
of the correctly oriented component ŷ as presented in (1): 
 

76775.0063.0
05575.0022.0

02925.000875.0
03775.00295.0031.0

04675.000825.0049.0
055.0122.003225.00395.0ˆ

+⋅⋅⋅⋅+
⋅⋅⋅+⋅⋅⋅−

⋅⋅⋅−⋅⋅⋅+
⋅⋅+⋅⋅+⋅⋅−

⋅⋅−⋅⋅−⋅⋅+
⋅−⋅+⋅+⋅−=

υρβα
υρβυρα

υβαρβα
υρυβρβ

υαραβα
υρβαy

       (1) 

 
By means of the description model the portion of the 

correctly oriented components can be predicted for each factor 
setting within the tested level areas. As physical phenomena 
may influence the system, which may occur via the tested 
level widths, the prediction only applies to the examined area. 
Extrapolations are not permitted [8]. According to the 
calculation of effects, main effects and interactions can be 
compared with one another. Fig. 5 compares the dimensions 
of the effect in the Pareto diagram. 
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Fig. 5 Pareto diagram of the effects 
 

At a first glance it is evident that pressure by far has the 
greatest effect on the test results. This is followed closely by a 
fourth-order interaction and in third place by the three-factor 
interaction between lateral inclination, pressure and speed. 
The second most important main effect is speed. This is 
followed by the two-factor interactions between gradient and 
pressure. The main effect gradient is followed by the two-
factor interaction between gradient and speed. The main effect 
of lateral incline is in ninth position, and subsequently the 
remaining interactions of the second and third order align 
themselves in the diagram. However, it is conspicuous that the 
main effects do not take the first four positions in the diagram. 
Obviously, the various interactions have an even greater 
influence on the test result then some of the main effects. The 
third and fourth-order interactions at the second and third 
position of the ranking order represent an unusual observation. 
The interactions of these levels frequently are neglected and 
eliminated in favour of the better interpretability of a model 
[9]. 

B. Variance Analysis and Factor Elimination 
Based on accidental influences, test results scatter even 

when exercising the greatest possible care. The determined 
effects were specified on the basis of these test results. 
Therefore, they accidentally vary from the actual (unknown) 
effects [9]. By means of a variance analysis significant 
differences of averages can be determined in various groups. 
Further, the groups are defined by the varying factor settings. 
The target value variations recorded in the tests are analysed 
in variations between groups (factor effects) and variations 
within groups (inexplicable hissing). The null hypothesis H0 is 
formulated for each factor contained in the model, that the 
factor considered has no real effect. 

The rejection of this hypothesis therefore allows the 
conclusion that a real effect of the factor exists. The decision 
for rejecting the null hypothesis is based on mathematically 
determined probability values. The probability values, while 
assuming that there is an appropriate null hypothesis, indicate 
the probability that an observed or an even greater variation of 
the target value occurs. The lower the probability value the 
sooner one must assume that a real effect exists. Based on a 

defined confidence interval (typically 90%, 95% and 99%), 
significance levels can be formulated for the probability 
values. If a value, for example, is lower then 1-0.9=0.1, the 
null hypothesis for the 90% confidence interval is rejected and 
the effect is assumed to be significant [8]. 

A test plan with a total of n tests has n-1 degrees of 
freedom, while in the specified design of experiments 
therefore 16-1=15 degrees of freedom are available. Each 
model parameter with n1 levels uses n1-1 degrees of freedom. 
With the relevant two-level design of experiments, a 2-1=1 
degree of freedom is required for determining a parameter. 
The initial analysis comprises the calculation and comparison 
of four main effects and six interactions of the second order, 
four interactions of the third order and one fourth-order 
interaction. When taking the effects into consideration 
altogether, all degrees of freedom contained in the design of 
experiments will be utilised. At least one undocumented level 
of freedom is required for calculating the values of 
probability. Therefore, at least one parameter has to be 
removed from the model. According to the basic principles of 
factor elimination, initially only minor effects are eliminated. 
In order to preserve the hierarchical integrity of a model, it is 
appropriate to start with interactions of the highest order. 
Parameters of lower orders should be eliminated only if they 
are no longer contained in the interactions of the higher order. 
Since interactions starting with the third order usually only 
have a minor effect, this principle will be unproblematic [8].  

 
TABLE III 

EFFECTS AND COEFFICIENTS OF THE LINEAR DESCRIPTION MODEL 
Term Effect Coefficient 
α -0.079 -0.0395 
β 
ρ 

0.0645 
0.244 

0.03225 
0.122 

υ -0.11 -0.055 
α ⋅β 0.098 0.049 
α ⋅ρ -0.0165 -0.00825 
α ⋅υ -0.0935 -0.04675 
β ⋅ρ -0.062 -0.031 
β ⋅υ 0.059 0.0295 
ρ ⋅υ 0.0755 0.03775 
α ⋅β ⋅ ρ 0.0175 0.00875 
α ⋅β ⋅ υ -0.0585 -0.02925 
α ⋅ρ ⋅ υ -0.044 -0.022 
β ⋅ρ ⋅ υ 0.1115 0.05575 
α ⋅ β ⋅ρ ⋅ υ 0.126 0.063 

 
However, in the considered experiment, the four-factor 

interaction was identified as the second most important 
parameter. In order not to lose this important effect, the 
elimination therefore does not start with this interaction. The 
hierarchical integrity with respect to the four-factor 
interactions therefore is maintained. 

After eliminating the three-factor interaction, the result is 
shown as an example in Table IV. The Mean Squares (MS) 
column is defined as the quotient from the sum of squares 
between groups [10] and the respective degree of freedom, 
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and it thus describes the influence of a factor per degree of 
freedom on the number of correctly oriented test specimens. 
The two-factor interaction α ρ and the three-factor interaction 
α β ρ, with an MS of 0.001, have the lowest influence. In 
order to preserve the hierarchical integrity, the three-factor 
integrity α β ρ is eliminated. Subsequently, probability values 
for the remaining factors can be determined. These factors 
specify the probability that a random value of the same 
distribution is at least as large as the quotient from MS factors 
caused by the MS residue error [11]. The larger this quotient 
per factor, the smaller the related probability value and the 
sooner a factor has to be valued as significant [9]. The 
probability values, which fall short of a critical significance 
level, are shown in bold in Table IV. 

After eliminating the weakest interaction α β ρ, it can be 
observed that a significant influence must be ascribed both to 
the four-factor interaction α β ρ υ and the three-factor 
interaction β ρ υ for a 90% confidence region. The main effect 
ρ even is significant for the 95% confidence interval. 

By eliminating other interactions, the model can be 
simplified gradually. To this end, the effects of the lowest MS 
values are selected. The elimination is continued until the only 
remaining effects are significant or if none of the remaining 
non-significant effects can no longer be eliminated due to 
their integration in a significant higher-ranking interaction [8]. 

In a second phase, the second weakest interaction α υ is 
eliminated. As α ρ υ contains α υ, this term must be removed 
from the model simultaneously. Following the second 
elimination phase, the main effect α and the two-factor 

interaction ρ υ for the 90% confidence interval are deemed 
significant. The terms α β ρ υ and β ρ υ are significant for a 
95% confidence region, similar to the two-factor interactions 
α ⋅ υ and α ⋅β and the main effect υ. The main effect ρ even is 
below the 99% confidence interval barrier and therefore must 
be considered to be highly significant. 

By eliminating the second weakest interaction α β υ, the 
effects that previously were identified as significant are no 
longer identified as such. This elimination phase therefore no 
longer is taken into consideration, and the factor elimination is 
discontinued. According to the following equation, this 
produces a simplified description model. 
 

76775.0063.0
05575.002925.0

03775.00295.0031.0
04675.0049.0

055.0122,003225.00395.0*ˆ

+⋅⋅⋅⋅+
⋅⋅⋅+⋅⋅⋅−

⋅⋅+⋅⋅+⋅⋅−
⋅⋅−⋅⋅+

⋅−⋅+⋅+⋅−=

υρβα
υρβυβα

υρυβρβ
υαβα

υρβαy

  (2) 

C. Validation of the Results 
The variance analysis is based on the assumption that the 

residues, i.e., the model’s deviations from the observed 
values, are subject to normal distribution at every factor level. 
Furthermore, the residues must have variance homogeneity 
and temporal independence [8]. The verification is performed 
graphically by means of the four diagrams in Fig. 6. 
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Fig. 6 Residue diagram of the proportion of correctly oriented components 
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TABLE IV 
RESULTS OF THE VARIANCE ANALYSES AFTER ELIMINATING FACTOR 

INTERACTION α ⋅ β ⋅ ρ 
Term Mean Squares (MS) Probability Values After Elimination 
α 0.025 0.139 
β 
ρ 

0.017 
0.238 

0.169 
0.046 

υ 0.048 0.1 
α ⋅β 0.038 0.112 
α ⋅ρ 0.001 0.519 
α ⋅υ 0.035 0.118 
β ⋅ρ 0.015 0.175 
β ⋅υ 0.014 0.184 
ρ ⋅υ 0.023 0.145 
α ⋅β ⋅ ρ 0.001 - 
α ⋅β ⋅ υ 0.014 0.185 
α ⋅ρ ⋅ υ 0.008 0.241 
β ⋅ρ ⋅ υ 0.05 0.099 
α ⋅ β ⋅ρ ⋅ υ 0.064 0.088 

 
The distribution of residues is presented in a histogram 

(Fig. 6 (a)) and optically is in keeping with the bell-shaped 
curve, which is typical for normal distribution. Taking the 
probability network for normal distributions (Fig 6 (b)) into 
consideration offers additional safety. If the values 
approximately are on a straight line, the residues indicate a 
random scattering [8]. This is the case in the diagram in 
question. The residues therefore are subject to normal 
distribution. 

The variance homogeneity can be examined by applying the 
residues against the predictions of the model (adjustments) 
(Fig. 6 (c)). If the values form an even zero-distributed strip 
without identifiable pattern, it must be assumed that the 
variances of the residues are equal [8]. In this case, variance 
homogeneity consequently is provided. In order to verify the 
time independence, the residues are applied via the 
observation sequence (Fig. 6 (d)). A pattern (e.g., cloud 
formation) or a trend (e.g., constantly increasing values) 
would indicate a time-dependent behaviour of model errors 
[9]. In the present case, there is a randomly distributed image 
without identifiable pattern or trends. The residues therefore 
are time-independent. 

A further requirement is the independence of input values 
[8]. The existing design of experiments is orthogonal, which 
means that each factor can be set completely independent of 
other factors [8]. This satisfies the last requirement of the 
variance analysis. The statements of the analysis are validated 
and the simplified description model according to (2) can be 
used for estimating the proportion of correctly oriented 
components for the tested area of investigation. 

The simplified description model explains R2 = 98.3% of 
the observed target value variations. R2 explains the portion of 
the target value variations quantified in percentage, which are 
explained by the model [12]. 

V. INTERPRETATION OF RESULTS AND OUTLOOK 
In this article, it was determined by means of a statistical 

design of experiments that significant interactions exist 
between the input values of aerodynamic orientation, and that 
these values influence the number of correctly oriented 
components. A four-factor interaction between all factors, a 
third-order interaction, three two-factor interactions and three 
main effects were identified as significant effects. In addition, 
it was demonstrated that, due to their significant interactions 
during parameter optimisation, the control values gradient, 
lateral incline, pressure and feeding rate always must be 
considered jointly, and that an isolated consideration of 
parameters therefore would be inefficient. 

This determination explains the high expenditure of time 
with the manual configuration of the aerodynamic feeding 
systems and confirms the relevance of a systematic 
optimisation process for reliable and low-cost optimisation of 
parameter settings during the impulse process. 

For this reason, in further research activities a genetic 
algorithm is to be developed and the control of aerodynamic 
orientation is to be implemented. This algorithm is to enable 
the system to determine self-learning optimal parameter 
settings and to adapt these dynamically as a function of 
ambient conditions. 
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